WSL2-Linux-Kernel/drivers/mtd/mtdchar.c

1440 строки
31 KiB
C
Исходник Обычный вид История

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
*/
#include <linux/device.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/backing-dev.h>
#include <linux/compat.h>
#include <linux/mount.h>
#include <linux/blkpg.h>
#include <linux/magic.h>
#include <linux/major.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/map.h>
#include <linux/uaccess.h>
mtd: merge mtdchar module with mtdcore The MTD subsystem has historically tried to be as configurable as possible. The side-effect of this is that its configuration menu is rather large, and we are gradually shrinking it. For example, we recently merged partitions support with the mtdcore. This patch does the next step - it merges the mtdchar module to mtdcore. And in this case this is not only about eliminating too fine-grained separation and simplifying the configuration menu. This is also about eliminating seemingly useless kernel module. Indeed, mtdchar is a module that allows user-space making use of MTD devices via /dev/mtd* character devices. If users do not enable it, they simply cannot use MTD devices at all. They cannot read or write the flash contents. Is it a sane and useful setup? I believe not. And everyone just enables mtdchar. Having mtdchar separate is also a little bit harmful. People sometimes miss the fact that they need to enable an additional configuration option to have user-space MTD interfaces, and then they wonder why on earth the kernel does not allow using the flash? They spend time asking around. Thus, let's just get rid of this module and make it part of mtd core. Note, mtdchar had additional configuration option to enable OTP interfaces, which are present on some flashes. I removed that option as well - it saves a really tiny amount space. [dwmw2: Strictly speaking, you can mount file systems on MTD devices just fine without the mtdchar (or mtdblock) devices; you just can't do other manipulations directly on the underlying device. But still I agree that it makes sense to make this unconditional. And Yay! we get to kill off an instance of checking CONFIG_foo_MODULE, which is an abomination that should never happen.] Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2013-03-14 15:27:40 +04:00
#include "mtdcore.h"
/*
* Data structure to hold the pointer to the mtd device as well
* as mode information of various use cases.
*/
struct mtd_file_info {
struct mtd_info *mtd;
enum mtd_file_modes mode;
};
static loff_t mtdchar_lseek(struct file *file, loff_t offset, int orig)
{
struct mtd_file_info *mfi = file->private_data;
return fixed_size_llseek(file, offset, orig, mfi->mtd->size);
}
static int mtdchar_open(struct inode *inode, struct file *file)
{
int minor = iminor(inode);
int devnum = minor >> 1;
int ret = 0;
struct mtd_info *mtd;
struct mtd_file_info *mfi;
pr_debug("MTD_open\n");
/* You can't open the RO devices RW */
if ((file->f_mode & FMODE_WRITE) && (minor & 1))
return -EACCES;
mtd = get_mtd_device(NULL, devnum);
if (IS_ERR(mtd))
return PTR_ERR(mtd);
if (mtd->type == MTD_ABSENT) {
ret = -ENODEV;
goto out1;
}
/* You can't open it RW if it's not a writeable device */
if ((file->f_mode & FMODE_WRITE) && !(mtd->flags & MTD_WRITEABLE)) {
ret = -EACCES;
goto out1;
}
mfi = kzalloc(sizeof(*mfi), GFP_KERNEL);
if (!mfi) {
ret = -ENOMEM;
goto out1;
}
mfi->mtd = mtd;
file->private_data = mfi;
return 0;
out1:
put_mtd_device(mtd);
return ret;
} /* mtdchar_open */
/*====================================================================*/
static int mtdchar_close(struct inode *inode, struct file *file)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
pr_debug("MTD_close\n");
/* Only sync if opened RW */
if ((file->f_mode & FMODE_WRITE))
mtd_sync(mtd);
put_mtd_device(mtd);
file->private_data = NULL;
kfree(mfi);
return 0;
} /* mtdchar_close */
/* Back in June 2001, dwmw2 wrote:
*
* FIXME: This _really_ needs to die. In 2.5, we should lock the
* userspace buffer down and use it directly with readv/writev.
*
* The implementation below, using mtd_kmalloc_up_to, mitigates
* allocation failures when the system is under low-memory situations
* or if memory is highly fragmented at the cost of reducing the
* performance of the requested transfer due to a smaller buffer size.
*
* A more complex but more memory-efficient implementation based on
* get_user_pages and iovecs to cover extents of those pages is a
* longer-term goal, as intimated by dwmw2 above. However, for the
* write case, this requires yet more complex head and tail transfer
* handling when those head and tail offsets and sizes are such that
* alignment requirements are not met in the NAND subdriver.
*/
static ssize_t mtdchar_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
size_t retlen;
size_t total_retlen=0;
int ret=0;
int len;
size_t size = count;
char *kbuf;
pr_debug("MTD_read\n");
if (*ppos + count > mtd->size) {
if (*ppos < mtd->size)
count = mtd->size - *ppos;
else
count = 0;
}
if (!count)
return 0;
kbuf = mtd_kmalloc_up_to(mtd, &size);
if (!kbuf)
return -ENOMEM;
while (count) {
len = min_t(size_t, count, size);
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = mtd_read_fact_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_read_user_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_RAW:
{
struct mtd_oob_ops ops = {};
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
ops.oobbuf = NULL;
ops.len = len;
ret = mtd_read_oob(mtd, *ppos, &ops);
retlen = ops.retlen;
break;
}
default:
ret = mtd_read(mtd, *ppos, len, &retlen, kbuf);
}
/* Nand returns -EBADMSG on ECC errors, but it returns
* the data. For our userspace tools it is important
* to dump areas with ECC errors!
* For kernel internal usage it also might return -EUCLEAN
* to signal the caller that a bitflip has occurred and has
* been corrected by the ECC algorithm.
* Userspace software which accesses NAND this way
* must be aware of the fact that it deals with NAND
*/
if (!ret || mtd_is_bitflip_or_eccerr(ret)) {
*ppos += retlen;
if (copy_to_user(buf, kbuf, retlen)) {
kfree(kbuf);
return -EFAULT;
}
else
total_retlen += retlen;
count -= retlen;
buf += retlen;
if (retlen == 0)
count = 0;
}
else {
kfree(kbuf);
return ret;
}
}
kfree(kbuf);
return total_retlen;
} /* mtdchar_read */
static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t count,
loff_t *ppos)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
size_t size = count;
char *kbuf;
size_t retlen;
size_t total_retlen=0;
int ret=0;
int len;
pr_debug("MTD_write\n");
if (*ppos >= mtd->size)
return -ENOSPC;
if (*ppos + count > mtd->size)
count = mtd->size - *ppos;
if (!count)
return 0;
kbuf = mtd_kmalloc_up_to(mtd, &size);
if (!kbuf)
return -ENOMEM;
while (count) {
len = min_t(size_t, count, size);
if (copy_from_user(kbuf, buf, len)) {
kfree(kbuf);
return -EFAULT;
}
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = -EROFS;
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_write_user_prot_reg(mtd, *ppos, len,
&retlen, kbuf);
break;
case MTD_FILE_MODE_RAW:
{
struct mtd_oob_ops ops = {};
ops.mode = MTD_OPS_RAW;
ops.datbuf = kbuf;
ops.oobbuf = NULL;
ops.ooboffs = 0;
ops.len = len;
ret = mtd_write_oob(mtd, *ppos, &ops);
retlen = ops.retlen;
break;
}
default:
ret = mtd_write(mtd, *ppos, len, &retlen, kbuf);
}
mtd: Fix the behavior of OTP write if there is not enough room for data If a write to one time programmable memory (OTP) hits the end of this memory area, no more data can be written. The count variable in mtdchar_write() in drivers/mtd/mtdchar.c is not decreased anymore. We are trapped in the loop forever, mtdchar_write() will never return in this case. The desired behavior of a write in such a case is described in [1]: - Try to write as much data as possible, truncate the write to fit into the available memory and return the number of bytes that actually have been written. - If no data could be written at all, return -ENOSPC. This patch fixes the behavior of OTP write if there is not enough space for all data: 1) mtd_write_user_prot_reg() in drivers/mtd/mtdcore.c is modified to return -ENOSPC if no data could be written at all. 2) mtdchar_write() is modified to handle -ENOSPC correctly. Exit if a write returned -ENOSPC and yield the correct return value, either then number of bytes that could be written, or -ENOSPC, if no data could be written at all. Furthermore the patch harmonizes the behavior of the OTP memory write in drivers/mtd/devices/mtd_dataflash.c with the other implementations and the requirements from [1]. Instead of returning -EINVAL if the data does not fit into the OTP memory, we try to write as much data as possible/truncate the write. [1] http://pubs.opengroup.org/onlinepubs/9699919799/functions/write.html Signed-off-by: Christian Riesch <christian.riesch@omicron.at> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2014-03-06 15:42:37 +04:00
/*
* Return -ENOSPC only if no data could be written at all.
* Otherwise just return the number of bytes that actually
* have been written.
*/
if ((ret == -ENOSPC) && (total_retlen))
break;
if (!ret) {
*ppos += retlen;
total_retlen += retlen;
count -= retlen;
buf += retlen;
}
else {
kfree(kbuf);
return ret;
}
}
kfree(kbuf);
return total_retlen;
} /* mtdchar_write */
/*======================================================================
IOCTL calls for getting device parameters.
======================================================================*/
static int otp_select_filemode(struct mtd_file_info *mfi, int mode)
{
struct mtd_info *mtd = mfi->mtd;
size_t retlen;
switch (mode) {
case MTD_OTP_FACTORY:
if (mtd_read_fact_prot_reg(mtd, -1, 0, &retlen, NULL) ==
-EOPNOTSUPP)
return -EOPNOTSUPP;
mfi->mode = MTD_FILE_MODE_OTP_FACTORY;
break;
case MTD_OTP_USER:
if (mtd_read_user_prot_reg(mtd, -1, 0, &retlen, NULL) ==
-EOPNOTSUPP)
return -EOPNOTSUPP;
mfi->mode = MTD_FILE_MODE_OTP_USER;
break;
case MTD_OTP_OFF:
mfi->mode = MTD_FILE_MODE_NORMAL;
break;
default:
return -EINVAL;
}
return 0;
}
static int mtdchar_writeoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops = {};
uint32_t retlen;
int ret = 0;
if (length > 4096)
return -EINVAL;
if (!master->_write_oob)
return -EOPNOTSUPP;
ops.ooblen = length;
ops.ooboffs = start & (mtd->writesize - 1);
ops.datbuf = NULL;
ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
MTD_OPS_PLACE_OOB;
if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
return -EINVAL;
ops.oobbuf = memdup_user(ptr, length);
if (IS_ERR(ops.oobbuf))
return PTR_ERR(ops.oobbuf);
start &= ~((uint64_t)mtd->writesize - 1);
ret = mtd_write_oob(mtd, start, &ops);
if (ops.oobretlen > 0xFFFFFFFFU)
ret = -EOVERFLOW;
retlen = ops.oobretlen;
if (copy_to_user(retp, &retlen, sizeof(length)))
ret = -EFAULT;
kfree(ops.oobbuf);
return ret;
}
static int mtdchar_readoob(struct file *file, struct mtd_info *mtd,
uint64_t start, uint32_t length, void __user *ptr,
uint32_t __user *retp)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_oob_ops ops = {};
int ret = 0;
if (length > 4096)
return -EINVAL;
ops.ooblen = length;
ops.ooboffs = start & (mtd->writesize - 1);
ops.datbuf = NULL;
ops.mode = (mfi->mode == MTD_FILE_MODE_RAW) ? MTD_OPS_RAW :
MTD_OPS_PLACE_OOB;
if (ops.ooboffs && ops.ooblen > (mtd->oobsize - ops.ooboffs))
return -EINVAL;
ops.oobbuf = kmalloc(length, GFP_KERNEL);
if (!ops.oobbuf)
return -ENOMEM;
start &= ~((uint64_t)mtd->writesize - 1);
ret = mtd_read_oob(mtd, start, &ops);
if (put_user(ops.oobretlen, retp))
ret = -EFAULT;
else if (ops.oobretlen && copy_to_user(ptr, ops.oobbuf,
ops.oobretlen))
ret = -EFAULT;
kfree(ops.oobbuf);
/*
* NAND returns -EBADMSG on ECC errors, but it returns the OOB
* data. For our userspace tools it is important to dump areas
* with ECC errors!
* For kernel internal usage it also might return -EUCLEAN
* to signal the caller that a bitflip has occurred and has
* been corrected by the ECC algorithm.
*
* Note: currently the standard NAND function, nand_read_oob_std,
* does not calculate ECC for the OOB area, so do not rely on
* this behavior unless you have replaced it with your own.
*/
if (mtd_is_bitflip_or_eccerr(ret))
return 0;
return ret;
}
/*
* Copies (and truncates, if necessary) OOB layout information to the
* deprecated layout struct, nand_ecclayout_user. This is necessary only to
* support the deprecated API ioctl ECCGETLAYOUT while allowing all new
* functionality to use mtd_ooblayout_ops flexibly (i.e. mtd_ooblayout_ops
* can describe any kind of OOB layout with almost zero overhead from a
* memory usage point of view).
*/
static int shrink_ecclayout(struct mtd_info *mtd,
struct nand_ecclayout_user *to)
{
struct mtd_oob_region oobregion;
int i, section = 0, ret;
if (!mtd || !to)
return -EINVAL;
memset(to, 0, sizeof(*to));
to->eccbytes = 0;
for (i = 0; i < MTD_MAX_ECCPOS_ENTRIES;) {
u32 eccpos;
ret = mtd_ooblayout_ecc(mtd, section++, &oobregion);
if (ret < 0) {
if (ret != -ERANGE)
return ret;
break;
}
eccpos = oobregion.offset;
for (; i < MTD_MAX_ECCPOS_ENTRIES &&
eccpos < oobregion.offset + oobregion.length; i++) {
to->eccpos[i] = eccpos++;
to->eccbytes++;
}
}
for (i = 0; i < MTD_MAX_OOBFREE_ENTRIES; i++) {
ret = mtd_ooblayout_free(mtd, i, &oobregion);
if (ret < 0) {
if (ret != -ERANGE)
return ret;
break;
}
to->oobfree[i].offset = oobregion.offset;
to->oobfree[i].length = oobregion.length;
to->oobavail += to->oobfree[i].length;
}
return 0;
}
static int get_oobinfo(struct mtd_info *mtd, struct nand_oobinfo *to)
{
struct mtd_oob_region oobregion;
int i, section = 0, ret;
if (!mtd || !to)
return -EINVAL;
memset(to, 0, sizeof(*to));
to->eccbytes = 0;
for (i = 0; i < ARRAY_SIZE(to->eccpos);) {
u32 eccpos;
ret = mtd_ooblayout_ecc(mtd, section++, &oobregion);
if (ret < 0) {
if (ret != -ERANGE)
return ret;
break;
}
if (oobregion.length + i > ARRAY_SIZE(to->eccpos))
return -EINVAL;
eccpos = oobregion.offset;
for (; eccpos < oobregion.offset + oobregion.length; i++) {
to->eccpos[i] = eccpos++;
to->eccbytes++;
}
}
for (i = 0; i < 8; i++) {
ret = mtd_ooblayout_free(mtd, i, &oobregion);
if (ret < 0) {
if (ret != -ERANGE)
return ret;
break;
}
to->oobfree[i][0] = oobregion.offset;
to->oobfree[i][1] = oobregion.length;
}
to->useecc = MTD_NANDECC_AUTOPLACE;
return 0;
}
static int mtdchar_blkpg_ioctl(struct mtd_info *mtd,
struct blkpg_ioctl_arg *arg)
{
struct blkpg_partition p;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
if (copy_from_user(&p, arg->data, sizeof(p)))
return -EFAULT;
switch (arg->op) {
case BLKPG_ADD_PARTITION:
/* Only master mtd device must be used to add partitions */
if (mtd_is_partition(mtd))
return -EINVAL;
/* Sanitize user input */
p.devname[BLKPG_DEVNAMELTH - 1] = '\0';
return mtd_add_partition(mtd, p.devname, p.start, p.length);
case BLKPG_DEL_PARTITION:
if (p.pno < 0)
return -EINVAL;
return mtd_del_partition(mtd, p.pno);
default:
return -EINVAL;
}
}
static void adjust_oob_length(struct mtd_info *mtd, uint64_t start,
struct mtd_oob_ops *ops)
{
uint32_t start_page, end_page;
u32 oob_per_page;
if (ops->len == 0 || ops->ooblen == 0)
return;
start_page = mtd_div_by_ws(start, mtd);
end_page = mtd_div_by_ws(start + ops->len - 1, mtd);
oob_per_page = mtd_oobavail(mtd, ops);
ops->ooblen = min_t(size_t, ops->ooblen,
(end_page - start_page + 1) * oob_per_page);
}
static int mtdchar_write_ioctl(struct mtd_info *mtd,
struct mtd_write_req __user *argp)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_write_req req;
const void __user *usr_data, *usr_oob;
uint8_t *datbuf = NULL, *oobbuf = NULL;
size_t datbuf_len, oobbuf_len;
int ret = 0;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
usr_data = (const void __user *)(uintptr_t)req.usr_data;
usr_oob = (const void __user *)(uintptr_t)req.usr_oob;
if (!master->_write_oob)
return -EOPNOTSUPP;
if (!usr_data)
req.len = 0;
if (!usr_oob)
req.ooblen = 0;
req.len &= 0xffffffff;
req.ooblen &= 0xffffffff;
if (req.start + req.len > mtd->size)
return -EINVAL;
datbuf_len = min_t(size_t, req.len, mtd->erasesize);
if (datbuf_len > 0) {
datbuf = kvmalloc(datbuf_len, GFP_KERNEL);
if (!datbuf)
return -ENOMEM;
}
oobbuf_len = min_t(size_t, req.ooblen, mtd->erasesize);
if (oobbuf_len > 0) {
oobbuf = kvmalloc(oobbuf_len, GFP_KERNEL);
if (!oobbuf) {
kvfree(datbuf);
return -ENOMEM;
}
}
while (req.len > 0 || (!usr_data && req.ooblen > 0)) {
struct mtd_oob_ops ops = {
.mode = req.mode,
.len = min_t(size_t, req.len, datbuf_len),
.ooblen = min_t(size_t, req.ooblen, oobbuf_len),
.datbuf = datbuf,
.oobbuf = oobbuf,
};
/*
* Shorten non-page-aligned, eraseblock-sized writes so that
* the write ends on an eraseblock boundary. This is necessary
* for adjust_oob_length() to properly handle non-page-aligned
* writes.
*/
if (ops.len == mtd->erasesize)
ops.len -= mtd_mod_by_ws(req.start + ops.len, mtd);
/*
* For writes which are not OOB-only, adjust the amount of OOB
* data written according to the number of data pages written.
* This is necessary to prevent OOB data from being skipped
* over in data+OOB writes requiring multiple mtd_write_oob()
* calls to be completed.
*/
adjust_oob_length(mtd, req.start, &ops);
if (copy_from_user(datbuf, usr_data, ops.len) ||
copy_from_user(oobbuf, usr_oob, ops.ooblen)) {
ret = -EFAULT;
break;
}
ret = mtd_write_oob(mtd, req.start, &ops);
if (ret)
break;
req.start += ops.retlen;
req.len -= ops.retlen;
usr_data += ops.retlen;
req.ooblen -= ops.oobretlen;
usr_oob += ops.oobretlen;
}
kvfree(datbuf);
kvfree(oobbuf);
return ret;
}
mtdchar: add MEMREAD ioctl User-space applications making use of MTD devices via /dev/mtd* character devices currently have limited capabilities for reading data: - only deprecated methods of accessing OOB layout information exist, - there is no way to explicitly specify MTD operation mode to use; it is auto-selected based on the MTD file mode (MTD_FILE_MODE_*) set for the character device; in particular, this prevents using MTD_OPS_AUTO_OOB for reads, - all existing user-space interfaces which cause mtd_read() or mtd_read_oob() to be called (via mtdchar_read() and mtdchar_read_oob(), respectively) return success even when those functions return -EUCLEAN or -EBADMSG; this renders user-space applications using these interfaces unaware of any corrected bitflips or uncorrectable ECC errors detected during reads. Note that the existing MEMWRITE ioctl allows the MTD operation mode to be explicitly set, allowing user-space applications to write page data and OOB data without requiring them to know anything about the OOB layout of the MTD device they are writing to (MTD_OPS_AUTO_OOB). Also, the MEMWRITE ioctl does not mangle the return value of mtd_write_oob(). Add a new ioctl, MEMREAD, which addresses the above issues. It is intended to be a read-side counterpart of the existing MEMWRITE ioctl. Similarly to the latter, the read operation is performed in a loop which processes at most mtd->erasesize bytes in each iteration. This is done to prevent unbounded memory allocations caused by calling kmalloc() with the 'size' argument taken directly from the struct mtd_read_req provided by user space. However, the new ioctl is implemented so that the values it returns match those that would have been returned if just a single mtd_read_oob() call was issued to handle the entire read operation in one go. Note that while just returning -EUCLEAN or -EBADMSG to user space would already be a valid and useful indication of the ECC algorithm detecting errors during a read operation, that signal would not be granular enough to cover all use cases. For example, knowing the maximum number of bitflips detected in a single ECC step during a read operation performed on a given page may be useful when dealing with an MTD partition whose ECC layout varies across pages (e.g. a partition consisting of a bootloader area using a "custom" ECC layout followed by data pages using a "standard" ECC layout). To address that, include ECC statistics in the structure returned to user space by the new MEMREAD ioctl. Link: https://www.infradead.org/pipermail/linux-mtd/2016-April/067085.html Suggested-by: Boris Brezillon <boris.brezillon@collabora.com> Signed-off-by: Michał Kępień <kernel@kempniu.pl> Acked-by: Richard Weinberger <richard@nod.at> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20220629125737.14418-5-kernel@kempniu.pl
2022-06-29 15:57:37 +03:00
static int mtdchar_read_ioctl(struct mtd_info *mtd,
struct mtd_read_req __user *argp)
{
struct mtd_info *master = mtd_get_master(mtd);
struct mtd_read_req req;
void __user *usr_data, *usr_oob;
uint8_t *datbuf = NULL, *oobbuf = NULL;
size_t datbuf_len, oobbuf_len;
size_t orig_len, orig_ooblen;
int ret = 0;
if (copy_from_user(&req, argp, sizeof(req)))
return -EFAULT;
orig_len = req.len;
orig_ooblen = req.ooblen;
usr_data = (void __user *)(uintptr_t)req.usr_data;
usr_oob = (void __user *)(uintptr_t)req.usr_oob;
if (!master->_read_oob)
return -EOPNOTSUPP;
if (!usr_data)
req.len = 0;
if (!usr_oob)
req.ooblen = 0;
req.ecc_stats.uncorrectable_errors = 0;
req.ecc_stats.corrected_bitflips = 0;
req.ecc_stats.max_bitflips = 0;
req.len &= 0xffffffff;
req.ooblen &= 0xffffffff;
if (req.start + req.len > mtd->size) {
ret = -EINVAL;
goto out;
}
datbuf_len = min_t(size_t, req.len, mtd->erasesize);
if (datbuf_len > 0) {
datbuf = kvmalloc(datbuf_len, GFP_KERNEL);
if (!datbuf) {
ret = -ENOMEM;
goto out;
}
}
oobbuf_len = min_t(size_t, req.ooblen, mtd->erasesize);
if (oobbuf_len > 0) {
oobbuf = kvmalloc(oobbuf_len, GFP_KERNEL);
if (!oobbuf) {
ret = -ENOMEM;
goto out;
}
}
while (req.len > 0 || (!usr_data && req.ooblen > 0)) {
struct mtd_req_stats stats;
struct mtd_oob_ops ops = {
.mode = req.mode,
.len = min_t(size_t, req.len, datbuf_len),
.ooblen = min_t(size_t, req.ooblen, oobbuf_len),
.datbuf = datbuf,
.oobbuf = oobbuf,
.stats = &stats,
};
/*
* Shorten non-page-aligned, eraseblock-sized reads so that the
* read ends on an eraseblock boundary. This is necessary in
* order to prevent OOB data for some pages from being
* duplicated in the output of non-page-aligned reads requiring
* multiple mtd_read_oob() calls to be completed.
*/
if (ops.len == mtd->erasesize)
ops.len -= mtd_mod_by_ws(req.start + ops.len, mtd);
ret = mtd_read_oob(mtd, (loff_t)req.start, &ops);
req.ecc_stats.uncorrectable_errors +=
stats.uncorrectable_errors;
req.ecc_stats.corrected_bitflips += stats.corrected_bitflips;
req.ecc_stats.max_bitflips =
max(req.ecc_stats.max_bitflips, stats.max_bitflips);
if (ret && !mtd_is_bitflip_or_eccerr(ret))
break;
if (copy_to_user(usr_data, ops.datbuf, ops.retlen) ||
copy_to_user(usr_oob, ops.oobbuf, ops.oobretlen)) {
ret = -EFAULT;
break;
}
req.start += ops.retlen;
req.len -= ops.retlen;
usr_data += ops.retlen;
req.ooblen -= ops.oobretlen;
usr_oob += ops.oobretlen;
}
/*
* As multiple iterations of the above loop (and therefore multiple
* mtd_read_oob() calls) may be necessary to complete the read request,
* adjust the final return code to ensure it accounts for all detected
* ECC errors.
*/
if (!ret || mtd_is_bitflip(ret)) {
if (req.ecc_stats.uncorrectable_errors > 0)
ret = -EBADMSG;
else if (req.ecc_stats.corrected_bitflips > 0)
ret = -EUCLEAN;
}
out:
req.len = orig_len - req.len;
req.ooblen = orig_ooblen - req.ooblen;
if (copy_to_user(argp, &req, sizeof(req)))
ret = -EFAULT;
kvfree(datbuf);
kvfree(oobbuf);
return ret;
}
static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct mtd_info *master = mtd_get_master(mtd);
void __user *argp = (void __user *)arg;
int ret = 0;
struct mtd_info_user info;
pr_debug("MTD_ioctl\n");
/*
* Check the file mode to require "dangerous" commands to have write
* permissions.
*/
switch (cmd) {
/* "safe" commands */
case MEMGETREGIONCOUNT:
case MEMGETREGIONINFO:
case MEMGETINFO:
case MEMREADOOB:
case MEMREADOOB64:
mtdchar: add MEMREAD ioctl User-space applications making use of MTD devices via /dev/mtd* character devices currently have limited capabilities for reading data: - only deprecated methods of accessing OOB layout information exist, - there is no way to explicitly specify MTD operation mode to use; it is auto-selected based on the MTD file mode (MTD_FILE_MODE_*) set for the character device; in particular, this prevents using MTD_OPS_AUTO_OOB for reads, - all existing user-space interfaces which cause mtd_read() or mtd_read_oob() to be called (via mtdchar_read() and mtdchar_read_oob(), respectively) return success even when those functions return -EUCLEAN or -EBADMSG; this renders user-space applications using these interfaces unaware of any corrected bitflips or uncorrectable ECC errors detected during reads. Note that the existing MEMWRITE ioctl allows the MTD operation mode to be explicitly set, allowing user-space applications to write page data and OOB data without requiring them to know anything about the OOB layout of the MTD device they are writing to (MTD_OPS_AUTO_OOB). Also, the MEMWRITE ioctl does not mangle the return value of mtd_write_oob(). Add a new ioctl, MEMREAD, which addresses the above issues. It is intended to be a read-side counterpart of the existing MEMWRITE ioctl. Similarly to the latter, the read operation is performed in a loop which processes at most mtd->erasesize bytes in each iteration. This is done to prevent unbounded memory allocations caused by calling kmalloc() with the 'size' argument taken directly from the struct mtd_read_req provided by user space. However, the new ioctl is implemented so that the values it returns match those that would have been returned if just a single mtd_read_oob() call was issued to handle the entire read operation in one go. Note that while just returning -EUCLEAN or -EBADMSG to user space would already be a valid and useful indication of the ECC algorithm detecting errors during a read operation, that signal would not be granular enough to cover all use cases. For example, knowing the maximum number of bitflips detected in a single ECC step during a read operation performed on a given page may be useful when dealing with an MTD partition whose ECC layout varies across pages (e.g. a partition consisting of a bootloader area using a "custom" ECC layout followed by data pages using a "standard" ECC layout). To address that, include ECC statistics in the structure returned to user space by the new MEMREAD ioctl. Link: https://www.infradead.org/pipermail/linux-mtd/2016-April/067085.html Suggested-by: Boris Brezillon <boris.brezillon@collabora.com> Signed-off-by: Michał Kępień <kernel@kempniu.pl> Acked-by: Richard Weinberger <richard@nod.at> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20220629125737.14418-5-kernel@kempniu.pl
2022-06-29 15:57:37 +03:00
case MEMREAD:
case MEMISLOCKED:
case MEMGETOOBSEL:
case MEMGETBADBLOCK:
case OTPSELECT:
case OTPGETREGIONCOUNT:
case OTPGETREGIONINFO:
case ECCGETLAYOUT:
case ECCGETSTATS:
case MTDFILEMODE:
case BLKPG:
case BLKRRPART:
break;
/* "dangerous" commands */
case MEMERASE:
case MEMERASE64:
case MEMLOCK:
case MEMUNLOCK:
case MEMSETBADBLOCK:
case MEMWRITEOOB:
case MEMWRITEOOB64:
case MEMWRITE:
case OTPLOCK:
case OTPERASE:
if (!(file->f_mode & FMODE_WRITE))
return -EPERM;
break;
default:
return -ENOTTY;
}
switch (cmd) {
case MEMGETREGIONCOUNT:
if (copy_to_user(argp, &(mtd->numeraseregions), sizeof(int)))
return -EFAULT;
break;
case MEMGETREGIONINFO:
{
uint32_t ur_idx;
struct mtd_erase_region_info *kr;
struct region_info_user __user *ur = argp;
if (get_user(ur_idx, &(ur->regionindex)))
return -EFAULT;
if (ur_idx >= mtd->numeraseregions)
return -EINVAL;
kr = &(mtd->eraseregions[ur_idx]);
if (put_user(kr->offset, &(ur->offset))
|| put_user(kr->erasesize, &(ur->erasesize))
|| put_user(kr->numblocks, &(ur->numblocks)))
return -EFAULT;
break;
}
case MEMGETINFO:
memset(&info, 0, sizeof(info));
info.type = mtd->type;
info.flags = mtd->flags;
info.size = mtd->size;
info.erasesize = mtd->erasesize;
info.writesize = mtd->writesize;
info.oobsize = mtd->oobsize;
/* The below field is obsolete */
info.padding = 0;
if (copy_to_user(argp, &info, sizeof(struct mtd_info_user)))
return -EFAULT;
break;
case MEMERASE:
case MEMERASE64:
{
struct erase_info *erase;
erase=kzalloc(sizeof(struct erase_info),GFP_KERNEL);
if (!erase)
ret = -ENOMEM;
else {
if (cmd == MEMERASE64) {
struct erase_info_user64 einfo64;
if (copy_from_user(&einfo64, argp,
sizeof(struct erase_info_user64))) {
kfree(erase);
return -EFAULT;
}
erase->addr = einfo64.start;
erase->len = einfo64.length;
} else {
struct erase_info_user einfo32;
if (copy_from_user(&einfo32, argp,
sizeof(struct erase_info_user))) {
kfree(erase);
return -EFAULT;
}
erase->addr = einfo32.start;
erase->len = einfo32.length;
}
ret = mtd_erase(mtd, erase);
kfree(erase);
}
break;
}
case MEMWRITEOOB:
{
struct mtd_oob_buf buf;
struct mtd_oob_buf __user *buf_user = argp;
/* NOTE: writes return length to buf_user->length */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
buf.ptr, &buf_user->length);
break;
}
case MEMREADOOB:
{
struct mtd_oob_buf buf;
struct mtd_oob_buf __user *buf_user = argp;
[MTD] Rework the out of band handling completely Hopefully the last iteration on this! The handling of out of band data on NAND was accompanied by tons of fruitless discussions and halfarsed patches to make it work for a particular problem. Sufficiently annoyed by I all those "I know it better" mails and the resonable amount of discarded "it solves my problem" patches, I finally decided to go for the big rework. After removing the _ecc variants of mtd read/write functions the solution to satisfy the various requirements was to refactor the read/write _oob functions in mtd. The major change is that read/write_oob now takes a pointer to an operation descriptor structure "struct mtd_oob_ops".instead of having a function with at least seven arguments. read/write_oob which should probably renamed to a more descriptive name, can do the following tasks: - read/write out of band data - read/write data content and out of band data - read/write raw data content and out of band data (ecc disabled) struct mtd_oob_ops has a mode field, which determines the oob handling mode. Aside of the MTD_OOB_RAW mode, which is intended to be especially for diagnostic purposes and some internal functions e.g. bad block table creation, the other two modes are for mtd clients: MTD_OOB_PLACE puts/gets the given oob data exactly to/from the place which is described by the ooboffs and ooblen fields of the mtd_oob_ops strcuture. It's up to the caller to make sure that the byte positions are not used by the ECC placement algorithms. MTD_OOB_AUTO puts/gets the given oob data automaticaly to/from the places in the out of band area which are described by the oobfree tuples in the ecclayout data structre which is associated to the devicee. The decision whether data plus oob or oob only handling is done depends on the setting of the datbuf member of the data structure. When datbuf == NULL then the internal read/write_oob functions are selected, otherwise the read/write data routines are invoked. Tested on a few platforms with all variants. Please be aware of possible regressions for your particular device / application scenario Disclaimer: Any whining will be ignored from those who just contributed "hot air blurb" and never sat down to tackle the underlying problem of the mess in the NAND driver grown over time and the big chunk of work to fix up the existing users. The problem was not the holiness of the existing MTD interfaces. The problems was the lack of time to go for the big overhaul. It's easy to add more mess to the existing one, but it takes alot of effort to go for a real solution. Improvements and bugfixes are welcome! Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2006-05-29 05:26:58 +04:00
/* NOTE: writes return length to buf_user->start */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
buf.ptr, &buf_user->start);
break;
}
case MEMWRITEOOB64:
{
struct mtd_oob_buf64 buf;
struct mtd_oob_buf64 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start, buf.length,
(void __user *)(uintptr_t)buf.usr_ptr,
&buf_user->length);
break;
}
case MEMREADOOB64:
{
struct mtd_oob_buf64 buf;
struct mtd_oob_buf64 __user *buf_user = argp;
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start, buf.length,
(void __user *)(uintptr_t)buf.usr_ptr,
&buf_user->length);
break;
}
case MEMWRITE:
{
ret = mtdchar_write_ioctl(mtd,
(struct mtd_write_req __user *)arg);
break;
}
mtdchar: add MEMREAD ioctl User-space applications making use of MTD devices via /dev/mtd* character devices currently have limited capabilities for reading data: - only deprecated methods of accessing OOB layout information exist, - there is no way to explicitly specify MTD operation mode to use; it is auto-selected based on the MTD file mode (MTD_FILE_MODE_*) set for the character device; in particular, this prevents using MTD_OPS_AUTO_OOB for reads, - all existing user-space interfaces which cause mtd_read() or mtd_read_oob() to be called (via mtdchar_read() and mtdchar_read_oob(), respectively) return success even when those functions return -EUCLEAN or -EBADMSG; this renders user-space applications using these interfaces unaware of any corrected bitflips or uncorrectable ECC errors detected during reads. Note that the existing MEMWRITE ioctl allows the MTD operation mode to be explicitly set, allowing user-space applications to write page data and OOB data without requiring them to know anything about the OOB layout of the MTD device they are writing to (MTD_OPS_AUTO_OOB). Also, the MEMWRITE ioctl does not mangle the return value of mtd_write_oob(). Add a new ioctl, MEMREAD, which addresses the above issues. It is intended to be a read-side counterpart of the existing MEMWRITE ioctl. Similarly to the latter, the read operation is performed in a loop which processes at most mtd->erasesize bytes in each iteration. This is done to prevent unbounded memory allocations caused by calling kmalloc() with the 'size' argument taken directly from the struct mtd_read_req provided by user space. However, the new ioctl is implemented so that the values it returns match those that would have been returned if just a single mtd_read_oob() call was issued to handle the entire read operation in one go. Note that while just returning -EUCLEAN or -EBADMSG to user space would already be a valid and useful indication of the ECC algorithm detecting errors during a read operation, that signal would not be granular enough to cover all use cases. For example, knowing the maximum number of bitflips detected in a single ECC step during a read operation performed on a given page may be useful when dealing with an MTD partition whose ECC layout varies across pages (e.g. a partition consisting of a bootloader area using a "custom" ECC layout followed by data pages using a "standard" ECC layout). To address that, include ECC statistics in the structure returned to user space by the new MEMREAD ioctl. Link: https://www.infradead.org/pipermail/linux-mtd/2016-April/067085.html Suggested-by: Boris Brezillon <boris.brezillon@collabora.com> Signed-off-by: Michał Kępień <kernel@kempniu.pl> Acked-by: Richard Weinberger <richard@nod.at> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Link: https://lore.kernel.org/linux-mtd/20220629125737.14418-5-kernel@kempniu.pl
2022-06-29 15:57:37 +03:00
case MEMREAD:
{
ret = mtdchar_read_ioctl(mtd,
(struct mtd_read_req __user *)arg);
break;
}
case MEMLOCK:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_lock(mtd, einfo.start, einfo.length);
break;
}
case MEMUNLOCK:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_unlock(mtd, einfo.start, einfo.length);
break;
}
case MEMISLOCKED:
{
struct erase_info_user einfo;
if (copy_from_user(&einfo, argp, sizeof(einfo)))
return -EFAULT;
ret = mtd_is_locked(mtd, einfo.start, einfo.length);
break;
}
/* Legacy interface */
case MEMGETOOBSEL:
{
struct nand_oobinfo oi;
if (!master->ooblayout)
return -EOPNOTSUPP;
ret = get_oobinfo(mtd, &oi);
if (ret)
return ret;
if (copy_to_user(argp, &oi, sizeof(struct nand_oobinfo)))
return -EFAULT;
break;
}
case MEMGETBADBLOCK:
{
loff_t offs;
if (copy_from_user(&offs, argp, sizeof(loff_t)))
return -EFAULT;
return mtd_block_isbad(mtd, offs);
}
case MEMSETBADBLOCK:
{
loff_t offs;
if (copy_from_user(&offs, argp, sizeof(loff_t)))
return -EFAULT;
return mtd_block_markbad(mtd, offs);
}
case OTPSELECT:
{
int mode;
if (copy_from_user(&mode, argp, sizeof(int)))
return -EFAULT;
mfi->mode = MTD_FILE_MODE_NORMAL;
ret = otp_select_filemode(mfi, mode);
file->f_pos = 0;
break;
}
case OTPGETREGIONCOUNT:
case OTPGETREGIONINFO:
{
struct otp_info *buf = kmalloc(4096, GFP_KERNEL);
size_t retlen;
if (!buf)
return -ENOMEM;
switch (mfi->mode) {
case MTD_FILE_MODE_OTP_FACTORY:
ret = mtd_get_fact_prot_info(mtd, 4096, &retlen, buf);
break;
case MTD_FILE_MODE_OTP_USER:
ret = mtd_get_user_prot_info(mtd, 4096, &retlen, buf);
break;
default:
ret = -EINVAL;
break;
}
if (!ret) {
if (cmd == OTPGETREGIONCOUNT) {
int nbr = retlen / sizeof(struct otp_info);
ret = copy_to_user(argp, &nbr, sizeof(int));
} else
ret = copy_to_user(argp, buf, retlen);
if (ret)
ret = -EFAULT;
}
kfree(buf);
break;
}
case OTPLOCK:
case OTPERASE:
{
struct otp_info oinfo;
if (mfi->mode != MTD_FILE_MODE_OTP_USER)
return -EINVAL;
if (copy_from_user(&oinfo, argp, sizeof(oinfo)))
return -EFAULT;
if (cmd == OTPLOCK)
ret = mtd_lock_user_prot_reg(mtd, oinfo.start, oinfo.length);
else
ret = mtd_erase_user_prot_reg(mtd, oinfo.start, oinfo.length);
break;
}
/* This ioctl is being deprecated - it truncates the ECC layout */
case ECCGETLAYOUT:
{
struct nand_ecclayout_user *usrlay;
if (!master->ooblayout)
return -EOPNOTSUPP;
usrlay = kmalloc(sizeof(*usrlay), GFP_KERNEL);
if (!usrlay)
return -ENOMEM;
shrink_ecclayout(mtd, usrlay);
if (copy_to_user(argp, usrlay, sizeof(*usrlay)))
ret = -EFAULT;
kfree(usrlay);
break;
}
case ECCGETSTATS:
{
if (copy_to_user(argp, &mtd->ecc_stats,
sizeof(struct mtd_ecc_stats)))
return -EFAULT;
break;
}
case MTDFILEMODE:
{
mfi->mode = 0;
switch(arg) {
case MTD_FILE_MODE_OTP_FACTORY:
case MTD_FILE_MODE_OTP_USER:
ret = otp_select_filemode(mfi, arg);
break;
case MTD_FILE_MODE_RAW:
if (!mtd_has_oob(mtd))
return -EOPNOTSUPP;
mfi->mode = arg;
break;
case MTD_FILE_MODE_NORMAL:
break;
default:
ret = -EINVAL;
}
file->f_pos = 0;
break;
}
case BLKPG:
{
struct blkpg_ioctl_arg __user *blk_arg = argp;
struct blkpg_ioctl_arg a;
if (copy_from_user(&a, blk_arg, sizeof(a)))
ret = -EFAULT;
else
ret = mtdchar_blkpg_ioctl(mtd, &a);
break;
}
case BLKRRPART:
{
/* No reread partition feature. Just return ok */
ret = 0;
break;
}
}
return ret;
} /* memory_ioctl */
static long mtdchar_unlocked_ioctl(struct file *file, u_int cmd, u_long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct mtd_info *master = mtd_get_master(mtd);
int ret;
mutex_lock(&master->master.chrdev_lock);
ret = mtdchar_ioctl(file, cmd, arg);
mutex_unlock(&master->master.chrdev_lock);
return ret;
}
#ifdef CONFIG_COMPAT
struct mtd_oob_buf32 {
u_int32_t start;
u_int32_t length;
compat_caddr_t ptr; /* unsigned char* */
};
#define MEMWRITEOOB32 _IOWR('M', 3, struct mtd_oob_buf32)
#define MEMREADOOB32 _IOWR('M', 4, struct mtd_oob_buf32)
static long mtdchar_compat_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct mtd_info *master = mtd_get_master(mtd);
void __user *argp = compat_ptr(arg);
int ret = 0;
mutex_lock(&master->master.chrdev_lock);
switch (cmd) {
case MEMWRITEOOB32:
{
struct mtd_oob_buf32 buf;
struct mtd_oob_buf32 __user *buf_user = argp;
if (!(file->f_mode & FMODE_WRITE)) {
ret = -EPERM;
break;
}
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_writeoob(file, mtd, buf.start,
buf.length, compat_ptr(buf.ptr),
&buf_user->length);
break;
}
case MEMREADOOB32:
{
struct mtd_oob_buf32 buf;
struct mtd_oob_buf32 __user *buf_user = argp;
/* NOTE: writes return length to buf->start */
if (copy_from_user(&buf, argp, sizeof(buf)))
ret = -EFAULT;
else
ret = mtdchar_readoob(file, mtd, buf.start,
buf.length, compat_ptr(buf.ptr),
&buf_user->start);
break;
}
case BLKPG:
{
/* Convert from blkpg_compat_ioctl_arg to blkpg_ioctl_arg */
struct blkpg_compat_ioctl_arg __user *uarg = argp;
struct blkpg_compat_ioctl_arg compat_arg;
struct blkpg_ioctl_arg a;
if (copy_from_user(&compat_arg, uarg, sizeof(compat_arg))) {
ret = -EFAULT;
break;
}
memset(&a, 0, sizeof(a));
a.op = compat_arg.op;
a.flags = compat_arg.flags;
a.datalen = compat_arg.datalen;
a.data = compat_ptr(compat_arg.data);
ret = mtdchar_blkpg_ioctl(mtd, &a);
break;
}
default:
ret = mtdchar_ioctl(file, cmd, (unsigned long)argp);
}
mutex_unlock(&master->master.chrdev_lock);
return ret;
}
#endif /* CONFIG_COMPAT */
/*
* try to determine where a shared mapping can be made
* - only supported for NOMMU at the moment (MMU can't doesn't copy private
* mappings)
*/
#ifndef CONFIG_MMU
static unsigned long mtdchar_get_unmapped_area(struct file *file,
unsigned long addr,
unsigned long len,
unsigned long pgoff,
unsigned long flags)
{
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
unsigned long offset;
int ret;
if (addr != 0)
return (unsigned long) -EINVAL;
if (len > mtd->size || pgoff >= (mtd->size >> PAGE_SHIFT))
return (unsigned long) -EINVAL;
offset = pgoff << PAGE_SHIFT;
if (offset > mtd->size - len)
return (unsigned long) -EINVAL;
ret = mtd_get_unmapped_area(mtd, len, offset, flags);
return ret == -EOPNOTSUPP ? -ENODEV : ret;
}
static unsigned mtdchar_mmap_capabilities(struct file *file)
{
struct mtd_file_info *mfi = file->private_data;
return mtd_mmap_capabilities(mfi->mtd);
}
#endif
/*
* set up a mapping for shared memory segments
*/
static int mtdchar_mmap(struct file *file, struct vm_area_struct *vma)
{
#ifdef CONFIG_MMU
struct mtd_file_info *mfi = file->private_data;
struct mtd_info *mtd = mfi->mtd;
struct map_info *map = mtd->priv;
/* This is broken because it assumes the MTD device is map-based
and that mtd->priv is a valid struct map_info. It should be
replaced with something that uses the mtd_get_unmapped_area()
operation properly. */
if (0 /*mtd->type == MTD_RAM || mtd->type == MTD_ROM*/) {
#ifdef pgprot_noncached
if (file->f_flags & O_DSYNC || map->phys >= __pa(high_memory))
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
#endif
return vm_iomap_memory(vma, map->phys, map->size);
}
return -ENODEV;
#else
return vma->vm_flags & VM_SHARED ? 0 : -EACCES;
#endif
}
static const struct file_operations mtd_fops = {
.owner = THIS_MODULE,
.llseek = mtdchar_lseek,
.read = mtdchar_read,
.write = mtdchar_write,
.unlocked_ioctl = mtdchar_unlocked_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = mtdchar_compat_ioctl,
#endif
.open = mtdchar_open,
.release = mtdchar_close,
.mmap = mtdchar_mmap,
#ifndef CONFIG_MMU
.get_unmapped_area = mtdchar_get_unmapped_area,
.mmap_capabilities = mtdchar_mmap_capabilities,
#endif
};
mtd: merge mtdchar module with mtdcore The MTD subsystem has historically tried to be as configurable as possible. The side-effect of this is that its configuration menu is rather large, and we are gradually shrinking it. For example, we recently merged partitions support with the mtdcore. This patch does the next step - it merges the mtdchar module to mtdcore. And in this case this is not only about eliminating too fine-grained separation and simplifying the configuration menu. This is also about eliminating seemingly useless kernel module. Indeed, mtdchar is a module that allows user-space making use of MTD devices via /dev/mtd* character devices. If users do not enable it, they simply cannot use MTD devices at all. They cannot read or write the flash contents. Is it a sane and useful setup? I believe not. And everyone just enables mtdchar. Having mtdchar separate is also a little bit harmful. People sometimes miss the fact that they need to enable an additional configuration option to have user-space MTD interfaces, and then they wonder why on earth the kernel does not allow using the flash? They spend time asking around. Thus, let's just get rid of this module and make it part of mtd core. Note, mtdchar had additional configuration option to enable OTP interfaces, which are present on some flashes. I removed that option as well - it saves a really tiny amount space. [dwmw2: Strictly speaking, you can mount file systems on MTD devices just fine without the mtdchar (or mtdblock) devices; you just can't do other manipulations directly on the underlying device. But still I agree that it makes sense to make this unconditional. And Yay! we get to kill off an instance of checking CONFIG_foo_MODULE, which is an abomination that should never happen.] Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2013-03-14 15:27:40 +04:00
int __init init_mtdchar(void)
{
int ret;
ret = __register_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS,
"mtd", &mtd_fops);
if (ret < 0) {
pr_err("Can't allocate major number %d for MTD\n",
MTD_CHAR_MAJOR);
return ret;
}
return ret;
}
mtd: merge mtdchar module with mtdcore The MTD subsystem has historically tried to be as configurable as possible. The side-effect of this is that its configuration menu is rather large, and we are gradually shrinking it. For example, we recently merged partitions support with the mtdcore. This patch does the next step - it merges the mtdchar module to mtdcore. And in this case this is not only about eliminating too fine-grained separation and simplifying the configuration menu. This is also about eliminating seemingly useless kernel module. Indeed, mtdchar is a module that allows user-space making use of MTD devices via /dev/mtd* character devices. If users do not enable it, they simply cannot use MTD devices at all. They cannot read or write the flash contents. Is it a sane and useful setup? I believe not. And everyone just enables mtdchar. Having mtdchar separate is also a little bit harmful. People sometimes miss the fact that they need to enable an additional configuration option to have user-space MTD interfaces, and then they wonder why on earth the kernel does not allow using the flash? They spend time asking around. Thus, let's just get rid of this module and make it part of mtd core. Note, mtdchar had additional configuration option to enable OTP interfaces, which are present on some flashes. I removed that option as well - it saves a really tiny amount space. [dwmw2: Strictly speaking, you can mount file systems on MTD devices just fine without the mtdchar (or mtdblock) devices; you just can't do other manipulations directly on the underlying device. But still I agree that it makes sense to make this unconditional. And Yay! we get to kill off an instance of checking CONFIG_foo_MODULE, which is an abomination that should never happen.] Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
2013-03-14 15:27:40 +04:00
void __exit cleanup_mtdchar(void)
{
__unregister_chrdev(MTD_CHAR_MAJOR, 0, 1 << MINORBITS, "mtd");
}
MODULE_ALIAS_CHARDEV_MAJOR(MTD_CHAR_MAJOR);