WSL2-Linux-Kernel/fs/ubifs/journal.c

1388 строки
40 KiB
C
Исходник Обычный вид История

/*
* This file is part of UBIFS.
*
* Copyright (C) 2006-2008 Nokia Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 51
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Authors: Artem Bityutskiy (Битюцкий Артём)
* Adrian Hunter
*/
/*
* This file implements UBIFS journal.
*
* The journal consists of 2 parts - the log and bud LEBs. The log has fixed
* length and position, while a bud logical eraseblock is any LEB in the main
* area. Buds contain file system data - data nodes, inode nodes, etc. The log
* contains only references to buds and some other stuff like commit
* start node. The idea is that when we commit the journal, we do
* not copy the data, the buds just become indexed. Since after the commit the
* nodes in bud eraseblocks become leaf nodes of the file system index tree, we
* use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
* become leafs in the future.
*
* The journal is multi-headed because we want to write data to the journal as
* optimally as possible. It is nice to have nodes belonging to the same inode
* in one LEB, so we may write data owned by different inodes to different
* journal heads, although at present only one data head is used.
*
* For recovery reasons, the base head contains all inode nodes, all directory
* entry nodes and all truncate nodes. This means that the other heads contain
* only data nodes.
*
* Bud LEBs may be half-indexed. For example, if the bud was not full at the
* time of commit, the bud is retained to continue to be used in the journal,
* even though the "front" of the LEB is now indexed. In that case, the log
* reference contains the offset where the bud starts for the purposes of the
* journal.
*
* The journal size has to be limited, because the larger is the journal, the
* longer it takes to mount UBIFS (scanning the journal) and the more memory it
* takes (indexing in the TNC).
*
* All the journal write operations like 'ubifs_jnl_update()' here, which write
* multiple UBIFS nodes to the journal at one go, are atomic with respect to
* unclean reboots. Should the unclean reboot happen, the recovery code drops
* all the nodes.
*/
#include "ubifs.h"
/**
* zero_ino_node_unused - zero out unused fields of an on-flash inode node.
* @ino: the inode to zero out
*/
static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
{
memset(ino->padding1, 0, 4);
memset(ino->padding2, 0, 26);
}
/**
* zero_dent_node_unused - zero out unused fields of an on-flash directory
* entry node.
* @dent: the directory entry to zero out
*/
static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
{
dent->padding1 = 0;
memset(dent->padding2, 0, 4);
}
/**
* zero_data_node_unused - zero out unused fields of an on-flash data node.
* @data: the data node to zero out
*/
static inline void zero_data_node_unused(struct ubifs_data_node *data)
{
memset(data->padding, 0, 2);
}
/**
* zero_trun_node_unused - zero out unused fields of an on-flash truncation
* node.
* @trun: the truncation node to zero out
*/
static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
{
memset(trun->padding, 0, 12);
}
/**
* reserve_space - reserve space in the journal.
* @c: UBIFS file-system description object
* @jhead: journal head number
* @len: node length
*
* This function reserves space in journal head @head. If the reservation
* succeeded, the journal head stays locked and later has to be unlocked using
* 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
* it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
* other negative error codes in case of other failures.
*/
static int reserve_space(struct ubifs_info *c, int jhead, int len)
{
int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze;
struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
/*
* Typically, the base head has smaller nodes written to it, so it is
* better to try to allocate space at the ends of eraseblocks. This is
* what the squeeze parameter does.
*/
squeeze = (jhead == BASEHD);
again:
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
if (c->ro_media) {
err = -EROFS;
goto out_unlock;
}
avail = c->leb_size - wbuf->offs - wbuf->used;
if (wbuf->lnum != -1 && avail >= len)
return 0;
/*
* Write buffer wasn't seek'ed or there is no enough space - look for an
* LEB with some empty space.
*/
lnum = ubifs_find_free_space(c, len, &free, squeeze);
if (lnum >= 0) {
/* Found an LEB, add it to the journal head */
offs = c->leb_size - free;
err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
if (err)
goto out_return;
/* A new bud was successfully allocated and added to the log */
goto out;
}
err = lnum;
if (err != -ENOSPC)
goto out_unlock;
/*
* No free space, we have to run garbage collector to make
* some. But the write-buffer mutex has to be unlocked because
* GC also takes it.
*/
dbg_jnl("no free space jhead %d, run GC", jhead);
mutex_unlock(&wbuf->io_mutex);
lnum = ubifs_garbage_collect(c, 0);
if (lnum < 0) {
err = lnum;
if (err != -ENOSPC)
return err;
/*
* GC could not make a free LEB. But someone else may
* have allocated new bud for this journal head,
* because we dropped @wbuf->io_mutex, so try once
* again.
*/
dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead);
if (retries++ < 2) {
dbg_jnl("retry (%d)", retries);
goto again;
}
dbg_jnl("return -ENOSPC");
return err;
}
mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
dbg_jnl("got LEB %d for jhead %d", lnum, jhead);
avail = c->leb_size - wbuf->offs - wbuf->used;
if (wbuf->lnum != -1 && avail >= len) {
/*
* Someone else has switched the journal head and we have
* enough space now. This happens when more then one process is
* trying to write to the same journal head at the same time.
*/
dbg_jnl("return LEB %d back, already have LEB %d:%d",
lnum, wbuf->lnum, wbuf->offs + wbuf->used);
err = ubifs_return_leb(c, lnum);
if (err)
goto out_unlock;
return 0;
}
err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
if (err)
goto out_return;
offs = 0;
out:
err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, UBI_SHORTTERM);
if (err)
goto out_unlock;
return 0;
out_unlock:
mutex_unlock(&wbuf->io_mutex);
return err;
out_return:
/* An error occurred and the LEB has to be returned to lprops */
ubifs_assert(err < 0);
err1 = ubifs_return_leb(c, lnum);
if (err1 && err == -EAGAIN)
/*
* Return original error code only if it is not %-EAGAIN,
* which is not really an error. Otherwise, return the error
* code of 'ubifs_return_leb()'.
*/
err = err1;
mutex_unlock(&wbuf->io_mutex);
return err;
}
/**
* write_node - write node to a journal head.
* @c: UBIFS file-system description object
* @jhead: journal head
* @node: node to write
* @len: node length
* @lnum: LEB number written is returned here
* @offs: offset written is returned here
*
* This function writes a node to reserved space of journal head @jhead.
* Returns zero in case of success and a negative error code in case of
* failure.
*/
static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
int *lnum, int *offs)
{
struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
ubifs_assert(jhead != GCHD);
*lnum = c->jheads[jhead].wbuf.lnum;
*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
ubifs_prepare_node(c, node, len, 0);
return ubifs_wbuf_write_nolock(wbuf, node, len);
}
/**
* write_head - write data to a journal head.
* @c: UBIFS file-system description object
* @jhead: journal head
* @buf: buffer to write
* @len: length to write
* @lnum: LEB number written is returned here
* @offs: offset written is returned here
* @sync: non-zero if the write-buffer has to by synchronized
*
* This function is the same as 'write_node()' but it does not assume the
* buffer it is writing is a node, so it does not prepare it (which means
* initializing common header and calculating CRC).
*/
static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
int *lnum, int *offs, int sync)
{
int err;
struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
ubifs_assert(jhead != GCHD);
*lnum = c->jheads[jhead].wbuf.lnum;
*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
err = ubifs_wbuf_write_nolock(wbuf, buf, len);
if (err)
return err;
if (sync)
err = ubifs_wbuf_sync_nolock(wbuf);
return err;
}
/**
* make_reservation - reserve journal space.
* @c: UBIFS file-system description object
* @jhead: journal head
* @len: how many bytes to reserve
*
* This function makes space reservation in journal head @jhead. The function
* takes the commit lock and locks the journal head, and the caller has to
* unlock the head and finish the reservation with 'finish_reservation()'.
* Returns zero in case of success and a negative error code in case of
* failure.
*
* Note, the journal head may be unlocked as soon as the data is written, while
* the commit lock has to be released after the data has been added to the
* TNC.
*/
static int make_reservation(struct ubifs_info *c, int jhead, int len)
{
int err, cmt_retries = 0, nospc_retries = 0;
again:
down_read(&c->commit_sem);
err = reserve_space(c, jhead, len);
if (!err)
return 0;
up_read(&c->commit_sem);
if (err == -ENOSPC) {
/*
* GC could not make any progress. We should try to commit
* once because it could make some dirty space and GC would
* make progress, so make the error -EAGAIN so that the below
* will commit and re-try.
*/
if (nospc_retries++ < 2) {
dbg_jnl("no space, retry");
err = -EAGAIN;
}
/*
* This means that the budgeting is incorrect. We always have
* to be able to write to the media, because all operations are
* budgeted. Deletions are not budgeted, though, but we reserve
* an extra LEB for them.
*/
}
if (err != -EAGAIN)
goto out;
/*
* -EAGAIN means that the journal is full or too large, or the above
* code wants to do one commit. Do this and re-try.
*/
if (cmt_retries > 128) {
/*
* This should not happen unless the journal size limitations
* are too tough.
*/
ubifs_err("stuck in space allocation");
err = -ENOSPC;
goto out;
} else if (cmt_retries > 32)
ubifs_warn("too many space allocation re-tries (%d)",
cmt_retries);
dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
cmt_retries);
cmt_retries += 1;
err = ubifs_run_commit(c);
if (err)
return err;
goto again;
out:
ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
len, jhead, err);
if (err == -ENOSPC) {
/* This are some budgeting problems, print useful information */
down_write(&c->commit_sem);
spin_lock(&c->space_lock);
dbg_dump_stack();
dbg_dump_budg(c);
spin_unlock(&c->space_lock);
dbg_dump_lprops(c);
cmt_retries = dbg_check_lprops(c);
up_write(&c->commit_sem);
}
return err;
}
/**
* release_head - release a journal head.
* @c: UBIFS file-system description object
* @jhead: journal head
*
* This function releases journal head @jhead which was locked by
* the 'make_reservation()' function. It has to be called after each successful
* 'make_reservation()' invocation.
*/
static inline void release_head(struct ubifs_info *c, int jhead)
{
mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
}
/**
* finish_reservation - finish a reservation.
* @c: UBIFS file-system description object
*
* This function finishes journal space reservation. It must be called after
* 'make_reservation()'.
*/
static void finish_reservation(struct ubifs_info *c)
{
up_read(&c->commit_sem);
}
/**
* get_dent_type - translate VFS inode mode to UBIFS directory entry type.
* @mode: inode mode
*/
static int get_dent_type(int mode)
{
switch (mode & S_IFMT) {
case S_IFREG:
return UBIFS_ITYPE_REG;
case S_IFDIR:
return UBIFS_ITYPE_DIR;
case S_IFLNK:
return UBIFS_ITYPE_LNK;
case S_IFBLK:
return UBIFS_ITYPE_BLK;
case S_IFCHR:
return UBIFS_ITYPE_CHR;
case S_IFIFO:
return UBIFS_ITYPE_FIFO;
case S_IFSOCK:
return UBIFS_ITYPE_SOCK;
default:
BUG();
}
return 0;
}
/**
* pack_inode - pack an inode node.
* @c: UBIFS file-system description object
* @ino: buffer in which to pack inode node
* @inode: inode to pack
* @last: indicates the last node of the group
* @last_reference: non-zero if this is a deletion inode
*/
static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
const struct inode *inode, int last,
int last_reference)
{
int data_len = 0;
struct ubifs_inode *ui = ubifs_inode(inode);
ino->ch.node_type = UBIFS_INO_NODE;
ino_key_init_flash(c, &ino->key, inode->i_ino);
ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
ino->uid = cpu_to_le32(inode->i_uid);
ino->gid = cpu_to_le32(inode->i_gid);
ino->mode = cpu_to_le32(inode->i_mode);
ino->flags = cpu_to_le32(ui->flags);
ino->size = cpu_to_le64(ui->ui_size);
ino->nlink = cpu_to_le32(inode->i_nlink);
ino->compr_type = cpu_to_le16(ui->compr_type);
ino->data_len = cpu_to_le32(ui->data_len);
ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
ino->xattr_size = cpu_to_le32(ui->xattr_size);
ino->xattr_names = cpu_to_le32(ui->xattr_names);
zero_ino_node_unused(ino);
/*
* Drop the attached data if this is a deletion inode, the data is not
* needed anymore.
*/
if (!last_reference) {
memcpy(ino->data, ui->data, ui->data_len);
data_len = ui->data_len;
}
ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
}
/**
* mark_inode_clean - mark UBIFS inode as clean.
* @c: UBIFS file-system description object
* @ui: UBIFS inode to mark as clean
*
* This helper function marks UBIFS inode @ui as clean by cleaning the
* @ui->dirty flag and releasing its budget. Note, VFS may still treat the
* inode as dirty and try to write it back, but 'ubifs_write_inode()' would
* just do nothing.
*/
static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
{
if (ui->dirty)
ubifs_release_dirty_inode_budget(c, ui);
ui->dirty = 0;
}
/**
* ubifs_jnl_update - update inode.
* @c: UBIFS file-system description object
* @dir: parent inode or host inode in case of extended attributes
* @nm: directory entry name
* @inode: inode to update
* @deletion: indicates a directory entry deletion i.e unlink or rmdir
* @xent: non-zero if the directory entry is an extended attribute entry
*
* This function updates an inode by writing a directory entry (or extended
* attribute entry), the inode itself, and the parent directory inode (or the
* host inode) to the journal.
*
* The function writes the host inode @dir last, which is important in case of
* extended attributes. Indeed, then we guarantee that if the host inode gets
* synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
* the extended attribute inode gets flushed too. And this is exactly what the
* user expects - synchronizing the host inode synchronizes its extended
* attributes. Similarly, this guarantees that if @dir is synchronized, its
* directory entry corresponding to @nm gets synchronized too.
*
* If the inode (@inode) or the parent directory (@dir) are synchronous, this
* function synchronizes the write-buffer.
*
* This function marks the @dir and @inode inodes as clean and returns zero on
* success. In case of failure, a negative error code is returned.
*/
int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
const struct qstr *nm, const struct inode *inode,
int deletion, int xent)
{
int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
int last_reference = !!(deletion && inode->i_nlink == 0);
struct ubifs_inode *ui = ubifs_inode(inode);
struct ubifs_inode *dir_ui = ubifs_inode(dir);
struct ubifs_dent_node *dent;
struct ubifs_ino_node *ino;
union ubifs_key dent_key, ino_key;
dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
ubifs_assert(dir_ui->data_len == 0);
ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
ilen = UBIFS_INO_NODE_SZ;
/*
* If the last reference to the inode is being deleted, then there is
* no need to attach and write inode data, it is being deleted anyway.
* And if the inode is being deleted, no need to synchronize
* write-buffer even if the inode is synchronous.
*/
if (!last_reference) {
ilen += ui->data_len;
sync |= IS_SYNC(inode);
}
aligned_dlen = ALIGN(dlen, 8);
aligned_ilen = ALIGN(ilen, 8);
len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
dent = kmalloc(len, GFP_NOFS);
if (!dent)
return -ENOMEM;
/* Make reservation before allocating sequence numbers */
err = make_reservation(c, BASEHD, len);
if (err)
goto out_free;
if (!xent) {
dent->ch.node_type = UBIFS_DENT_NODE;
dent_key_init(c, &dent_key, dir->i_ino, nm);
} else {
dent->ch.node_type = UBIFS_XENT_NODE;
xent_key_init(c, &dent_key, dir->i_ino, nm);
}
key_write(c, &dent_key, dent->key);
dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
dent->type = get_dent_type(inode->i_mode);
dent->nlen = cpu_to_le16(nm->len);
memcpy(dent->name, nm->name, nm->len);
dent->name[nm->len] = '\0';
zero_dent_node_unused(dent);
ubifs_prep_grp_node(c, dent, dlen, 0);
ino = (void *)dent + aligned_dlen;
pack_inode(c, ino, inode, 0, last_reference);
ino = (void *)ino + aligned_ilen;
pack_inode(c, ino, dir, 1, 0);
if (last_reference) {
err = ubifs_add_orphan(c, inode->i_ino);
if (err) {
release_head(c, BASEHD);
goto out_finish;
}
}
err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
if (err)
goto out_release;
if (!sync) {
struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
}
release_head(c, BASEHD);
kfree(dent);
if (deletion) {
err = ubifs_tnc_remove_nm(c, &dent_key, nm);
if (err)
goto out_ro;
err = ubifs_add_dirt(c, lnum, dlen);
} else
err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
if (err)
goto out_ro;
/*
* Note, we do not remove the inode from TNC even if the last reference
* to it has just been deleted, because the inode may still be opened.
* Instead, the inode has been added to orphan lists and the orphan
* subsystem will take further care about it.
*/
ino_key_init(c, &ino_key, inode->i_ino);
ino_offs = dent_offs + aligned_dlen;
err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
if (err)
goto out_ro;
ino_key_init(c, &ino_key, dir->i_ino);
ino_offs += aligned_ilen;
err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
if (err)
goto out_ro;
finish_reservation(c);
spin_lock(&ui->ui_lock);
ui->synced_i_size = ui->ui_size;
spin_unlock(&ui->ui_lock);
mark_inode_clean(c, ui);
mark_inode_clean(c, dir_ui);
return 0;
out_finish:
finish_reservation(c);
out_free:
kfree(dent);
return err;
out_release:
release_head(c, BASEHD);
out_ro:
ubifs_ro_mode(c, err);
if (last_reference)
ubifs_delete_orphan(c, inode->i_ino);
finish_reservation(c);
return err;
}
/**
* ubifs_jnl_write_data - write a data node to the journal.
* @c: UBIFS file-system description object
* @inode: inode the data node belongs to
* @key: node key
* @buf: buffer to write
* @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
*
* This function writes a data node to the journal. Returns %0 if the data node
* was successfully written, and a negative error code in case of failure.
*/
int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
const union ubifs_key *key, const void *buf, int len)
{
struct ubifs_data_node *data;
int err, lnum, offs, compr_type, out_len;
int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
struct ubifs_inode *ui = ubifs_inode(inode);
dbg_jnl("ino %lu, blk %u, len %d, key %s", key_inum(c, key),
key_block(c, key), len, DBGKEY(key));
ubifs_assert(len <= UBIFS_BLOCK_SIZE);
data = kmalloc(dlen, GFP_NOFS);
if (!data)
return -ENOMEM;
data->ch.node_type = UBIFS_DATA_NODE;
key_write(c, key, &data->key);
data->size = cpu_to_le32(len);
zero_data_node_unused(data);
if (!(ui->flags && UBIFS_COMPR_FL))
/* Compression is disabled for this inode */
compr_type = UBIFS_COMPR_NONE;
else
compr_type = ui->compr_type;
out_len = dlen - UBIFS_DATA_NODE_SZ;
ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
dlen = UBIFS_DATA_NODE_SZ + out_len;
data->compr_type = cpu_to_le16(compr_type);
/* Make reservation before allocating sequence numbers */
err = make_reservation(c, DATAHD, dlen);
if (err)
goto out_free;
err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
if (err)
goto out_release;
ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
release_head(c, DATAHD);
err = ubifs_tnc_add(c, key, lnum, offs, dlen);
if (err)
goto out_ro;
finish_reservation(c);
kfree(data);
return 0;
out_release:
release_head(c, DATAHD);
out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
out_free:
kfree(data);
return err;
}
/**
* ubifs_jnl_write_inode - flush inode to the journal.
* @c: UBIFS file-system description object
* @inode: inode to flush
* @deletion: inode has been deleted
*
* This function writes inode @inode to the journal. If the inode is
* synchronous, it also synchronizes the write-buffer. Returns zero in case of
* success and a negative error code in case of failure.
*/
int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode,
int deletion)
{
int err, len, lnum, offs, sync = 0;
struct ubifs_ino_node *ino;
struct ubifs_inode *ui = ubifs_inode(inode);
dbg_jnl("ino %lu%s", inode->i_ino,
deletion ? " (last reference)" : "");
if (deletion)
ubifs_assert(inode->i_nlink == 0);
len = UBIFS_INO_NODE_SZ;
/*
* If the inode is being deleted, do not write the attached data. No
* need to synchronize the write-buffer either.
*/
if (!deletion) {
len += ui->data_len;
sync = IS_SYNC(inode);
}
ino = kmalloc(len, GFP_NOFS);
if (!ino)
return -ENOMEM;
/* Make reservation before allocating sequence numbers */
err = make_reservation(c, BASEHD, len);
if (err)
goto out_free;
pack_inode(c, ino, inode, 1, deletion);
err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
if (err)
goto out_release;
if (!sync)
ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
inode->i_ino);
release_head(c, BASEHD);
if (deletion) {
err = ubifs_tnc_remove_ino(c, inode->i_ino);
if (err)
goto out_ro;
ubifs_delete_orphan(c, inode->i_ino);
err = ubifs_add_dirt(c, lnum, len);
} else {
union ubifs_key key;
ino_key_init(c, &key, inode->i_ino);
err = ubifs_tnc_add(c, &key, lnum, offs, len);
}
if (err)
goto out_ro;
finish_reservation(c);
spin_lock(&ui->ui_lock);
ui->synced_i_size = ui->ui_size;
spin_unlock(&ui->ui_lock);
kfree(ino);
return 0;
out_release:
release_head(c, BASEHD);
out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
out_free:
kfree(ino);
return err;
}
/**
* ubifs_jnl_rename - rename a directory entry.
* @c: UBIFS file-system description object
* @old_dir: parent inode of directory entry to rename
* @old_dentry: directory entry to rename
* @new_dir: parent inode of directory entry to rename
* @new_dentry: new directory entry (or directory entry to replace)
* @sync: non-zero if the write-buffer has to be synchronized
*
* This function implements the re-name operation which may involve writing up
* to 3 inodes and 2 directory entries. It marks the written inodes as clean
* and returns zero on success. In case of failure, a negative error code is
* returned.
*/
int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
const struct dentry *old_dentry,
const struct inode *new_dir,
const struct dentry *new_dentry, int sync)
{
void *p;
union ubifs_key key;
struct ubifs_dent_node *dent, *dent2;
int err, dlen1, dlen2, ilen, lnum, offs, len;
const struct inode *old_inode = old_dentry->d_inode;
const struct inode *new_inode = new_dentry->d_inode;
int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
int last_reference = !!(new_inode && new_inode->i_nlink == 0);
int move = (old_dir != new_dir);
struct ubifs_inode *uninitialized_var(new_ui);
dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
old_dentry->d_name.len, old_dentry->d_name.name,
old_dir->i_ino, new_dentry->d_name.len,
new_dentry->d_name.name, new_dir->i_ino);
ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
if (new_inode) {
new_ui = ubifs_inode(new_inode);
ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
ilen = UBIFS_INO_NODE_SZ;
if (!last_reference)
ilen += new_ui->data_len;
} else
ilen = 0;
aligned_dlen1 = ALIGN(dlen1, 8);
aligned_dlen2 = ALIGN(dlen2, 8);
len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
if (old_dir != new_dir)
len += plen;
dent = kmalloc(len, GFP_NOFS);
if (!dent)
return -ENOMEM;
/* Make reservation before allocating sequence numbers */
err = make_reservation(c, BASEHD, len);
if (err)
goto out_free;
/* Make new dent */
dent->ch.node_type = UBIFS_DENT_NODE;
dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
dent->inum = cpu_to_le64(old_inode->i_ino);
dent->type = get_dent_type(old_inode->i_mode);
dent->nlen = cpu_to_le16(new_dentry->d_name.len);
memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
dent->name[new_dentry->d_name.len] = '\0';
zero_dent_node_unused(dent);
ubifs_prep_grp_node(c, dent, dlen1, 0);
/* Make deletion dent */
dent2 = (void *)dent + aligned_dlen1;
dent2->ch.node_type = UBIFS_DENT_NODE;
dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
&old_dentry->d_name);
dent2->inum = 0;
dent2->type = DT_UNKNOWN;
dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
dent2->name[old_dentry->d_name.len] = '\0';
zero_dent_node_unused(dent2);
ubifs_prep_grp_node(c, dent2, dlen2, 0);
p = (void *)dent2 + aligned_dlen2;
if (new_inode) {
pack_inode(c, p, new_inode, 0, last_reference);
p += ALIGN(ilen, 8);
}
if (!move)
pack_inode(c, p, old_dir, 1, 0);
else {
pack_inode(c, p, old_dir, 0, 0);
p += ALIGN(plen, 8);
pack_inode(c, p, new_dir, 1, 0);
}
if (last_reference) {
err = ubifs_add_orphan(c, new_inode->i_ino);
if (err) {
release_head(c, BASEHD);
goto out_finish;
}
}
err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
if (err)
goto out_release;
if (!sync) {
struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
if (new_inode)
ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
new_inode->i_ino);
}
release_head(c, BASEHD);
dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
if (err)
goto out_ro;
err = ubifs_add_dirt(c, lnum, dlen2);
if (err)
goto out_ro;
dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
if (err)
goto out_ro;
offs += aligned_dlen1 + aligned_dlen2;
if (new_inode) {
ino_key_init(c, &key, new_inode->i_ino);
err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
if (err)
goto out_ro;
offs += ALIGN(ilen, 8);
}
ino_key_init(c, &key, old_dir->i_ino);
err = ubifs_tnc_add(c, &key, lnum, offs, plen);
if (err)
goto out_ro;
if (old_dir != new_dir) {
offs += ALIGN(plen, 8);
ino_key_init(c, &key, new_dir->i_ino);
err = ubifs_tnc_add(c, &key, lnum, offs, plen);
if (err)
goto out_ro;
}
finish_reservation(c);
if (new_inode) {
mark_inode_clean(c, new_ui);
spin_lock(&new_ui->ui_lock);
new_ui->synced_i_size = new_ui->ui_size;
spin_unlock(&new_ui->ui_lock);
}
mark_inode_clean(c, ubifs_inode(old_dir));
if (move)
mark_inode_clean(c, ubifs_inode(new_dir));
kfree(dent);
return 0;
out_release:
release_head(c, BASEHD);
out_ro:
ubifs_ro_mode(c, err);
if (last_reference)
ubifs_delete_orphan(c, new_inode->i_ino);
out_finish:
finish_reservation(c);
out_free:
kfree(dent);
return err;
}
/**
* recomp_data_node - re-compress a truncated data node.
* @dn: data node to re-compress
* @new_len: new length
*
* This function is used when an inode is truncated and the last data node of
* the inode has to be re-compressed and re-written.
*/
static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
{
void *buf;
int err, len, compr_type, out_len;
out_len = le32_to_cpu(dn->size);
buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
if (!buf)
return -ENOMEM;
len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
compr_type = le16_to_cpu(dn->compr_type);
err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
if (err)
goto out;
ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
dn->compr_type = cpu_to_le16(compr_type);
dn->size = cpu_to_le32(*new_len);
*new_len = UBIFS_DATA_NODE_SZ + out_len;
out:
kfree(buf);
return err;
}
/**
* ubifs_jnl_truncate - update the journal for a truncation.
* @c: UBIFS file-system description object
* @inode: inode to truncate
* @old_size: old size
* @new_size: new size
*
* When the size of a file decreases due to truncation, a truncation node is
* written, the journal tree is updated, and the last data block is re-written
* if it has been affected. The inode is also updated in order to synchronize
* the new inode size.
*
* This function marks the inode as clean and returns zero on success. In case
* of failure, a negative error code is returned.
*/
int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
loff_t old_size, loff_t new_size)
{
union ubifs_key key, to_key;
struct ubifs_ino_node *ino;
struct ubifs_trun_node *trun;
struct ubifs_data_node *uninitialized_var(dn);
int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
struct ubifs_inode *ui = ubifs_inode(inode);
ino_t inum = inode->i_ino;
unsigned int blk;
dbg_jnl("ino %lu, size %lld -> %lld", inum, old_size, new_size);
ubifs_assert(!ui->data_len);
ubifs_assert(S_ISREG(inode->i_mode));
ubifs_assert(mutex_is_locked(&ui->ui_mutex));
sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
ino = kmalloc(sz, GFP_NOFS);
if (!ino)
return -ENOMEM;
trun = (void *)ino + UBIFS_INO_NODE_SZ;
trun->ch.node_type = UBIFS_TRUN_NODE;
trun->inum = cpu_to_le32(inum);
trun->old_size = cpu_to_le64(old_size);
trun->new_size = cpu_to_le64(new_size);
zero_trun_node_unused(trun);
dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
if (dlen) {
/* Get last data block so it can be truncated */
dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
blk = new_size >> UBIFS_BLOCK_SHIFT;
data_key_init(c, &key, inum, blk);
dbg_jnl("last block key %s", DBGKEY(&key));
err = ubifs_tnc_lookup(c, &key, dn);
if (err == -ENOENT)
dlen = 0; /* Not found (so it is a hole) */
else if (err)
goto out_free;
else {
if (le32_to_cpu(dn->size) <= dlen)
dlen = 0; /* Nothing to do */
else {
int compr_type = le16_to_cpu(dn->compr_type);
if (compr_type != UBIFS_COMPR_NONE) {
err = recomp_data_node(dn, &dlen);
if (err)
goto out_free;
} else {
dn->size = cpu_to_le32(dlen);
dlen += UBIFS_DATA_NODE_SZ;
}
zero_data_node_unused(dn);
}
}
}
/* Must make reservation before allocating sequence numbers */
len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
if (dlen)
len += dlen;
err = make_reservation(c, BASEHD, len);
if (err)
goto out_free;
pack_inode(c, ino, inode, 0, 0);
ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
if (dlen)
ubifs_prep_grp_node(c, dn, dlen, 1);
err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
if (err)
goto out_release;
if (!sync)
ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
release_head(c, BASEHD);
if (dlen) {
sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
if (err)
goto out_ro;
}
ino_key_init(c, &key, inum);
err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
if (err)
goto out_ro;
err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
if (err)
goto out_ro;
bit = new_size & (UBIFS_BLOCK_SIZE - 1);
blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
data_key_init(c, &key, inum, blk);
bit = old_size & (UBIFS_BLOCK_SIZE - 1);
blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0: 1);
data_key_init(c, &to_key, inum, blk);
err = ubifs_tnc_remove_range(c, &key, &to_key);
if (err)
goto out_ro;
finish_reservation(c);
spin_lock(&ui->ui_lock);
ui->synced_i_size = ui->ui_size;
spin_unlock(&ui->ui_lock);
mark_inode_clean(c, ui);
kfree(ino);
return 0;
out_release:
release_head(c, BASEHD);
out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
out_free:
kfree(ino);
return err;
}
#ifdef CONFIG_UBIFS_FS_XATTR
/**
* ubifs_jnl_delete_xattr - delete an extended attribute.
* @c: UBIFS file-system description object
* @host: host inode
* @inode: extended attribute inode
* @nm: extended attribute entry name
*
* This function delete an extended attribute which is very similar to
* un-linking regular files - it writes a deletion xentry, a deletion inode and
* updates the target inode. Returns zero in case of success and a negative
* error code in case of failure.
*/
int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
const struct inode *inode, const struct qstr *nm)
{
int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
struct ubifs_dent_node *xent;
struct ubifs_ino_node *ino;
union ubifs_key xent_key, key1, key2;
int sync = IS_DIRSYNC(host);
struct ubifs_inode *host_ui = ubifs_inode(host);
dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
host->i_ino, inode->i_ino, nm->name,
ubifs_inode(inode)->data_len);
ubifs_assert(inode->i_nlink == 0);
ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
/*
* Since we are deleting the inode, we do not bother to attach any data
* to it and assume its length is %UBIFS_INO_NODE_SZ.
*/
xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
aligned_xlen = ALIGN(xlen, 8);
hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
xent = kmalloc(len, GFP_NOFS);
if (!xent)
return -ENOMEM;
/* Make reservation before allocating sequence numbers */
err = make_reservation(c, BASEHD, len);
if (err) {
kfree(xent);
return err;
}
xent->ch.node_type = UBIFS_XENT_NODE;
xent_key_init(c, &xent_key, host->i_ino, nm);
key_write(c, &xent_key, xent->key);
xent->inum = 0;
xent->type = get_dent_type(inode->i_mode);
xent->nlen = cpu_to_le16(nm->len);
memcpy(xent->name, nm->name, nm->len);
xent->name[nm->len] = '\0';
zero_dent_node_unused(xent);
ubifs_prep_grp_node(c, xent, xlen, 0);
ino = (void *)xent + aligned_xlen;
pack_inode(c, ino, inode, 0, 1);
ino = (void *)ino + UBIFS_INO_NODE_SZ;
pack_inode(c, ino, host, 1, 0);
err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
if (!sync && !err)
ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
release_head(c, BASEHD);
kfree(xent);
if (err)
goto out_ro;
/* Remove the extended attribute entry from TNC */
err = ubifs_tnc_remove_nm(c, &xent_key, nm);
if (err)
goto out_ro;
err = ubifs_add_dirt(c, lnum, xlen);
if (err)
goto out_ro;
/*
* Remove all nodes belonging to the extended attribute inode from TNC.
* Well, there actually must be only one node - the inode itself.
*/
lowest_ino_key(c, &key1, inode->i_ino);
highest_ino_key(c, &key2, inode->i_ino);
err = ubifs_tnc_remove_range(c, &key1, &key2);
if (err)
goto out_ro;
err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
if (err)
goto out_ro;
/* And update TNC with the new host inode position */
ino_key_init(c, &key1, host->i_ino);
err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
if (err)
goto out_ro;
finish_reservation(c);
spin_lock(&host_ui->ui_lock);
host_ui->synced_i_size = host_ui->ui_size;
spin_unlock(&host_ui->ui_lock);
mark_inode_clean(c, host_ui);
return 0;
out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
return err;
}
/**
* ubifs_jnl_change_xattr - change an extended attribute.
* @c: UBIFS file-system description object
* @inode: extended attribute inode
* @host: host inode
*
* This function writes the updated version of an extended attribute inode and
* the host inode tho the journal (to the base head). The host inode is written
* after the extended attribute inode in order to guarantee that the extended
* attribute will be flushed when the inode is synchronized by 'fsync()' and
* consequently, the write-buffer is synchronized. This function returns zero
* in case of success and a negative error code in case of failure.
*/
int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
const struct inode *host)
{
int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
struct ubifs_inode *host_ui = ubifs_inode(inode);
struct ubifs_ino_node *ino;
union ubifs_key key;
int sync = IS_DIRSYNC(host);
dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
ubifs_assert(host->i_nlink > 0);
ubifs_assert(inode->i_nlink > 0);
ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
aligned_len1 = ALIGN(len1, 8);
aligned_len = aligned_len1 + ALIGN(len2, 8);
ino = kmalloc(aligned_len, GFP_NOFS);
if (!ino)
return -ENOMEM;
/* Make reservation before allocating sequence numbers */
err = make_reservation(c, BASEHD, aligned_len);
if (err)
goto out_free;
pack_inode(c, ino, host, 0, 0);
pack_inode(c, (void *)ino + aligned_len1, inode, 1, 0);
err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
if (!sync && !err) {
struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
}
release_head(c, BASEHD);
if (err)
goto out_ro;
ino_key_init(c, &key, host->i_ino);
err = ubifs_tnc_add(c, &key, lnum, offs, len1);
if (err)
goto out_ro;
ino_key_init(c, &key, inode->i_ino);
err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
if (err)
goto out_ro;
finish_reservation(c);
spin_lock(&host_ui->ui_lock);
host_ui->synced_i_size = host_ui->ui_size;
spin_unlock(&host_ui->ui_lock);
mark_inode_clean(c, host_ui);
kfree(ino);
return 0;
out_ro:
ubifs_ro_mode(c, err);
finish_reservation(c);
out_free:
kfree(ino);
return err;
}
#endif /* CONFIG_UBIFS_FS_XATTR */