WSL2-Linux-Kernel/drivers/tty/serial/ifx6x60.c

1446 строки
37 KiB
C
Исходник Обычный вид История

tty: add SPDX identifiers to all remaining files in drivers/tty/ It's good to have SPDX identifiers in all files to make it easier to audit the kernel tree for correct licenses. Update the drivers/tty files files with the correct SPDX license identifier based on the license text in the file itself. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This work is based on a script and data from Thomas Gleixner, Philippe Ombredanne, and Kate Stewart. Cc: Jiri Slaby <jslaby@suse.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Chris Metcalf <cmetcalf@mellanox.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: David Sterba <dsterba@suse.com> Cc: James Hogan <jhogan@kernel.org> Cc: Rob Herring <robh@kernel.org> Cc: Eric Anholt <eric@anholt.net> Cc: Stefan Wahren <stefan.wahren@i2se.com> Cc: Florian Fainelli <f.fainelli@gmail.com> Cc: Ray Jui <rjui@broadcom.com> Cc: Scott Branden <sbranden@broadcom.com> Cc: bcm-kernel-feedback-list@broadcom.com Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Helge Deller <deller@gmx.de> Cc: Joachim Eastwood <manabian@gmail.com> Cc: Matthias Brugger <matthias.bgg@gmail.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Tobias Klauser <tklauser@distanz.ch> Cc: Russell King <linux@armlinux.org.uk> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Richard Genoud <richard.genoud@gmail.com> Cc: Alexander Shiyan <shc_work@mail.ru> Cc: Baruch Siach <baruch@tkos.co.il> Cc: "Maciej W. Rozycki" <macro@linux-mips.org> Cc: "Uwe Kleine-König" <kernel@pengutronix.de> Cc: Pat Gefre <pfg@sgi.com> Cc: "Guilherme G. Piccoli" <gpiccoli@linux.vnet.ibm.com> Cc: Jason Wessel <jason.wessel@windriver.com> Cc: Vladimir Zapolskiy <vz@mleia.com> Cc: Sylvain Lemieux <slemieux.tyco@gmail.com> Cc: Carlo Caione <carlo@caione.org> Cc: Kevin Hilman <khilman@baylibre.com> Cc: Liviu Dudau <liviu.dudau@arm.com> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Andy Gross <andy.gross@linaro.org> Cc: David Brown <david.brown@linaro.org> Cc: "Andreas Färber" <afaerber@suse.de> Cc: Kevin Cernekee <cernekee@gmail.com> Cc: Laxman Dewangan <ldewangan@nvidia.com> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Jonathan Hunter <jonathanh@nvidia.com> Cc: Barry Song <baohua@kernel.org> Cc: Patrice Chotard <patrice.chotard@st.com> Cc: Maxime Coquelin <mcoquelin.stm32@gmail.com> Cc: Alexandre Torgue <alexandre.torgue@st.com> Cc: "David S. Miller" <davem@davemloft.net> Cc: Peter Korsgaard <jacmet@sunsite.dk> Cc: Timur Tabi <timur@tabi.org> Cc: Tony Prisk <linux@prisktech.co.nz> Cc: Michal Simek <michal.simek@xilinx.com> Cc: "Sören Brinkmann" <soren.brinkmann@xilinx.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Jiri Slaby <jslaby@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-06 20:11:51 +03:00
// SPDX-License-Identifier: GPL-2.0
/****************************************************************************
*
* Driver for the IFX 6x60 spi modem.
*
* Copyright (C) 2008 Option International
* Copyright (C) 2008 Filip Aben <f.aben@option.com>
* Denis Joseph Barrow <d.barow@option.com>
* Jan Dumon <j.dumon@option.com>
*
* Copyright (C) 2009, 2010 Intel Corp
* Russ Gorby <russ.gorby@intel.com>
*
* Driver modified by Intel from Option gtm501l_spi.c
*
* Notes
* o The driver currently assumes a single device only. If you need to
* change this then look for saved_ifx_dev and add a device lookup
* o The driver is intended to be big-endian safe but has never been
* tested that way (no suitable hardware). There are a couple of FIXME
* notes by areas that may need addressing
* o Some of the GPIO naming/setup assumptions may need revisiting if
* you need to use this driver for another platform.
*
*****************************************************************************/
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/termios.h>
#include <linux/tty.h>
#include <linux/device.h>
#include <linux/spi/spi.h>
#include <linux/kfifo.h>
#include <linux/tty_flip.h>
#include <linux/timer.h>
#include <linux/serial.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/rfkill.h>
#include <linux/fs.h>
#include <linux/ip.h>
#include <linux/dmapool.h>
#include <linux/gpio.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/wait.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/spi/ifx_modem.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include "ifx6x60.h"
#define IFX_SPI_MORE_MASK 0x10
#define IFX_SPI_MORE_BIT 4 /* bit position in u8 */
#define IFX_SPI_CTS_BIT 6 /* bit position in u8 */
#define IFX_SPI_MODE SPI_MODE_1
#define IFX_SPI_TTY_ID 0
#define IFX_SPI_TIMEOUT_SEC 2
#define IFX_SPI_HEADER_0 (-1)
#define IFX_SPI_HEADER_F (-2)
#define PO_POST_DELAY 200
#define IFX_MDM_RST_PMU 4
/* forward reference */
static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
static int ifx_modem_reboot_callback(struct notifier_block *nfb,
unsigned long event, void *data);
static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
/* local variables */
static int spi_bpw = 16; /* 8, 16 or 32 bit word length */
static struct tty_driver *tty_drv;
static struct ifx_spi_device *saved_ifx_dev;
static struct lock_class_key ifx_spi_key;
static struct notifier_block ifx_modem_reboot_notifier_block = {
.notifier_call = ifx_modem_reboot_callback,
};
static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
{
gpio_set_value(IFX_MDM_RST_PMU, 1);
msleep(PO_POST_DELAY);
return 0;
}
static int ifx_modem_reboot_callback(struct notifier_block *nfb,
unsigned long event, void *data)
{
if (saved_ifx_dev)
ifx_modem_power_off(saved_ifx_dev);
else
pr_warn("no ifx modem active;\n");
return NOTIFY_OK;
}
/* GPIO/GPE settings */
/**
* mrdy_set_high - set MRDY GPIO
* @ifx: device we are controlling
*
*/
static inline void mrdy_set_high(struct ifx_spi_device *ifx)
{
gpio_set_value(ifx->gpio.mrdy, 1);
}
/**
* mrdy_set_low - clear MRDY GPIO
* @ifx: device we are controlling
*
*/
static inline void mrdy_set_low(struct ifx_spi_device *ifx)
{
gpio_set_value(ifx->gpio.mrdy, 0);
}
/**
* ifx_spi_power_state_set
* @ifx_dev: our SPI device
* @val: bits to set
*
* Set bit in power status and signal power system if status becomes non-0
*/
static void
ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
{
unsigned long flags;
spin_lock_irqsave(&ifx_dev->power_lock, flags);
/*
* if power status is already non-0, just update, else
* tell power system
*/
if (!ifx_dev->power_status)
pm_runtime_get(&ifx_dev->spi_dev->dev);
ifx_dev->power_status |= val;
spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
}
/**
* ifx_spi_power_state_clear - clear power bit
* @ifx_dev: our SPI device
* @val: bits to clear
*
* clear bit in power status and signal power system if status becomes 0
*/
static void
ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
{
unsigned long flags;
spin_lock_irqsave(&ifx_dev->power_lock, flags);
if (ifx_dev->power_status) {
ifx_dev->power_status &= ~val;
if (!ifx_dev->power_status)
pm_runtime_put(&ifx_dev->spi_dev->dev);
}
spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
}
/**
* swap_buf_8
* @buf: our buffer
* @len : number of bytes (not words) in the buffer
* @end: end of buffer
*
* Swap the contents of a buffer into big endian format
*/
static inline void swap_buf_8(unsigned char *buf, int len, void *end)
{
/* don't swap buffer if SPI word width is 8 bits */
return;
}
/**
* swap_buf_16
* @buf: our buffer
* @len : number of bytes (not words) in the buffer
* @end: end of buffer
*
* Swap the contents of a buffer into big endian format
*/
static inline void swap_buf_16(unsigned char *buf, int len, void *end)
{
int n;
u16 *buf_16 = (u16 *)buf;
len = ((len + 1) >> 1);
if ((void *)&buf_16[len] > end) {
pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
&buf_16[len], end);
return;
}
for (n = 0; n < len; n++) {
*buf_16 = cpu_to_be16(*buf_16);
buf_16++;
}
}
/**
* swap_buf_32
* @buf: our buffer
* @len : number of bytes (not words) in the buffer
* @end: end of buffer
*
* Swap the contents of a buffer into big endian format
*/
static inline void swap_buf_32(unsigned char *buf, int len, void *end)
{
int n;
u32 *buf_32 = (u32 *)buf;
len = (len + 3) >> 2;
if ((void *)&buf_32[len] > end) {
pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
&buf_32[len], end);
return;
}
for (n = 0; n < len; n++) {
*buf_32 = cpu_to_be32(*buf_32);
buf_32++;
}
}
/**
* mrdy_assert - assert MRDY line
* @ifx_dev: our SPI device
*
* Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
* now.
*
* FIXME: Can SRDY even go high as we are running this code ?
*/
static void mrdy_assert(struct ifx_spi_device *ifx_dev)
{
int val = gpio_get_value(ifx_dev->gpio.srdy);
if (!val) {
if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
&ifx_dev->flags)) {
mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
}
}
ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
mrdy_set_high(ifx_dev);
}
/**
* ifx_spi_timeout - SPI timeout
* @arg: our SPI device
*
* The SPI has timed out: hang up the tty. Users will then see a hangup
* and error events.
*/
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 00:43:17 +03:00
static void ifx_spi_timeout(struct timer_list *t)
{
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 00:43:17 +03:00
struct ifx_spi_device *ifx_dev = from_timer(ifx_dev, t, spi_timer);
dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
tty_port_tty_hangup(&ifx_dev->tty_port, false);
mrdy_set_low(ifx_dev);
clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
}
/* char/tty operations */
/**
* ifx_spi_tiocmget - get modem lines
* @tty: our tty device
* @filp: file handle issuing the request
*
* Map the signal state into Linux modem flags and report the value
* in Linux terms
*/
static int ifx_spi_tiocmget(struct tty_struct *tty)
{
unsigned int value;
struct ifx_spi_device *ifx_dev = tty->driver_data;
value =
(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
return value;
}
/**
* ifx_spi_tiocmset - set modem bits
* @tty: the tty structure
* @set: bits to set
* @clear: bits to clear
*
* The IFX6x60 only supports DTR and RTS. Set them accordingly
* and flag that an update to the modem is needed.
*
* FIXME: do we need to kick the tranfers when we do this ?
*/
static int ifx_spi_tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct ifx_spi_device *ifx_dev = tty->driver_data;
if (set & TIOCM_RTS)
set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
if (set & TIOCM_DTR)
set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
if (clear & TIOCM_RTS)
clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
if (clear & TIOCM_DTR)
clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
return 0;
}
/**
* ifx_spi_open - called on tty open
* @tty: our tty device
* @filp: file handle being associated with the tty
*
* Open the tty interface. We let the tty_port layer do all the work
* for us.
*
* FIXME: Remove single device assumption and saved_ifx_dev
*/
static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
{
return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
}
/**
* ifx_spi_close - called when our tty closes
* @tty: the tty being closed
* @filp: the file handle being closed
*
* Perform the close of the tty. We use the tty_port layer to do all
* our hard work.
*/
static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
{
struct ifx_spi_device *ifx_dev = tty->driver_data;
tty_port_close(&ifx_dev->tty_port, tty, filp);
/* FIXME: should we do an ifx_spi_reset here ? */
}
/**
* ifx_decode_spi_header - decode received header
* @buffer: the received data
* @length: decoded length
* @more: decoded more flag
* @received_cts: status of cts we received
*
* Note how received_cts is handled -- if header is all F it is left
* the same as it was, if header is all 0 it is set to 0 otherwise it is
* taken from the incoming header.
*
* FIXME: endianness
*/
static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
unsigned char *more, unsigned char *received_cts)
{
u16 h1;
u16 h2;
u16 *in_buffer = (u16 *)buffer;
h1 = *in_buffer;
h2 = *(in_buffer+1);
if (h1 == 0 && h2 == 0) {
*received_cts = 0;
*more = 0;
return IFX_SPI_HEADER_0;
} else if (h1 == 0xffff && h2 == 0xffff) {
*more = 0;
/* spi_slave_cts remains as it was */
return IFX_SPI_HEADER_F;
}
*length = h1 & 0xfff; /* upper bits of byte are flags */
*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
return 0;
}
/**
* ifx_setup_spi_header - set header fields
* @txbuffer: pointer to start of SPI buffer
* @tx_count: bytes
* @more: indicate if more to follow
*
* Format up an SPI header for a transfer
*
* FIXME: endianness?
*/
static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
unsigned char more)
{
*(u16 *)(txbuffer) = tx_count;
*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
}
/**
* ifx_spi_prepare_tx_buffer - prepare transmit frame
* @ifx_dev: our SPI device
*
* The transmit buffr needs a header and various other bits of
* information followed by as much data as we can pull from the FIFO
* and transfer. This function formats up a suitable buffer in the
* ifx_dev->tx_buffer
*
* FIXME: performance - should we wake the tty when the queue is half
* empty ?
*/
static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
{
int temp_count;
int queue_length;
int tx_count;
unsigned char *tx_buffer;
tx_buffer = ifx_dev->tx_buffer;
/* make room for required SPI header */
tx_buffer += IFX_SPI_HEADER_OVERHEAD;
tx_count = IFX_SPI_HEADER_OVERHEAD;
/* clear to signal no more data if this turns out to be the
* last buffer sent in a sequence */
ifx_dev->spi_more = 0;
/* if modem cts is set, just send empty buffer */
if (!ifx_dev->spi_slave_cts) {
/* see if there's tx data */
queue_length = kfifo_len(&ifx_dev->tx_fifo);
if (queue_length != 0) {
/* data to mux -- see if there's room for it */
temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
tx_buffer, temp_count,
&ifx_dev->fifo_lock);
/* update buffer pointer and data count in message */
tx_buffer += temp_count;
tx_count += temp_count;
if (temp_count == queue_length)
/* poke port to get more data */
tty_port_tty_wakeup(&ifx_dev->tty_port);
else /* more data in port, use next SPI message */
ifx_dev->spi_more = 1;
}
}
/* have data and info for header -- set up SPI header in buffer */
/* spi header needs payload size, not entire buffer size */
ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
tx_count-IFX_SPI_HEADER_OVERHEAD,
ifx_dev->spi_more);
/* swap actual data in the buffer */
ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
return tx_count;
}
/**
* ifx_spi_write - line discipline write
* @tty: our tty device
* @buf: pointer to buffer to write (kernel space)
* @count: size of buffer
*
* Write the characters we have been given into the FIFO. If the device
* is not active then activate it, when the SRDY line is asserted back
* this will commence I/O
*/
static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
int count)
{
struct ifx_spi_device *ifx_dev = tty->driver_data;
unsigned char *tmp_buf = (unsigned char *)buf;
unsigned long flags;
bool is_fifo_empty;
int tx_count;
spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
if (is_fifo_empty)
mrdy_assert(ifx_dev);
return tx_count;
}
/**
* ifx_spi_chars_in_buffer - line discipline helper
* @tty: our tty device
*
* Report how much data we can accept before we drop bytes. As we use
* a simple FIFO this is nice and easy.
*/
static int ifx_spi_write_room(struct tty_struct *tty)
{
struct ifx_spi_device *ifx_dev = tty->driver_data;
return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
}
/**
* ifx_spi_chars_in_buffer - line discipline helper
* @tty: our tty device
*
* Report how many characters we have buffered. In our case this is the
* number of bytes sitting in our transmit FIFO.
*/
static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
{
struct ifx_spi_device *ifx_dev = tty->driver_data;
return kfifo_len(&ifx_dev->tx_fifo);
}
/**
* ifx_port_hangup
* @port: our tty port
*
* tty port hang up. Called when tty_hangup processing is invoked either
* by loss of carrier, or by software (eg vhangup). Serialized against
* activate/shutdown by the tty layer.
*/
static void ifx_spi_hangup(struct tty_struct *tty)
{
struct ifx_spi_device *ifx_dev = tty->driver_data;
tty_port_hangup(&ifx_dev->tty_port);
}
/**
* ifx_port_activate
* @port: our tty port
*
* tty port activate method - called for first open. Serialized
* with hangup and shutdown by the tty layer.
*/
static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
{
struct ifx_spi_device *ifx_dev =
container_of(port, struct ifx_spi_device, tty_port);
/* clear any old data; can't do this in 'close' */
kfifo_reset(&ifx_dev->tx_fifo);
/* clear any flag which may be set in port shutdown procedure */
clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
/* put port data into this tty */
tty->driver_data = ifx_dev;
/* allows flip string push from int context */
port->low_latency = 1;
/* set flag to allows data transfer */
set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
return 0;
}
/**
* ifx_port_shutdown
* @port: our tty port
*
* tty port shutdown method - called for last port close. Serialized
* with hangup and activate by the tty layer.
*/
static void ifx_port_shutdown(struct tty_port *port)
{
struct ifx_spi_device *ifx_dev =
container_of(port, struct ifx_spi_device, tty_port);
clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
mrdy_set_low(ifx_dev);
del_timer(&ifx_dev->spi_timer);
clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
tasklet_kill(&ifx_dev->io_work_tasklet);
}
static const struct tty_port_operations ifx_tty_port_ops = {
.activate = ifx_port_activate,
.shutdown = ifx_port_shutdown,
};
static const struct tty_operations ifx_spi_serial_ops = {
.open = ifx_spi_open,
.close = ifx_spi_close,
.write = ifx_spi_write,
.hangup = ifx_spi_hangup,
.write_room = ifx_spi_write_room,
.chars_in_buffer = ifx_spi_chars_in_buffer,
.tiocmget = ifx_spi_tiocmget,
.tiocmset = ifx_spi_tiocmset,
};
/**
* ifx_spi_insert_fip_string - queue received data
* @ifx_ser: our SPI device
* @chars: buffer we have received
* @size: number of chars reeived
*
* Queue bytes to the tty assuming the tty side is currently open. If
* not the discard the data.
*/
static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
unsigned char *chars, size_t size)
{
tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
tty_flip_buffer_push(&ifx_dev->tty_port);
}
/**
* ifx_spi_complete - SPI transfer completed
* @ctx: our SPI device
*
* An SPI transfer has completed. Process any received data and kick off
* any further transmits we can commence.
*/
static void ifx_spi_complete(void *ctx)
{
struct ifx_spi_device *ifx_dev = ctx;
int length;
int actual_length;
unsigned char more = 0;
unsigned char cts;
int local_write_pending = 0;
int queue_length;
int srdy;
int decode_result;
mrdy_set_low(ifx_dev);
if (!ifx_dev->spi_msg.status) {
/* check header validity, get comm flags */
ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
&length, &more, &cts);
if (decode_result == IFX_SPI_HEADER_0) {
dev_dbg(&ifx_dev->spi_dev->dev,
"ignore input: invalid header 0");
ifx_dev->spi_slave_cts = 0;
goto complete_exit;
} else if (decode_result == IFX_SPI_HEADER_F) {
dev_dbg(&ifx_dev->spi_dev->dev,
"ignore input: invalid header F");
goto complete_exit;
}
ifx_dev->spi_slave_cts = cts;
actual_length = min((unsigned int)length,
ifx_dev->spi_msg.actual_length);
ifx_dev->swap_buf(
(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
actual_length,
&ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
ifx_spi_insert_flip_string(
ifx_dev,
ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
(size_t)actual_length);
} else {
more = 0;
dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
ifx_dev->spi_msg.status);
}
complete_exit:
if (ifx_dev->write_pending) {
ifx_dev->write_pending = 0;
local_write_pending = 1;
}
clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
queue_length = kfifo_len(&ifx_dev->tx_fifo);
srdy = gpio_get_value(ifx_dev->gpio.srdy);
if (!srdy)
ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
/* schedule output if there is more to do */
if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
tasklet_schedule(&ifx_dev->io_work_tasklet);
else {
if (more || ifx_dev->spi_more || queue_length > 0 ||
local_write_pending) {
if (ifx_dev->spi_slave_cts) {
if (more)
mrdy_assert(ifx_dev);
} else
mrdy_assert(ifx_dev);
} else {
/*
* poke line discipline driver if any for more data
* may or may not get more data to write
* for now, say not busy
*/
ifx_spi_power_state_clear(ifx_dev,
IFX_SPI_POWER_DATA_PENDING);
tty_port_tty_wakeup(&ifx_dev->tty_port);
}
}
}
/**
* ifx_spio_io - I/O tasklet
* @data: our SPI device
*
* Queue data for transmission if possible and then kick off the
* transfer.
*/
static void ifx_spi_io(unsigned long data)
{
int retval;
struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
if (ifx_dev->gpio.unack_srdy_int_nb > 0)
ifx_dev->gpio.unack_srdy_int_nb--;
ifx_spi_prepare_tx_buffer(ifx_dev);
spi_message_init(&ifx_dev->spi_msg);
INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
ifx_dev->spi_msg.context = ifx_dev;
ifx_dev->spi_msg.complete = ifx_spi_complete;
/* set up our spi transfer */
/* note len is BYTES, not transfers */
ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
ifx_dev->spi_xfer.cs_change = 0;
ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
/* ifx_dev->spi_xfer.speed_hz = 390625; */
ifx_dev->spi_xfer.bits_per_word =
ifx_dev->spi_dev->bits_per_word;
ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
/*
* setup dma pointers
*/
if (ifx_dev->use_dma) {
ifx_dev->spi_msg.is_dma_mapped = 1;
ifx_dev->tx_dma = ifx_dev->tx_bus;
ifx_dev->rx_dma = ifx_dev->rx_bus;
ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
} else {
ifx_dev->spi_msg.is_dma_mapped = 0;
ifx_dev->tx_dma = (dma_addr_t)0;
ifx_dev->rx_dma = (dma_addr_t)0;
ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
}
spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
/* Assert MRDY. This may have already been done by the write
* routine.
*/
mrdy_assert(ifx_dev);
retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
if (retval) {
clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
&ifx_dev->flags);
tasklet_schedule(&ifx_dev->io_work_tasklet);
return;
}
} else
ifx_dev->write_pending = 1;
}
/**
* ifx_spi_free_port - free up the tty side
* @ifx_dev: IFX device going away
*
* Unregister and free up a port when the device goes away
*/
static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
{
if (ifx_dev->tty_dev)
tty_unregister_device(tty_drv, ifx_dev->minor);
tty_port_destroy(&ifx_dev->tty_port);
kfifo_free(&ifx_dev->tx_fifo);
}
/**
* ifx_spi_create_port - create a new port
* @ifx_dev: our spi device
*
* Allocate and initialise the tty port that goes with this interface
* and add it to the tty layer so that it can be opened.
*/
static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
{
int ret = 0;
struct tty_port *pport = &ifx_dev->tty_port;
spin_lock_init(&ifx_dev->fifo_lock);
lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
&ifx_spi_key, 0);
if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
ret = -ENOMEM;
goto error_ret;
}
tty_port_init(pport);
pport->ops = &ifx_tty_port_ops;
ifx_dev->minor = IFX_SPI_TTY_ID;
ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
ifx_dev->minor, &ifx_dev->spi_dev->dev);
if (IS_ERR(ifx_dev->tty_dev)) {
dev_dbg(&ifx_dev->spi_dev->dev,
"%s: registering tty device failed", __func__);
ret = PTR_ERR(ifx_dev->tty_dev);
goto error_port;
}
return 0;
error_port:
tty_port_destroy(pport);
error_ret:
ifx_spi_free_port(ifx_dev);
return ret;
}
/**
* ifx_spi_handle_srdy - handle SRDY
* @ifx_dev: device asserting SRDY
*
* Check our device state and see what we need to kick off when SRDY
* is asserted. This usually means killing the timer and firing off the
* I/O processing.
*/
static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
{
if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
del_timer(&ifx_dev->spi_timer);
clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
}
ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
tasklet_schedule(&ifx_dev->io_work_tasklet);
else
set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
}
/**
* ifx_spi_srdy_interrupt - SRDY asserted
* @irq: our IRQ number
* @dev: our ifx device
*
* The modem asserted SRDY. Handle the srdy event
*/
static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
{
struct ifx_spi_device *ifx_dev = dev;
ifx_dev->gpio.unack_srdy_int_nb++;
ifx_spi_handle_srdy(ifx_dev);
return IRQ_HANDLED;
}
/**
* ifx_spi_reset_interrupt - Modem has changed reset state
* @irq: interrupt number
* @dev: our device pointer
*
* The modem has either entered or left reset state. Check the GPIO
* line to see which.
*
* FIXME: review locking on MR_INPROGRESS versus
* parallel unsolicited reset/solicited reset
*/
static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
{
struct ifx_spi_device *ifx_dev = dev;
int val = gpio_get_value(ifx_dev->gpio.reset_out);
int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
if (val == 0) {
/* entered reset */
set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
if (!solreset) {
/* unsolicited reset */
tty_port_tty_hangup(&ifx_dev->tty_port, false);
}
} else {
/* exited reset */
clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
if (solreset) {
set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
wake_up(&ifx_dev->mdm_reset_wait);
}
}
return IRQ_HANDLED;
}
/**
* ifx_spi_free_device - free device
* @ifx_dev: device to free
*
* Free the IFX device
*/
static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
{
ifx_spi_free_port(ifx_dev);
dma_free_coherent(&ifx_dev->spi_dev->dev,
IFX_SPI_TRANSFER_SIZE,
ifx_dev->tx_buffer,
ifx_dev->tx_bus);
dma_free_coherent(&ifx_dev->spi_dev->dev,
IFX_SPI_TRANSFER_SIZE,
ifx_dev->rx_buffer,
ifx_dev->rx_bus);
}
/**
* ifx_spi_reset - reset modem
* @ifx_dev: modem to reset
*
* Perform a reset on the modem
*/
static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
{
int ret;
/*
* set up modem power, reset
*
* delays are required on some platforms for the modem
* to reset properly
*/
set_bit(MR_START, &ifx_dev->mdm_reset_state);
gpio_set_value(ifx_dev->gpio.po, 0);
gpio_set_value(ifx_dev->gpio.reset, 0);
msleep(25);
gpio_set_value(ifx_dev->gpio.reset, 1);
msleep(1);
gpio_set_value(ifx_dev->gpio.po, 1);
msleep(1);
gpio_set_value(ifx_dev->gpio.po, 0);
ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
test_bit(MR_COMPLETE,
&ifx_dev->mdm_reset_state),
IFX_RESET_TIMEOUT);
if (!ret)
dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
ifx_dev->mdm_reset_state);
ifx_dev->mdm_reset_state = 0;
return ret;
}
/**
* ifx_spi_spi_probe - probe callback
* @spi: our possible matching SPI device
*
* Probe for a 6x60 modem on SPI bus. Perform any needed device and
* GPIO setup.
*
* FIXME:
* - Support for multiple devices
* - Split out MID specific GPIO handling eventually
*/
static int ifx_spi_spi_probe(struct spi_device *spi)
{
int ret;
int srdy;
struct ifx_modem_platform_data *pl_data;
struct ifx_spi_device *ifx_dev;
if (saved_ifx_dev) {
dev_dbg(&spi->dev, "ignoring subsequent detection");
return -ENODEV;
}
pl_data = dev_get_platdata(&spi->dev);
if (!pl_data) {
dev_err(&spi->dev, "missing platform data!");
return -ENODEV;
}
/* initialize structure to hold our device variables */
ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
if (!ifx_dev) {
dev_err(&spi->dev, "spi device allocation failed");
return -ENOMEM;
}
saved_ifx_dev = ifx_dev;
ifx_dev->spi_dev = spi;
clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
spin_lock_init(&ifx_dev->write_lock);
spin_lock_init(&ifx_dev->power_lock);
ifx_dev->power_status = 0;
treewide: setup_timer() -> timer_setup() This converts all remaining cases of the old setup_timer() API into using timer_setup(), where the callback argument is the structure already holding the struct timer_list. These should have no behavioral changes, since they just change which pointer is passed into the callback with the same available pointers after conversion. It handles the following examples, in addition to some other variations. Casting from unsigned long: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... setup_timer(&ptr->my_timer, my_callback, ptr); and forced object casts: void my_callback(struct something *ptr) { ... } ... setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr); become: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... timer_setup(&ptr->my_timer, my_callback, 0); Direct function assignments: void my_callback(unsigned long data) { struct something *ptr = (struct something *)data; ... } ... ptr->my_timer.function = my_callback; have a temporary cast added, along with converting the args: void my_callback(struct timer_list *t) { struct something *ptr = from_timer(ptr, t, my_timer); ... } ... ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback; And finally, callbacks without a data assignment: void my_callback(unsigned long data) { ... } ... setup_timer(&ptr->my_timer, my_callback, 0); have their argument renamed to verify they're unused during conversion: void my_callback(struct timer_list *unused) { ... } ... timer_setup(&ptr->my_timer, my_callback, 0); The conversion is done with the following Coccinelle script: spatch --very-quiet --all-includes --include-headers \ -I ./arch/x86/include -I ./arch/x86/include/generated \ -I ./include -I ./arch/x86/include/uapi \ -I ./arch/x86/include/generated/uapi -I ./include/uapi \ -I ./include/generated/uapi --include ./include/linux/kconfig.h \ --dir . \ --cocci-file ~/src/data/timer_setup.cocci @fix_address_of@ expression e; @@ setup_timer( -&(e) +&e , ...) // Update any raw setup_timer() usages that have a NULL callback, but // would otherwise match change_timer_function_usage, since the latter // will update all function assignments done in the face of a NULL // function initialization in setup_timer(). @change_timer_function_usage_NULL@ expression _E; identifier _timer; type _cast_data; @@ ( -setup_timer(&_E->_timer, NULL, _E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E->_timer, NULL, (_cast_data)_E); +timer_setup(&_E->_timer, NULL, 0); | -setup_timer(&_E._timer, NULL, &_E); +timer_setup(&_E._timer, NULL, 0); | -setup_timer(&_E._timer, NULL, (_cast_data)&_E); +timer_setup(&_E._timer, NULL, 0); ) @change_timer_function_usage@ expression _E; identifier _timer; struct timer_list _stl; identifier _callback; type _cast_func, _cast_data; @@ ( -setup_timer(&_E->_timer, _callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, &_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, _E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, &_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E); +timer_setup(&_E._timer, _callback, 0); | _E->_timer@_stl.function = _callback; | _E->_timer@_stl.function = &_callback; | _E->_timer@_stl.function = (_cast_func)_callback; | _E->_timer@_stl.function = (_cast_func)&_callback; | _E._timer@_stl.function = _callback; | _E._timer@_stl.function = &_callback; | _E._timer@_stl.function = (_cast_func)_callback; | _E._timer@_stl.function = (_cast_func)&_callback; ) // callback(unsigned long arg) @change_callback_handle_cast depends on change_timer_function_usage@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; identifier _handle; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { ( ... when != _origarg _handletype *_handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(_handletype *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg | ... when != _origarg _handletype *_handle; ... when != _handle _handle = -(void *)_origarg; +from_timer(_handle, t, _timer); ... when != _origarg ) } // callback(unsigned long arg) without existing variable @change_callback_handle_cast_no_arg depends on change_timer_function_usage && !change_callback_handle_cast@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _origtype; identifier _origarg; type _handletype; @@ void _callback( -_origtype _origarg +struct timer_list *t ) { + _handletype *_origarg = from_timer(_origarg, t, _timer); + ... when != _origarg - (_handletype *)_origarg + _origarg ... when != _origarg } // Avoid already converted callbacks. @match_callback_converted depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier t; @@ void _callback(struct timer_list *t) { ... } // callback(struct something *handle) @change_callback_handle_arg depends on change_timer_function_usage && !match_callback_converted && !change_callback_handle_cast && !change_callback_handle_cast_no_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; @@ void _callback( -_handletype *_handle +struct timer_list *t ) { + _handletype *_handle = from_timer(_handle, t, _timer); ... } // If change_callback_handle_arg ran on an empty function, remove // the added handler. @unchange_callback_handle_arg depends on change_timer_function_usage && change_callback_handle_arg@ identifier change_timer_function_usage._callback; identifier change_timer_function_usage._timer; type _handletype; identifier _handle; identifier t; @@ void _callback(struct timer_list *t) { - _handletype *_handle = from_timer(_handle, t, _timer); } // We only want to refactor the setup_timer() data argument if we've found // the matching callback. This undoes changes in change_timer_function_usage. @unchange_timer_function_usage depends on change_timer_function_usage && !change_callback_handle_cast && !change_callback_handle_cast_no_arg && !change_callback_handle_arg@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type change_timer_function_usage._cast_data; @@ ( -timer_setup(&_E->_timer, _callback, 0); +setup_timer(&_E->_timer, _callback, (_cast_data)_E); | -timer_setup(&_E._timer, _callback, 0); +setup_timer(&_E._timer, _callback, (_cast_data)&_E); ) // If we fixed a callback from a .function assignment, fix the // assignment cast now. @change_timer_function_assignment depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression change_timer_function_usage._E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_func; typedef TIMER_FUNC_TYPE; @@ ( _E->_timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -&_callback +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)_callback; +(TIMER_FUNC_TYPE)_callback ; | _E->_timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -&_callback; +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)_callback +(TIMER_FUNC_TYPE)_callback ; | _E._timer.function = -(_cast_func)&_callback +(TIMER_FUNC_TYPE)_callback ; ) // Sometimes timer functions are called directly. Replace matched args. @change_timer_function_calls depends on change_timer_function_usage && (change_callback_handle_cast || change_callback_handle_cast_no_arg || change_callback_handle_arg)@ expression _E; identifier change_timer_function_usage._timer; identifier change_timer_function_usage._callback; type _cast_data; @@ _callback( ( -(_cast_data)_E +&_E->_timer | -(_cast_data)&_E +&_E._timer | -_E +&_E->_timer ) ) // If a timer has been configured without a data argument, it can be // converted without regard to the callback argument, since it is unused. @match_timer_function_unused_data@ expression _E; identifier _timer; identifier _callback; @@ ( -setup_timer(&_E->_timer, _callback, 0); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0L); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E->_timer, _callback, 0UL); +timer_setup(&_E->_timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0L); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_E._timer, _callback, 0UL); +timer_setup(&_E._timer, _callback, 0); | -setup_timer(&_timer, _callback, 0); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0L); +timer_setup(&_timer, _callback, 0); | -setup_timer(&_timer, _callback, 0UL); +timer_setup(&_timer, _callback, 0); | -setup_timer(_timer, _callback, 0); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0L); +timer_setup(_timer, _callback, 0); | -setup_timer(_timer, _callback, 0UL); +timer_setup(_timer, _callback, 0); ) @change_callback_unused_data depends on match_timer_function_unused_data@ identifier match_timer_function_unused_data._callback; type _origtype; identifier _origarg; @@ void _callback( -_origtype _origarg +struct timer_list *unused ) { ... when != _origarg } Signed-off-by: Kees Cook <keescook@chromium.org>
2017-10-17 00:43:17 +03:00
timer_setup(&ifx_dev->spi_timer, ifx_spi_timeout, 0);
ifx_dev->modem = pl_data->modem_type;
ifx_dev->use_dma = pl_data->use_dma;
ifx_dev->max_hz = pl_data->max_hz;
/* initialize spi mode, etc */
spi->max_speed_hz = ifx_dev->max_hz;
spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
spi->bits_per_word = spi_bpw;
ret = spi_setup(spi);
if (ret) {
dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
kfree(ifx_dev);
return -ENODEV;
}
/* init swap_buf function according to word width configuration */
if (spi->bits_per_word == 32)
ifx_dev->swap_buf = swap_buf_32;
else if (spi->bits_per_word == 16)
ifx_dev->swap_buf = swap_buf_16;
else
ifx_dev->swap_buf = swap_buf_8;
/* ensure SPI protocol flags are initialized to enable transfer */
ifx_dev->spi_more = 0;
ifx_dev->spi_slave_cts = 0;
/*initialize transfer and dma buffers */
ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
IFX_SPI_TRANSFER_SIZE,
&ifx_dev->tx_bus,
GFP_KERNEL);
if (!ifx_dev->tx_buffer) {
dev_err(&spi->dev, "DMA-TX buffer allocation failed");
ret = -ENOMEM;
goto error_ret;
}
ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
IFX_SPI_TRANSFER_SIZE,
&ifx_dev->rx_bus,
GFP_KERNEL);
if (!ifx_dev->rx_buffer) {
dev_err(&spi->dev, "DMA-RX buffer allocation failed");
ret = -ENOMEM;
goto error_ret;
}
/* initialize waitq for modem reset */
init_waitqueue_head(&ifx_dev->mdm_reset_wait);
spi_set_drvdata(spi, ifx_dev);
tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
(unsigned long)ifx_dev);
set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
/* create our tty port */
ret = ifx_spi_create_port(ifx_dev);
if (ret != 0) {
dev_err(&spi->dev, "create default tty port failed");
goto error_ret;
}
ifx_dev->gpio.reset = pl_data->rst_pmu;
ifx_dev->gpio.po = pl_data->pwr_on;
ifx_dev->gpio.mrdy = pl_data->mrdy;
ifx_dev->gpio.srdy = pl_data->srdy;
ifx_dev->gpio.reset_out = pl_data->rst_out;
dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
/* Configure gpios */
ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
if (ret < 0) {
dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
ifx_dev->gpio.reset);
goto error_ret;
}
ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
ret += gpio_export(ifx_dev->gpio.reset, 1);
if (ret) {
dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
ifx_dev->gpio.reset);
ret = -EBUSY;
goto error_ret2;
}
ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
ret += gpio_direction_output(ifx_dev->gpio.po, 0);
ret += gpio_export(ifx_dev->gpio.po, 1);
if (ret) {
dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
ifx_dev->gpio.po);
ret = -EBUSY;
goto error_ret3;
}
ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
if (ret < 0) {
dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
ifx_dev->gpio.mrdy);
goto error_ret3;
}
ret += gpio_export(ifx_dev->gpio.mrdy, 1);
ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
if (ret) {
dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
ifx_dev->gpio.mrdy);
ret = -EBUSY;
goto error_ret4;
}
ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
if (ret < 0) {
dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
ifx_dev->gpio.srdy);
ret = -EBUSY;
goto error_ret4;
}
ret += gpio_export(ifx_dev->gpio.srdy, 1);
ret += gpio_direction_input(ifx_dev->gpio.srdy);
if (ret) {
dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
ifx_dev->gpio.srdy);
ret = -EBUSY;
goto error_ret5;
}
ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
if (ret < 0) {
dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
ifx_dev->gpio.reset_out);
goto error_ret5;
}
ret += gpio_export(ifx_dev->gpio.reset_out, 1);
ret += gpio_direction_input(ifx_dev->gpio.reset_out);
if (ret) {
dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
ifx_dev->gpio.reset_out);
ret = -EBUSY;
goto error_ret6;
}
ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
ifx_spi_reset_interrupt,
IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
ifx_dev);
if (ret) {
dev_err(&spi->dev, "Unable to get irq %x\n",
gpio_to_irq(ifx_dev->gpio.reset_out));
goto error_ret6;
}
ret = ifx_spi_reset(ifx_dev);
ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
ifx_spi_srdy_interrupt, IRQF_TRIGGER_RISING, DRVNAME,
ifx_dev);
if (ret) {
dev_err(&spi->dev, "Unable to get irq %x",
gpio_to_irq(ifx_dev->gpio.srdy));
goto error_ret7;
}
/* set pm runtime power state and register with power system */
pm_runtime_set_active(&spi->dev);
pm_runtime_enable(&spi->dev);
/* handle case that modem is already signaling SRDY */
/* no outgoing tty open at this point, this just satisfies the
* modem's read and should reset communication properly
*/
srdy = gpio_get_value(ifx_dev->gpio.srdy);
if (srdy) {
mrdy_assert(ifx_dev);
ifx_spi_handle_srdy(ifx_dev);
} else
mrdy_set_low(ifx_dev);
return 0;
error_ret7:
free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
error_ret6:
gpio_free(ifx_dev->gpio.srdy);
error_ret5:
gpio_free(ifx_dev->gpio.mrdy);
error_ret4:
gpio_free(ifx_dev->gpio.reset);
error_ret3:
gpio_free(ifx_dev->gpio.po);
error_ret2:
gpio_free(ifx_dev->gpio.reset_out);
error_ret:
ifx_spi_free_device(ifx_dev);
saved_ifx_dev = NULL;
return ret;
}
/**
* ifx_spi_spi_remove - SPI device was removed
* @spi: SPI device
*
* FIXME: We should be shutting the device down here not in
* the module unload path.
*/
static int ifx_spi_spi_remove(struct spi_device *spi)
{
struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
/* stop activity */
tasklet_kill(&ifx_dev->io_work_tasklet);
pm_runtime_disable(&spi->dev);
/* free irq */
free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), ifx_dev);
free_irq(gpio_to_irq(ifx_dev->gpio.srdy), ifx_dev);
gpio_free(ifx_dev->gpio.srdy);
gpio_free(ifx_dev->gpio.mrdy);
gpio_free(ifx_dev->gpio.reset);
gpio_free(ifx_dev->gpio.po);
gpio_free(ifx_dev->gpio.reset_out);
/* free allocations */
ifx_spi_free_device(ifx_dev);
saved_ifx_dev = NULL;
return 0;
}
/**
* ifx_spi_spi_shutdown - called on SPI shutdown
* @spi: SPI device
*
* No action needs to be taken here
*/
static void ifx_spi_spi_shutdown(struct spi_device *spi)
{
struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
ifx_modem_power_off(ifx_dev);
}
/*
* various suspends and resumes have nothing to do
* no hardware to save state for
*/
/**
* ifx_spi_pm_suspend - suspend modem on system suspend
* @dev: device being suspended
*
* Suspend the modem. No action needed on Intel MID platforms, may
* need extending for other systems.
*/
static int ifx_spi_pm_suspend(struct device *dev)
{
return 0;
}
/**
* ifx_spi_pm_resume - resume modem on system resume
* @dev: device being suspended
*
* Allow the modem to resume. No action needed.
*
* FIXME: do we need to reset anything here ?
*/
static int ifx_spi_pm_resume(struct device *dev)
{
return 0;
}
/**
* ifx_spi_pm_runtime_resume - suspend modem
* @dev: device being suspended
*
* Allow the modem to resume. No action needed.
*/
static int ifx_spi_pm_runtime_resume(struct device *dev)
{
return 0;
}
/**
* ifx_spi_pm_runtime_suspend - suspend modem
* @dev: device being suspended
*
* Allow the modem to suspend and thus suspend to continue up the
* device tree.
*/
static int ifx_spi_pm_runtime_suspend(struct device *dev)
{
return 0;
}
/**
* ifx_spi_pm_runtime_idle - check if modem idle
* @dev: our device
*
* Check conditions and queue runtime suspend if idle.
*/
static int ifx_spi_pm_runtime_idle(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
if (!ifx_dev->power_status)
pm_runtime_suspend(dev);
return 0;
}
static const struct dev_pm_ops ifx_spi_pm = {
.resume = ifx_spi_pm_resume,
.suspend = ifx_spi_pm_suspend,
.runtime_resume = ifx_spi_pm_runtime_resume,
.runtime_suspend = ifx_spi_pm_runtime_suspend,
.runtime_idle = ifx_spi_pm_runtime_idle
};
static const struct spi_device_id ifx_id_table[] = {
{"ifx6160", 0},
{"ifx6260", 0},
{ }
};
MODULE_DEVICE_TABLE(spi, ifx_id_table);
/* spi operations */
static struct spi_driver ifx_spi_driver = {
.driver = {
.name = DRVNAME,
.pm = &ifx_spi_pm,
},
.probe = ifx_spi_spi_probe,
.shutdown = ifx_spi_spi_shutdown,
.remove = ifx_spi_spi_remove,
.id_table = ifx_id_table
};
/**
* ifx_spi_exit - module exit
*
* Unload the module.
*/
static void __exit ifx_spi_exit(void)
{
/* unregister */
spi_unregister_driver(&ifx_spi_driver);
tty_unregister_driver(tty_drv);
put_tty_driver(tty_drv);
unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
}
/**
* ifx_spi_init - module entry point
*
* Initialise the SPI and tty interfaces for the IFX SPI driver
* We need to initialize upper-edge spi driver after the tty
* driver because otherwise the spi probe will race
*/
static int __init ifx_spi_init(void)
{
int result;
tty_drv = alloc_tty_driver(1);
if (!tty_drv) {
pr_err("%s: alloc_tty_driver failed", DRVNAME);
return -ENOMEM;
}
tty_drv->driver_name = DRVNAME;
tty_drv->name = TTYNAME;
tty_drv->minor_start = IFX_SPI_TTY_ID;
tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
tty_drv->subtype = SERIAL_TYPE_NORMAL;
tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
tty_drv->init_termios = tty_std_termios;
tty_set_operations(tty_drv, &ifx_spi_serial_ops);
result = tty_register_driver(tty_drv);
if (result) {
pr_err("%s: tty_register_driver failed(%d)",
DRVNAME, result);
goto err_free_tty;
}
result = spi_register_driver(&ifx_spi_driver);
if (result) {
pr_err("%s: spi_register_driver failed(%d)",
DRVNAME, result);
goto err_unreg_tty;
}
result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
if (result) {
pr_err("%s: register ifx modem reboot notifier failed(%d)",
DRVNAME, result);
goto err_unreg_spi;
}
return 0;
err_unreg_spi:
spi_unregister_driver(&ifx_spi_driver);
err_unreg_tty:
tty_unregister_driver(tty_drv);
err_free_tty:
put_tty_driver(tty_drv);
return result;
}
module_init(ifx_spi_init);
module_exit(ifx_spi_exit);
MODULE_AUTHOR("Intel");
MODULE_DESCRIPTION("IFX6x60 spi driver");
MODULE_LICENSE("GPL");
MODULE_INFO(Version, "0.1-IFX6x60");