678 строки
18 KiB
C
678 строки
18 KiB
C
|
/*
|
||
|
* linux/fs/mbcache.c
|
||
|
* (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Filesystem Meta Information Block Cache (mbcache)
|
||
|
*
|
||
|
* The mbcache caches blocks of block devices that need to be located
|
||
|
* by their device/block number, as well as by other criteria (such
|
||
|
* as the block's contents).
|
||
|
*
|
||
|
* There can only be one cache entry in a cache per device and block number.
|
||
|
* Additional indexes need not be unique in this sense. The number of
|
||
|
* additional indexes (=other criteria) can be hardwired at compile time
|
||
|
* or specified at cache create time.
|
||
|
*
|
||
|
* Each cache entry is of fixed size. An entry may be `valid' or `invalid'
|
||
|
* in the cache. A valid entry is in the main hash tables of the cache,
|
||
|
* and may also be in the lru list. An invalid entry is not in any hashes
|
||
|
* or lists.
|
||
|
*
|
||
|
* A valid cache entry is only in the lru list if no handles refer to it.
|
||
|
* Invalid cache entries will be freed when the last handle to the cache
|
||
|
* entry is released. Entries that cannot be freed immediately are put
|
||
|
* back on the lru list.
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
|
||
|
#include <linux/hash.h>
|
||
|
#include <linux/fs.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/mbcache.h>
|
||
|
|
||
|
|
||
|
#ifdef MB_CACHE_DEBUG
|
||
|
# define mb_debug(f...) do { \
|
||
|
printk(KERN_DEBUG f); \
|
||
|
printk("\n"); \
|
||
|
} while (0)
|
||
|
#define mb_assert(c) do { if (!(c)) \
|
||
|
printk(KERN_ERR "assertion " #c " failed\n"); \
|
||
|
} while(0)
|
||
|
#else
|
||
|
# define mb_debug(f...) do { } while(0)
|
||
|
# define mb_assert(c) do { } while(0)
|
||
|
#endif
|
||
|
#define mb_error(f...) do { \
|
||
|
printk(KERN_ERR f); \
|
||
|
printk("\n"); \
|
||
|
} while(0)
|
||
|
|
||
|
#define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
|
||
|
|
||
|
DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
|
||
|
|
||
|
MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
|
||
|
MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
|
||
|
MODULE_LICENSE("GPL");
|
||
|
|
||
|
EXPORT_SYMBOL(mb_cache_create);
|
||
|
EXPORT_SYMBOL(mb_cache_shrink);
|
||
|
EXPORT_SYMBOL(mb_cache_destroy);
|
||
|
EXPORT_SYMBOL(mb_cache_entry_alloc);
|
||
|
EXPORT_SYMBOL(mb_cache_entry_insert);
|
||
|
EXPORT_SYMBOL(mb_cache_entry_release);
|
||
|
EXPORT_SYMBOL(mb_cache_entry_free);
|
||
|
EXPORT_SYMBOL(mb_cache_entry_get);
|
||
|
#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
|
||
|
EXPORT_SYMBOL(mb_cache_entry_find_first);
|
||
|
EXPORT_SYMBOL(mb_cache_entry_find_next);
|
||
|
#endif
|
||
|
|
||
|
struct mb_cache {
|
||
|
struct list_head c_cache_list;
|
||
|
const char *c_name;
|
||
|
struct mb_cache_op c_op;
|
||
|
atomic_t c_entry_count;
|
||
|
int c_bucket_bits;
|
||
|
#ifndef MB_CACHE_INDEXES_COUNT
|
||
|
int c_indexes_count;
|
||
|
#endif
|
||
|
kmem_cache_t *c_entry_cache;
|
||
|
struct list_head *c_block_hash;
|
||
|
struct list_head *c_indexes_hash[0];
|
||
|
};
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Global data: list of all mbcache's, lru list, and a spinlock for
|
||
|
* accessing cache data structures on SMP machines. The lru list is
|
||
|
* global across all mbcaches.
|
||
|
*/
|
||
|
|
||
|
static LIST_HEAD(mb_cache_list);
|
||
|
static LIST_HEAD(mb_cache_lru_list);
|
||
|
static DEFINE_SPINLOCK(mb_cache_spinlock);
|
||
|
static struct shrinker *mb_shrinker;
|
||
|
|
||
|
static inline int
|
||
|
mb_cache_indexes(struct mb_cache *cache)
|
||
|
{
|
||
|
#ifdef MB_CACHE_INDEXES_COUNT
|
||
|
return MB_CACHE_INDEXES_COUNT;
|
||
|
#else
|
||
|
return cache->c_indexes_count;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* What the mbcache registers as to get shrunk dynamically.
|
||
|
*/
|
||
|
|
||
|
static int mb_cache_shrink_fn(int nr_to_scan, unsigned int gfp_mask);
|
||
|
|
||
|
|
||
|
static inline int
|
||
|
__mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
|
||
|
{
|
||
|
return !list_empty(&ce->e_block_list);
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
__mb_cache_entry_unhash(struct mb_cache_entry *ce)
|
||
|
{
|
||
|
int n;
|
||
|
|
||
|
if (__mb_cache_entry_is_hashed(ce)) {
|
||
|
list_del_init(&ce->e_block_list);
|
||
|
for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
|
||
|
list_del(&ce->e_indexes[n].o_list);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
__mb_cache_entry_forget(struct mb_cache_entry *ce, int gfp_mask)
|
||
|
{
|
||
|
struct mb_cache *cache = ce->e_cache;
|
||
|
|
||
|
mb_assert(!(ce->e_used || ce->e_queued));
|
||
|
if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
|
||
|
/* free failed -- put back on the lru list
|
||
|
for freeing later. */
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_add(&ce->e_lru_list, &mb_cache_lru_list);
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
} else {
|
||
|
kmem_cache_free(cache->c_entry_cache, ce);
|
||
|
atomic_dec(&cache->c_entry_count);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
__mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
|
||
|
{
|
||
|
/* Wake up all processes queuing for this cache entry. */
|
||
|
if (ce->e_queued)
|
||
|
wake_up_all(&mb_cache_queue);
|
||
|
if (ce->e_used >= MB_CACHE_WRITER)
|
||
|
ce->e_used -= MB_CACHE_WRITER;
|
||
|
ce->e_used--;
|
||
|
if (!(ce->e_used || ce->e_queued)) {
|
||
|
if (!__mb_cache_entry_is_hashed(ce))
|
||
|
goto forget;
|
||
|
mb_assert(list_empty(&ce->e_lru_list));
|
||
|
list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
|
||
|
}
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
return;
|
||
|
forget:
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
__mb_cache_entry_forget(ce, GFP_KERNEL);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_shrink_fn() memory pressure callback
|
||
|
*
|
||
|
* This function is called by the kernel memory management when memory
|
||
|
* gets low.
|
||
|
*
|
||
|
* @nr_to_scan: Number of objects to scan
|
||
|
* @gfp_mask: (ignored)
|
||
|
*
|
||
|
* Returns the number of objects which are present in the cache.
|
||
|
*/
|
||
|
static int
|
||
|
mb_cache_shrink_fn(int nr_to_scan, unsigned int gfp_mask)
|
||
|
{
|
||
|
LIST_HEAD(free_list);
|
||
|
struct list_head *l, *ltmp;
|
||
|
int count = 0;
|
||
|
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_for_each(l, &mb_cache_list) {
|
||
|
struct mb_cache *cache =
|
||
|
list_entry(l, struct mb_cache, c_cache_list);
|
||
|
mb_debug("cache %s (%d)", cache->c_name,
|
||
|
atomic_read(&cache->c_entry_count));
|
||
|
count += atomic_read(&cache->c_entry_count);
|
||
|
}
|
||
|
mb_debug("trying to free %d entries", nr_to_scan);
|
||
|
if (nr_to_scan == 0) {
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
goto out;
|
||
|
}
|
||
|
while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
|
||
|
struct mb_cache_entry *ce =
|
||
|
list_entry(mb_cache_lru_list.next,
|
||
|
struct mb_cache_entry, e_lru_list);
|
||
|
list_move_tail(&ce->e_lru_list, &free_list);
|
||
|
__mb_cache_entry_unhash(ce);
|
||
|
}
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
list_for_each_safe(l, ltmp, &free_list) {
|
||
|
__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
|
||
|
e_lru_list), gfp_mask);
|
||
|
}
|
||
|
out:
|
||
|
return (count / 100) * sysctl_vfs_cache_pressure;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_create() create a new cache
|
||
|
*
|
||
|
* All entries in one cache are equal size. Cache entries may be from
|
||
|
* multiple devices. If this is the first mbcache created, registers
|
||
|
* the cache with kernel memory management. Returns NULL if no more
|
||
|
* memory was available.
|
||
|
*
|
||
|
* @name: name of the cache (informal)
|
||
|
* @cache_op: contains the callback called when freeing a cache entry
|
||
|
* @entry_size: The size of a cache entry, including
|
||
|
* struct mb_cache_entry
|
||
|
* @indexes_count: number of additional indexes in the cache. Must equal
|
||
|
* MB_CACHE_INDEXES_COUNT if the number of indexes is
|
||
|
* hardwired.
|
||
|
* @bucket_bits: log2(number of hash buckets)
|
||
|
*/
|
||
|
struct mb_cache *
|
||
|
mb_cache_create(const char *name, struct mb_cache_op *cache_op,
|
||
|
size_t entry_size, int indexes_count, int bucket_bits)
|
||
|
{
|
||
|
int m=0, n, bucket_count = 1 << bucket_bits;
|
||
|
struct mb_cache *cache = NULL;
|
||
|
|
||
|
if(entry_size < sizeof(struct mb_cache_entry) +
|
||
|
indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
|
||
|
return NULL;
|
||
|
|
||
|
cache = kmalloc(sizeof(struct mb_cache) +
|
||
|
indexes_count * sizeof(struct list_head), GFP_KERNEL);
|
||
|
if (!cache)
|
||
|
goto fail;
|
||
|
cache->c_name = name;
|
||
|
cache->c_op.free = NULL;
|
||
|
if (cache_op)
|
||
|
cache->c_op.free = cache_op->free;
|
||
|
atomic_set(&cache->c_entry_count, 0);
|
||
|
cache->c_bucket_bits = bucket_bits;
|
||
|
#ifdef MB_CACHE_INDEXES_COUNT
|
||
|
mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
|
||
|
#else
|
||
|
cache->c_indexes_count = indexes_count;
|
||
|
#endif
|
||
|
cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
|
||
|
GFP_KERNEL);
|
||
|
if (!cache->c_block_hash)
|
||
|
goto fail;
|
||
|
for (n=0; n<bucket_count; n++)
|
||
|
INIT_LIST_HEAD(&cache->c_block_hash[n]);
|
||
|
for (m=0; m<indexes_count; m++) {
|
||
|
cache->c_indexes_hash[m] = kmalloc(bucket_count *
|
||
|
sizeof(struct list_head),
|
||
|
GFP_KERNEL);
|
||
|
if (!cache->c_indexes_hash[m])
|
||
|
goto fail;
|
||
|
for (n=0; n<bucket_count; n++)
|
||
|
INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
|
||
|
}
|
||
|
cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
|
||
|
SLAB_RECLAIM_ACCOUNT, NULL, NULL);
|
||
|
if (!cache->c_entry_cache)
|
||
|
goto fail;
|
||
|
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_add(&cache->c_cache_list, &mb_cache_list);
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
return cache;
|
||
|
|
||
|
fail:
|
||
|
if (cache) {
|
||
|
while (--m >= 0)
|
||
|
kfree(cache->c_indexes_hash[m]);
|
||
|
if (cache->c_block_hash)
|
||
|
kfree(cache->c_block_hash);
|
||
|
kfree(cache);
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_shrink()
|
||
|
*
|
||
|
* Removes all cache entires of a device from the cache. All cache entries
|
||
|
* currently in use cannot be freed, and thus remain in the cache. All others
|
||
|
* are freed.
|
||
|
*
|
||
|
* @cache: which cache to shrink
|
||
|
* @bdev: which device's cache entries to shrink
|
||
|
*/
|
||
|
void
|
||
|
mb_cache_shrink(struct mb_cache *cache, struct block_device *bdev)
|
||
|
{
|
||
|
LIST_HEAD(free_list);
|
||
|
struct list_head *l, *ltmp;
|
||
|
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
|
||
|
struct mb_cache_entry *ce =
|
||
|
list_entry(l, struct mb_cache_entry, e_lru_list);
|
||
|
if (ce->e_bdev == bdev) {
|
||
|
list_move_tail(&ce->e_lru_list, &free_list);
|
||
|
__mb_cache_entry_unhash(ce);
|
||
|
}
|
||
|
}
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
list_for_each_safe(l, ltmp, &free_list) {
|
||
|
__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
|
||
|
e_lru_list), GFP_KERNEL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_destroy()
|
||
|
*
|
||
|
* Shrinks the cache to its minimum possible size (hopefully 0 entries),
|
||
|
* and then destroys it. If this was the last mbcache, un-registers the
|
||
|
* mbcache from kernel memory management.
|
||
|
*/
|
||
|
void
|
||
|
mb_cache_destroy(struct mb_cache *cache)
|
||
|
{
|
||
|
LIST_HEAD(free_list);
|
||
|
struct list_head *l, *ltmp;
|
||
|
int n;
|
||
|
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
|
||
|
struct mb_cache_entry *ce =
|
||
|
list_entry(l, struct mb_cache_entry, e_lru_list);
|
||
|
if (ce->e_cache == cache) {
|
||
|
list_move_tail(&ce->e_lru_list, &free_list);
|
||
|
__mb_cache_entry_unhash(ce);
|
||
|
}
|
||
|
}
|
||
|
list_del(&cache->c_cache_list);
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
|
||
|
list_for_each_safe(l, ltmp, &free_list) {
|
||
|
__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
|
||
|
e_lru_list), GFP_KERNEL);
|
||
|
}
|
||
|
|
||
|
if (atomic_read(&cache->c_entry_count) > 0) {
|
||
|
mb_error("cache %s: %d orphaned entries",
|
||
|
cache->c_name,
|
||
|
atomic_read(&cache->c_entry_count));
|
||
|
}
|
||
|
|
||
|
kmem_cache_destroy(cache->c_entry_cache);
|
||
|
|
||
|
for (n=0; n < mb_cache_indexes(cache); n++)
|
||
|
kfree(cache->c_indexes_hash[n]);
|
||
|
kfree(cache->c_block_hash);
|
||
|
kfree(cache);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_alloc()
|
||
|
*
|
||
|
* Allocates a new cache entry. The new entry will not be valid initially,
|
||
|
* and thus cannot be looked up yet. It should be filled with data, and
|
||
|
* then inserted into the cache using mb_cache_entry_insert(). Returns NULL
|
||
|
* if no more memory was available.
|
||
|
*/
|
||
|
struct mb_cache_entry *
|
||
|
mb_cache_entry_alloc(struct mb_cache *cache)
|
||
|
{
|
||
|
struct mb_cache_entry *ce;
|
||
|
|
||
|
atomic_inc(&cache->c_entry_count);
|
||
|
ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL);
|
||
|
if (ce) {
|
||
|
INIT_LIST_HEAD(&ce->e_lru_list);
|
||
|
INIT_LIST_HEAD(&ce->e_block_list);
|
||
|
ce->e_cache = cache;
|
||
|
ce->e_used = 1 + MB_CACHE_WRITER;
|
||
|
ce->e_queued = 0;
|
||
|
}
|
||
|
return ce;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_insert()
|
||
|
*
|
||
|
* Inserts an entry that was allocated using mb_cache_entry_alloc() into
|
||
|
* the cache. After this, the cache entry can be looked up, but is not yet
|
||
|
* in the lru list as the caller still holds a handle to it. Returns 0 on
|
||
|
* success, or -EBUSY if a cache entry for that device + inode exists
|
||
|
* already (this may happen after a failed lookup, but when another process
|
||
|
* has inserted the same cache entry in the meantime).
|
||
|
*
|
||
|
* @bdev: device the cache entry belongs to
|
||
|
* @block: block number
|
||
|
* @keys: array of additional keys. There must be indexes_count entries
|
||
|
* in the array (as specified when creating the cache).
|
||
|
*/
|
||
|
int
|
||
|
mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
|
||
|
sector_t block, unsigned int keys[])
|
||
|
{
|
||
|
struct mb_cache *cache = ce->e_cache;
|
||
|
unsigned int bucket;
|
||
|
struct list_head *l;
|
||
|
int error = -EBUSY, n;
|
||
|
|
||
|
bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
|
||
|
cache->c_bucket_bits);
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_for_each_prev(l, &cache->c_block_hash[bucket]) {
|
||
|
struct mb_cache_entry *ce =
|
||
|
list_entry(l, struct mb_cache_entry, e_block_list);
|
||
|
if (ce->e_bdev == bdev && ce->e_block == block)
|
||
|
goto out;
|
||
|
}
|
||
|
__mb_cache_entry_unhash(ce);
|
||
|
ce->e_bdev = bdev;
|
||
|
ce->e_block = block;
|
||
|
list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
|
||
|
for (n=0; n<mb_cache_indexes(cache); n++) {
|
||
|
ce->e_indexes[n].o_key = keys[n];
|
||
|
bucket = hash_long(keys[n], cache->c_bucket_bits);
|
||
|
list_add(&ce->e_indexes[n].o_list,
|
||
|
&cache->c_indexes_hash[n][bucket]);
|
||
|
}
|
||
|
error = 0;
|
||
|
out:
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
return error;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_release()
|
||
|
*
|
||
|
* Release a handle to a cache entry. When the last handle to a cache entry
|
||
|
* is released it is either freed (if it is invalid) or otherwise inserted
|
||
|
* in to the lru list.
|
||
|
*/
|
||
|
void
|
||
|
mb_cache_entry_release(struct mb_cache_entry *ce)
|
||
|
{
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
__mb_cache_entry_release_unlock(ce);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_free()
|
||
|
*
|
||
|
* This is equivalent to the sequence mb_cache_entry_takeout() --
|
||
|
* mb_cache_entry_release().
|
||
|
*/
|
||
|
void
|
||
|
mb_cache_entry_free(struct mb_cache_entry *ce)
|
||
|
{
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
mb_assert(list_empty(&ce->e_lru_list));
|
||
|
__mb_cache_entry_unhash(ce);
|
||
|
__mb_cache_entry_release_unlock(ce);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_get()
|
||
|
*
|
||
|
* Get a cache entry by device / block number. (There can only be one entry
|
||
|
* in the cache per device and block.) Returns NULL if no such cache entry
|
||
|
* exists. The returned cache entry is locked for exclusive access ("single
|
||
|
* writer").
|
||
|
*/
|
||
|
struct mb_cache_entry *
|
||
|
mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
|
||
|
sector_t block)
|
||
|
{
|
||
|
unsigned int bucket;
|
||
|
struct list_head *l;
|
||
|
struct mb_cache_entry *ce;
|
||
|
|
||
|
bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
|
||
|
cache->c_bucket_bits);
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
list_for_each(l, &cache->c_block_hash[bucket]) {
|
||
|
ce = list_entry(l, struct mb_cache_entry, e_block_list);
|
||
|
if (ce->e_bdev == bdev && ce->e_block == block) {
|
||
|
DEFINE_WAIT(wait);
|
||
|
|
||
|
if (!list_empty(&ce->e_lru_list))
|
||
|
list_del_init(&ce->e_lru_list);
|
||
|
|
||
|
while (ce->e_used > 0) {
|
||
|
ce->e_queued++;
|
||
|
prepare_to_wait(&mb_cache_queue, &wait,
|
||
|
TASK_UNINTERRUPTIBLE);
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
schedule();
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
ce->e_queued--;
|
||
|
}
|
||
|
finish_wait(&mb_cache_queue, &wait);
|
||
|
ce->e_used += 1 + MB_CACHE_WRITER;
|
||
|
|
||
|
if (!__mb_cache_entry_is_hashed(ce)) {
|
||
|
__mb_cache_entry_release_unlock(ce);
|
||
|
return NULL;
|
||
|
}
|
||
|
goto cleanup;
|
||
|
}
|
||
|
}
|
||
|
ce = NULL;
|
||
|
|
||
|
cleanup:
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
return ce;
|
||
|
}
|
||
|
|
||
|
#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
|
||
|
|
||
|
static struct mb_cache_entry *
|
||
|
__mb_cache_entry_find(struct list_head *l, struct list_head *head,
|
||
|
int index, struct block_device *bdev, unsigned int key)
|
||
|
{
|
||
|
while (l != head) {
|
||
|
struct mb_cache_entry *ce =
|
||
|
list_entry(l, struct mb_cache_entry,
|
||
|
e_indexes[index].o_list);
|
||
|
if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
|
||
|
DEFINE_WAIT(wait);
|
||
|
|
||
|
if (!list_empty(&ce->e_lru_list))
|
||
|
list_del_init(&ce->e_lru_list);
|
||
|
|
||
|
/* Incrementing before holding the lock gives readers
|
||
|
priority over writers. */
|
||
|
ce->e_used++;
|
||
|
while (ce->e_used >= MB_CACHE_WRITER) {
|
||
|
ce->e_queued++;
|
||
|
prepare_to_wait(&mb_cache_queue, &wait,
|
||
|
TASK_UNINTERRUPTIBLE);
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
schedule();
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
ce->e_queued--;
|
||
|
}
|
||
|
finish_wait(&mb_cache_queue, &wait);
|
||
|
|
||
|
if (!__mb_cache_entry_is_hashed(ce)) {
|
||
|
__mb_cache_entry_release_unlock(ce);
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
return ERR_PTR(-EAGAIN);
|
||
|
}
|
||
|
return ce;
|
||
|
}
|
||
|
l = l->next;
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_find_first()
|
||
|
*
|
||
|
* Find the first cache entry on a given device with a certain key in
|
||
|
* an additional index. Additonal matches can be found with
|
||
|
* mb_cache_entry_find_next(). Returns NULL if no match was found. The
|
||
|
* returned cache entry is locked for shared access ("multiple readers").
|
||
|
*
|
||
|
* @cache: the cache to search
|
||
|
* @index: the number of the additonal index to search (0<=index<indexes_count)
|
||
|
* @bdev: the device the cache entry should belong to
|
||
|
* @key: the key in the index
|
||
|
*/
|
||
|
struct mb_cache_entry *
|
||
|
mb_cache_entry_find_first(struct mb_cache *cache, int index,
|
||
|
struct block_device *bdev, unsigned int key)
|
||
|
{
|
||
|
unsigned int bucket = hash_long(key, cache->c_bucket_bits);
|
||
|
struct list_head *l;
|
||
|
struct mb_cache_entry *ce;
|
||
|
|
||
|
mb_assert(index < mb_cache_indexes(cache));
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
l = cache->c_indexes_hash[index][bucket].next;
|
||
|
ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
|
||
|
index, bdev, key);
|
||
|
spin_unlock(&mb_cache_spinlock);
|
||
|
return ce;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* mb_cache_entry_find_next()
|
||
|
*
|
||
|
* Find the next cache entry on a given device with a certain key in an
|
||
|
* additional index. Returns NULL if no match could be found. The previous
|
||
|
* entry is atomatically released, so that mb_cache_entry_find_next() can
|
||
|
* be called like this:
|
||
|
*
|
||
|
* entry = mb_cache_entry_find_first();
|
||
|
* while (entry) {
|
||
|
* ...
|
||
|
* entry = mb_cache_entry_find_next(entry, ...);
|
||
|
* }
|
||
|
*
|
||
|
* @prev: The previous match
|
||
|
* @index: the number of the additonal index to search (0<=index<indexes_count)
|
||
|
* @bdev: the device the cache entry should belong to
|
||
|
* @key: the key in the index
|
||
|
*/
|
||
|
struct mb_cache_entry *
|
||
|
mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
|
||
|
struct block_device *bdev, unsigned int key)
|
||
|
{
|
||
|
struct mb_cache *cache = prev->e_cache;
|
||
|
unsigned int bucket = hash_long(key, cache->c_bucket_bits);
|
||
|
struct list_head *l;
|
||
|
struct mb_cache_entry *ce;
|
||
|
|
||
|
mb_assert(index < mb_cache_indexes(cache));
|
||
|
spin_lock(&mb_cache_spinlock);
|
||
|
l = prev->e_indexes[index].o_list.next;
|
||
|
ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
|
||
|
index, bdev, key);
|
||
|
__mb_cache_entry_release_unlock(prev);
|
||
|
return ce;
|
||
|
}
|
||
|
|
||
|
#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
|
||
|
|
||
|
static int __init init_mbcache(void)
|
||
|
{
|
||
|
mb_shrinker = set_shrinker(DEFAULT_SEEKS, mb_cache_shrink_fn);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void __exit exit_mbcache(void)
|
||
|
{
|
||
|
remove_shrinker(mb_shrinker);
|
||
|
}
|
||
|
|
||
|
module_init(init_mbcache)
|
||
|
module_exit(exit_mbcache)
|
||
|
|