WSL2-Linux-Kernel/fs/nfs/nfs4_fs.h

548 строки
19 KiB
C
Исходник Обычный вид История

/*
* linux/fs/nfs/nfs4_fs.h
*
* Copyright (C) 2005 Trond Myklebust
*
* NFSv4-specific filesystem definitions and declarations
*/
#ifndef __LINUX_FS_NFS_NFS4_FS_H
#define __LINUX_FS_NFS_NFS4_FS_H
#if defined(CONFIG_NFS_V4_2)
#define NFS4_MAX_MINOR_VERSION 2
#elif defined(CONFIG_NFS_V4_1)
#define NFS4_MAX_MINOR_VERSION 1
#else
#define NFS4_MAX_MINOR_VERSION 0
#endif
#if IS_ENABLED(CONFIG_NFS_V4)
#define NFS4_MAX_LOOP_ON_RECOVER (10)
#include <linux/seqlock.h>
struct idmap;
enum nfs4_client_state {
NFS4CLNT_MANAGER_RUNNING = 0,
NFS4CLNT_CHECK_LEASE,
NFS4CLNT_LEASE_EXPIRED,
NFS4CLNT_RECLAIM_REBOOT,
NFS4CLNT_RECLAIM_NOGRACE,
NFS4CLNT_DELEGRETURN,
NFS4CLNT_SESSION_RESET,
NFS4CLNT_LEASE_CONFIRM,
NFS4CLNT_SERVER_SCOPE_MISMATCH,
NFS4CLNT_PURGE_STATE,
NFS4CLNT_BIND_CONN_TO_SESSION,
NFS4CLNT_MOVED,
NFS4CLNT_LEASE_MOVED,
NFS4CLNT_DELEGATION_EXPIRED,
};
#define NFS4_RENEW_TIMEOUT 0x01
#define NFS4_RENEW_DELEGATION_CB 0x02
struct nfs_seqid_counter;
struct nfs4_minor_version_ops {
u32 minor_version;
unsigned init_caps;
int (*init_client)(struct nfs_client *);
void (*shutdown_client)(struct nfs_client *);
bool (*match_stateid)(const nfs4_stateid *,
const nfs4_stateid *);
int (*find_root_sec)(struct nfs_server *, struct nfs_fh *,
struct nfs_fsinfo *);
void (*free_lock_state)(struct nfs_server *,
struct nfs4_lock_state *);
int (*test_and_free_expired)(struct nfs_server *,
nfs4_stateid *, struct rpc_cred *);
struct nfs_seqid *
(*alloc_seqid)(struct nfs_seqid_counter *, gfp_t);
int (*session_trunk)(struct rpc_clnt *, struct rpc_xprt *, void *);
const struct rpc_call_ops *call_sync_ops;
const struct nfs4_state_recovery_ops *reboot_recovery_ops;
const struct nfs4_state_recovery_ops *nograce_recovery_ops;
const struct nfs4_state_maintenance_ops *state_renewal_ops;
const struct nfs4_mig_recovery_ops *mig_recovery_ops;
};
#define NFS_SEQID_CONFIRMED 1
struct nfs_seqid_counter {
ktime_t create_time;
int owner_id;
int flags;
u32 counter;
spinlock_t lock; /* Protects the list */
struct list_head list; /* Defines sequence of RPC calls */
struct rpc_wait_queue wait; /* RPC call delay queue */
};
struct nfs_seqid {
struct nfs_seqid_counter *sequence;
struct list_head list;
struct rpc_task *task;
};
static inline void nfs_confirm_seqid(struct nfs_seqid_counter *seqid, int status)
{
if (seqid_mutating_err(-status))
seqid->flags |= NFS_SEQID_CONFIRMED;
}
/*
* NFS4 state_owners and lock_owners are simply labels for ordered
* sequences of RPC calls. Their sole purpose is to provide once-only
* semantics by allowing the server to identify replayed requests.
*/
struct nfs4_state_owner {
struct nfs_server *so_server;
NFS: Cache state owners after files are closed Servers have a finite amount of memory to store NFSv4 open and lock owners. Moreover, servers may have a difficult time determining when they can reap their state owner table, thanks to gray areas in the NFSv4 protocol specification. Thus clients should be careful to reuse state owners when possible. Currently Linux is not too careful. When a user has closed all her files on one mount point, the state owner's reference count goes to zero, and it is released. The next OPEN allocates a new one. A workload that serially opens and closes files can run through a large number of open owners this way. When a state owner's reference count goes to zero, slap it onto a free list for that nfs_server, with an expiry time. Garbage collect before looking for a state owner. This makes state owners for active users available for re-use. Now that there can be unused state owners remaining at umount time, purge the state owner free list when a server is destroyed. Also be sure not to reclaim unused state owners during state recovery. This change has benefits for the client as well. For some workloads, this approach drops the number of OPEN_CONFIRM calls from the same as the number of OPEN calls, down to just one. This reduces wire traffic and thus open(2) latency. Before this patch, untarring a kernel source tarball shows the OPEN_CONFIRM call counter steadily increasing through the test. With the patch, the OPEN_CONFIRM count remains at 1 throughout the entire untar. As long as the expiry time is kept short, I don't think garbage collection should be terribly expensive, although it does bounce the clp->cl_lock around a bit. [ At some point we should rationalize the use of the nfs_server ->destroy method. ] Signed-off-by: Chuck Lever <chuck.lever@oracle.com> [Trond: Fixed a garbage collection race and a few efficiency issues] Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-12-07 01:13:48 +04:00
struct list_head so_lru;
unsigned long so_expires;
struct rb_node so_server_node;
struct rpc_cred *so_cred; /* Associated cred */
spinlock_t so_lock;
atomic_t so_count;
unsigned long so_flags;
struct list_head so_states;
struct nfs_seqid_counter so_seqid;
seqcount_t so_reclaim_seqcount;
struct mutex so_delegreturn_mutex;
};
enum {
NFS_OWNER_RECLAIM_REBOOT,
NFS_OWNER_RECLAIM_NOGRACE
};
#define NFS_LOCK_NEW 0
#define NFS_LOCK_RECLAIM 1
#define NFS_LOCK_EXPIRED 2
/*
* struct nfs4_state maintains the client-side state for a given
* (state_owner,inode) tuple (OPEN) or state_owner (LOCK).
*
* OPEN:
* In order to know when to OPEN_DOWNGRADE or CLOSE the state on the server,
* we need to know how many files are open for reading or writing on a
* given inode. This information too is stored here.
*
* LOCK: one nfs4_state (LOCK) to hold the lock stateid nfs4_state(OPEN)
*/
struct nfs4_lock_state {
nfs: revert "nfs4: queue free_lock_state job submission to nfsiod" This reverts commit 49a4bda22e186c4d0eb07f4a36b5b1a378f9398d. Christoph reported an oops due to the above commit: generic/089 242s ...[ 2187.041239] general protection fault: 0000 [#1] SMP [ 2187.042899] Modules linked in: [ 2187.044000] CPU: 0 PID: 11913 Comm: kworker/0:1 Not tainted 3.16.0-rc6+ #1151 [ 2187.044287] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 2187.044287] Workqueue: nfsiod free_lock_state_work [ 2187.044287] task: ffff880072b50cd0 ti: ffff88007a4ec000 task.ti: ffff88007a4ec000 [ 2187.044287] RIP: 0010:[<ffffffff81361ca6>] [<ffffffff81361ca6>] free_lock_state_work+0x16/0x30 [ 2187.044287] RSP: 0018:ffff88007a4efd58 EFLAGS: 00010296 [ 2187.044287] RAX: 6b6b6b6b6b6b6b6b RBX: ffff88007a947ac0 RCX: 8000000000000000 [ 2187.044287] RDX: ffffffff826af9e0 RSI: ffff88007b093c00 RDI: ffff88007b093db8 [ 2187.044287] RBP: ffff88007a4efd58 R08: ffffffff832d3e10 R09: 000001c40efc0000 [ 2187.044287] R10: 0000000000000000 R11: 0000000000059e30 R12: ffff88007fc13240 [ 2187.044287] R13: ffff88007fc18b00 R14: ffff88007b093db8 R15: 0000000000000000 [ 2187.044287] FS: 0000000000000000(0000) GS:ffff88007fc00000(0000) knlGS:0000000000000000 [ 2187.044287] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2187.044287] CR2: 00007f93ec33fb80 CR3: 0000000079dc2000 CR4: 00000000000006f0 [ 2187.044287] Stack: [ 2187.044287] ffff88007a4efdd8 ffffffff810cc877 ffffffff810cc80d ffff88007fc13258 [ 2187.044287] 000000007a947af0 0000000000000000 ffffffff8353ccc8 ffffffff82b6f3d0 [ 2187.044287] 0000000000000000 ffffffff82267679 ffff88007a4efdd8 ffff88007fc13240 [ 2187.044287] Call Trace: [ 2187.044287] [<ffffffff810cc877>] process_one_work+0x1c7/0x490 [ 2187.044287] [<ffffffff810cc80d>] ? process_one_work+0x15d/0x490 [ 2187.044287] [<ffffffff810cd569>] worker_thread+0x119/0x4f0 [ 2187.044287] [<ffffffff810fbbad>] ? trace_hardirqs_on+0xd/0x10 [ 2187.044287] [<ffffffff810cd450>] ? init_pwq+0x190/0x190 [ 2187.044287] [<ffffffff810d3c6f>] kthread+0xdf/0x100 [ 2187.044287] [<ffffffff810d3b90>] ? __init_kthread_worker+0x70/0x70 [ 2187.044287] [<ffffffff81d9873c>] ret_from_fork+0x7c/0xb0 [ 2187.044287] [<ffffffff810d3b90>] ? __init_kthread_worker+0x70/0x70 [ 2187.044287] Code: 0f 1f 44 00 00 31 c0 5d c3 66 66 66 2e 0f 1f 84 00 00 00 00 00 55 48 8d b7 48 fe ff ff 48 8b 87 58 fe ff ff 48 89 e5 48 8b 40 30 <48> 8b 00 48 8b 10 48 89 c7 48 8b 92 90 03 00 00 ff 52 28 5d c3 [ 2187.044287] RIP [<ffffffff81361ca6>] free_lock_state_work+0x16/0x30 [ 2187.044287] RSP <ffff88007a4efd58> [ 2187.103626] ---[ end trace 0f11326d28e5d8fa ]--- The original reason for this patch was because the fl_release_private operation couldn't sleep. With commit ed9814d85810 (locks: defer freeing locks in locks_delete_lock until after i_lock has been dropped), this is no longer a problem so we can revert this patch. Reported-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2014-09-08 16:26:01 +04:00
struct list_head ls_locks; /* Other lock stateids */
struct nfs4_state * ls_state; /* Pointer to open state */
#define NFS_LOCK_INITIALIZED 0
NFSv4: Don't try to recover NFSv4 locks when they are lost. When an NFSv4 client loses contact with the server it can lose any locks that it holds. Currently when it reconnects to the server it simply tries to reclaim those locks. This might succeed even though some other client has held and released a lock in the mean time. So the first client might think the file is unchanged, but it isn't. This isn't good. If, when recovery happens, the locks cannot be claimed because some other client still holds the lock, then we get a message in the kernel logs, but the client can still write. So two clients can both think they have a lock and can both write at the same time. This is equally not good. There was a patch a while ago http://comments.gmane.org/gmane.linux.nfs/41917 which tried to address some of this, but it didn't seem to go anywhere. That patch would also send a signal to the process. That might be useful but for now this patch just causes writes to fail. For NFSv4 (unlike v2/v3) there is a strong link between the lock and the write request so we can fairly easily fail any IO of the lock is gone. While some applications might not expect this, it is still safer than allowing the write to succeed. Because this is a fairly big change in behaviour a module parameter, "recover_locks", is introduced which defaults to true (the current behaviour) but can be set to "false" to tell the client not to try to recover things that were lost. Signed-off-by: NeilBrown <neilb@suse.de> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2013-09-04 11:04:49 +04:00
#define NFS_LOCK_LOST 1
nfs: revert "nfs4: queue free_lock_state job submission to nfsiod" This reverts commit 49a4bda22e186c4d0eb07f4a36b5b1a378f9398d. Christoph reported an oops due to the above commit: generic/089 242s ...[ 2187.041239] general protection fault: 0000 [#1] SMP [ 2187.042899] Modules linked in: [ 2187.044000] CPU: 0 PID: 11913 Comm: kworker/0:1 Not tainted 3.16.0-rc6+ #1151 [ 2187.044287] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 2187.044287] Workqueue: nfsiod free_lock_state_work [ 2187.044287] task: ffff880072b50cd0 ti: ffff88007a4ec000 task.ti: ffff88007a4ec000 [ 2187.044287] RIP: 0010:[<ffffffff81361ca6>] [<ffffffff81361ca6>] free_lock_state_work+0x16/0x30 [ 2187.044287] RSP: 0018:ffff88007a4efd58 EFLAGS: 00010296 [ 2187.044287] RAX: 6b6b6b6b6b6b6b6b RBX: ffff88007a947ac0 RCX: 8000000000000000 [ 2187.044287] RDX: ffffffff826af9e0 RSI: ffff88007b093c00 RDI: ffff88007b093db8 [ 2187.044287] RBP: ffff88007a4efd58 R08: ffffffff832d3e10 R09: 000001c40efc0000 [ 2187.044287] R10: 0000000000000000 R11: 0000000000059e30 R12: ffff88007fc13240 [ 2187.044287] R13: ffff88007fc18b00 R14: ffff88007b093db8 R15: 0000000000000000 [ 2187.044287] FS: 0000000000000000(0000) GS:ffff88007fc00000(0000) knlGS:0000000000000000 [ 2187.044287] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2187.044287] CR2: 00007f93ec33fb80 CR3: 0000000079dc2000 CR4: 00000000000006f0 [ 2187.044287] Stack: [ 2187.044287] ffff88007a4efdd8 ffffffff810cc877 ffffffff810cc80d ffff88007fc13258 [ 2187.044287] 000000007a947af0 0000000000000000 ffffffff8353ccc8 ffffffff82b6f3d0 [ 2187.044287] 0000000000000000 ffffffff82267679 ffff88007a4efdd8 ffff88007fc13240 [ 2187.044287] Call Trace: [ 2187.044287] [<ffffffff810cc877>] process_one_work+0x1c7/0x490 [ 2187.044287] [<ffffffff810cc80d>] ? process_one_work+0x15d/0x490 [ 2187.044287] [<ffffffff810cd569>] worker_thread+0x119/0x4f0 [ 2187.044287] [<ffffffff810fbbad>] ? trace_hardirqs_on+0xd/0x10 [ 2187.044287] [<ffffffff810cd450>] ? init_pwq+0x190/0x190 [ 2187.044287] [<ffffffff810d3c6f>] kthread+0xdf/0x100 [ 2187.044287] [<ffffffff810d3b90>] ? __init_kthread_worker+0x70/0x70 [ 2187.044287] [<ffffffff81d9873c>] ret_from_fork+0x7c/0xb0 [ 2187.044287] [<ffffffff810d3b90>] ? __init_kthread_worker+0x70/0x70 [ 2187.044287] Code: 0f 1f 44 00 00 31 c0 5d c3 66 66 66 2e 0f 1f 84 00 00 00 00 00 55 48 8d b7 48 fe ff ff 48 8b 87 58 fe ff ff 48 89 e5 48 8b 40 30 <48> 8b 00 48 8b 10 48 89 c7 48 8b 92 90 03 00 00 ff 52 28 5d c3 [ 2187.044287] RIP [<ffffffff81361ca6>] free_lock_state_work+0x16/0x30 [ 2187.044287] RSP <ffff88007a4efd58> [ 2187.103626] ---[ end trace 0f11326d28e5d8fa ]--- The original reason for this patch was because the fl_release_private operation couldn't sleep. With commit ed9814d85810 (locks: defer freeing locks in locks_delete_lock until after i_lock has been dropped), this is no longer a problem so we can revert this patch. Reported-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2014-09-08 16:26:01 +04:00
unsigned long ls_flags;
struct nfs_seqid_counter ls_seqid;
nfs: revert "nfs4: queue free_lock_state job submission to nfsiod" This reverts commit 49a4bda22e186c4d0eb07f4a36b5b1a378f9398d. Christoph reported an oops due to the above commit: generic/089 242s ...[ 2187.041239] general protection fault: 0000 [#1] SMP [ 2187.042899] Modules linked in: [ 2187.044000] CPU: 0 PID: 11913 Comm: kworker/0:1 Not tainted 3.16.0-rc6+ #1151 [ 2187.044287] Hardware name: Bochs Bochs, BIOS Bochs 01/01/2007 [ 2187.044287] Workqueue: nfsiod free_lock_state_work [ 2187.044287] task: ffff880072b50cd0 ti: ffff88007a4ec000 task.ti: ffff88007a4ec000 [ 2187.044287] RIP: 0010:[<ffffffff81361ca6>] [<ffffffff81361ca6>] free_lock_state_work+0x16/0x30 [ 2187.044287] RSP: 0018:ffff88007a4efd58 EFLAGS: 00010296 [ 2187.044287] RAX: 6b6b6b6b6b6b6b6b RBX: ffff88007a947ac0 RCX: 8000000000000000 [ 2187.044287] RDX: ffffffff826af9e0 RSI: ffff88007b093c00 RDI: ffff88007b093db8 [ 2187.044287] RBP: ffff88007a4efd58 R08: ffffffff832d3e10 R09: 000001c40efc0000 [ 2187.044287] R10: 0000000000000000 R11: 0000000000059e30 R12: ffff88007fc13240 [ 2187.044287] R13: ffff88007fc18b00 R14: ffff88007b093db8 R15: 0000000000000000 [ 2187.044287] FS: 0000000000000000(0000) GS:ffff88007fc00000(0000) knlGS:0000000000000000 [ 2187.044287] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 2187.044287] CR2: 00007f93ec33fb80 CR3: 0000000079dc2000 CR4: 00000000000006f0 [ 2187.044287] Stack: [ 2187.044287] ffff88007a4efdd8 ffffffff810cc877 ffffffff810cc80d ffff88007fc13258 [ 2187.044287] 000000007a947af0 0000000000000000 ffffffff8353ccc8 ffffffff82b6f3d0 [ 2187.044287] 0000000000000000 ffffffff82267679 ffff88007a4efdd8 ffff88007fc13240 [ 2187.044287] Call Trace: [ 2187.044287] [<ffffffff810cc877>] process_one_work+0x1c7/0x490 [ 2187.044287] [<ffffffff810cc80d>] ? process_one_work+0x15d/0x490 [ 2187.044287] [<ffffffff810cd569>] worker_thread+0x119/0x4f0 [ 2187.044287] [<ffffffff810fbbad>] ? trace_hardirqs_on+0xd/0x10 [ 2187.044287] [<ffffffff810cd450>] ? init_pwq+0x190/0x190 [ 2187.044287] [<ffffffff810d3c6f>] kthread+0xdf/0x100 [ 2187.044287] [<ffffffff810d3b90>] ? __init_kthread_worker+0x70/0x70 [ 2187.044287] [<ffffffff81d9873c>] ret_from_fork+0x7c/0xb0 [ 2187.044287] [<ffffffff810d3b90>] ? __init_kthread_worker+0x70/0x70 [ 2187.044287] Code: 0f 1f 44 00 00 31 c0 5d c3 66 66 66 2e 0f 1f 84 00 00 00 00 00 55 48 8d b7 48 fe ff ff 48 8b 87 58 fe ff ff 48 89 e5 48 8b 40 30 <48> 8b 00 48 8b 10 48 89 c7 48 8b 92 90 03 00 00 ff 52 28 5d c3 [ 2187.044287] RIP [<ffffffff81361ca6>] free_lock_state_work+0x16/0x30 [ 2187.044287] RSP <ffff88007a4efd58> [ 2187.103626] ---[ end trace 0f11326d28e5d8fa ]--- The original reason for this patch was because the fl_release_private operation couldn't sleep. With commit ed9814d85810 (locks: defer freeing locks in locks_delete_lock until after i_lock has been dropped), this is no longer a problem so we can revert this patch. Reported-by: Christoph Hellwig <hch@infradead.org> Signed-off-by: Jeff Layton <jlayton@primarydata.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Tested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
2014-09-08 16:26:01 +04:00
nfs4_stateid ls_stateid;
atomic_t ls_count;
fl_owner_t ls_owner;
};
/* bits for nfs4_state->flags */
enum {
LK_STATE_IN_USE,
NFS_DELEGATED_STATE, /* Current stateid is delegation */
NFS_OPEN_STATE, /* OPEN stateid is set */
NFS_O_RDONLY_STATE, /* OPEN stateid has read-only state */
NFS_O_WRONLY_STATE, /* OPEN stateid has write-only state */
NFS_O_RDWR_STATE, /* OPEN stateid has read/write state */
NFS_STATE_RECLAIM_REBOOT, /* OPEN stateid server rebooted */
NFS_STATE_RECLAIM_NOGRACE, /* OPEN stateid needs to recover state */
NFS_STATE_POSIX_LOCKS, /* Posix locks are supported */
NFS_STATE_RECOVERY_FAILED, /* OPEN stateid state recovery failed */
NFS_STATE_MAY_NOTIFY_LOCK, /* server may CB_NOTIFY_LOCK */
};
struct nfs4_state {
struct list_head open_states; /* List of states for the same state_owner */
struct list_head inode_states; /* List of states for the same inode */
struct list_head lock_states; /* List of subservient lock stateids */
struct nfs4_state_owner *owner; /* Pointer to the open owner */
struct inode *inode; /* Pointer to the inode */
unsigned long flags; /* Do we hold any locks? */
spinlock_t state_lock; /* Protects the lock_states list */
seqlock_t seqlock; /* Protects the stateid/open_stateid */
nfs4_stateid stateid; /* Current stateid: may be delegation */
nfs4_stateid open_stateid; /* OPEN stateid */
/* The following 3 fields are protected by owner->so_lock */
unsigned int n_rdonly; /* Number of read-only references */
unsigned int n_wronly; /* Number of write-only references */
unsigned int n_rdwr; /* Number of read/write references */
fmode_t state; /* State on the server (R,W, or RW) */
atomic_t count;
};
struct nfs4_exception {
struct nfs4_state *state;
struct inode *inode;
nfs4_stateid *stateid;
long timeout;
unsigned char delay : 1,
recovering : 1,
retry : 1;
};
struct nfs4_state_recovery_ops {
int owner_flag_bit;
int state_flag_bit;
int (*recover_open)(struct nfs4_state_owner *, struct nfs4_state *);
int (*recover_lock)(struct nfs4_state *, struct file_lock *);
int (*establish_clid)(struct nfs_client *, struct rpc_cred *);
int (*reclaim_complete)(struct nfs_client *, struct rpc_cred *);
NFS: Discover NFSv4 server trunking when mounting "Server trunking" is a fancy named for a multi-homed NFS server. Trunking might occur if a client sends NFS requests for a single workload to multiple network interfaces on the same server. There are some implications for NFSv4 state management that make it useful for a client to know if a single NFSv4 server instance is multi-homed. (Note this is only a consideration for NFSv4, not for legacy versions of NFS, which are stateless). If a client cares about server trunking, no NFSv4 operations can proceed until that client determines who it is talking to. Thus server IP trunking discovery must be done when the client first encounters an unfamiliar server IP address. The nfs_get_client() function walks the nfs_client_list and matches on server IP address. The outcome of that walk tells us immediately if we have an unfamiliar server IP address. It invokes nfs_init_client() in this case. Thus, nfs4_init_client() is a good spot to perform trunking discovery. Discovery requires a client to establish a fresh client ID, so our client will now send SETCLIENTID or EXCHANGE_ID as the first NFS operation after a successful ping, rather than waiting for an application to perform an operation that requires NFSv4 state. The exact process for detecting trunking is different for NFSv4.0 and NFSv4.1, so a minorversion-specific init_client callout method is introduced. CLID_INUSE recovery is important for the trunking discovery process. CLID_INUSE is a sign the server recognizes the client's nfs_client_id4 id string, but the client is using the wrong principal this time for the SETCLIENTID operation. The SETCLIENTID must be retried with a series of different principals until one works, and then the rest of trunking discovery can proceed. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2012-09-15 01:24:32 +04:00
int (*detect_trunking)(struct nfs_client *, struct nfs_client **,
struct rpc_cred *);
};
struct nfs4_add_xprt_data {
struct nfs_client *clp;
struct rpc_cred *cred;
};
struct nfs4_state_maintenance_ops {
int (*sched_state_renewal)(struct nfs_client *, struct rpc_cred *, unsigned);
struct rpc_cred * (*get_state_renewal_cred_locked)(struct nfs_client *);
int (*renew_lease)(struct nfs_client *, struct rpc_cred *);
};
struct nfs4_mig_recovery_ops {
NFS: Add method to retrieve fs_locations during migration recovery The nfs4_proc_fs_locations() function is invoked during referral processing to perform a GETATTR(fs_locations) on an object's parent directory in order to discover the target of the referral. It performs a LOOKUP in the compound, so the client needs to know the parent's file handle a priori. Unfortunately this function is not adequate for handling migration recovery. We need to probe fs_locations information on an FSID, but there's no parent directory available for many operations that can return NFS4ERR_MOVED. Another subtlety: recovering from NFS4ERR_LEASE_MOVED is a process of walking over a list of known FSIDs that reside on the server, and probing whether they have migrated. Once the server has detected that the client has probed all migrated file systems, it stops returning NFS4ERR_LEASE_MOVED. A minor version zero server needs to know what client ID is requesting fs_locations information so it can clear the flag that forces it to continue returning NFS4ERR_LEASE_MOVED. This flag is set per client ID and per FSID. However, the client ID is not an argument of either the PUTFH or GETATTR operations. Later minor versions have client ID information embedded in the compound's SEQUENCE operation. Therefore, by convention, minor version zero clients send a RENEW operation in the same compound as the GETATTR(fs_locations), since RENEW's one argument is a clientid4. This allows a minor version zero server to identify correctly the client that is probing for a migration. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2013-10-17 22:12:50 +04:00
int (*get_locations)(struct inode *, struct nfs4_fs_locations *,
struct page *, struct rpc_cred *);
int (*fsid_present)(struct inode *, struct rpc_cred *);
};
extern const struct dentry_operations nfs4_dentry_operations;
/* dir.c */
int nfs_atomic_open(struct inode *, struct dentry *, struct file *,
unsigned, umode_t, int *);
/* super.c */
extern struct file_system_type nfs4_fs_type;
/* nfs4namespace.c */
struct rpc_clnt *nfs4_negotiate_security(struct rpc_clnt *, struct inode *,
const struct qstr *);
struct vfsmount *nfs4_submount(struct nfs_server *, struct dentry *,
struct nfs_fh *, struct nfs_fattr *);
int nfs4_replace_transport(struct nfs_server *server,
const struct nfs4_fs_locations *locations);
/* nfs4proc.c */
extern int nfs4_handle_exception(struct nfs_server *, int, struct nfs4_exception *);
extern int nfs4_call_sync(struct rpc_clnt *, struct nfs_server *,
struct rpc_message *, struct nfs4_sequence_args *,
struct nfs4_sequence_res *, int);
extern void nfs4_init_sequence(struct nfs4_sequence_args *, struct nfs4_sequence_res *, int);
extern int nfs4_proc_setclientid(struct nfs_client *, u32, unsigned short, struct rpc_cred *, struct nfs4_setclientid_res *);
extern int nfs4_proc_setclientid_confirm(struct nfs_client *, struct nfs4_setclientid_res *arg, struct rpc_cred *);
extern int nfs4_proc_get_rootfh(struct nfs_server *, struct nfs_fh *, struct nfs_fsinfo *, bool);
extern int nfs4_proc_bind_conn_to_session(struct nfs_client *, struct rpc_cred *cred);
extern int nfs4_proc_exchange_id(struct nfs_client *clp, struct rpc_cred *cred);
extern int nfs4_destroy_clientid(struct nfs_client *clp);
extern int nfs4_init_clientid(struct nfs_client *, struct rpc_cred *);
extern int nfs41_init_clientid(struct nfs_client *, struct rpc_cred *);
extern int nfs4_do_close(struct nfs4_state *state, gfp_t gfp_mask, int wait);
extern int nfs4_server_capabilities(struct nfs_server *server, struct nfs_fh *fhandle);
extern int nfs4_proc_fs_locations(struct rpc_clnt *, struct inode *, const struct qstr *,
struct nfs4_fs_locations *, struct page *);
NFS: Add method to retrieve fs_locations during migration recovery The nfs4_proc_fs_locations() function is invoked during referral processing to perform a GETATTR(fs_locations) on an object's parent directory in order to discover the target of the referral. It performs a LOOKUP in the compound, so the client needs to know the parent's file handle a priori. Unfortunately this function is not adequate for handling migration recovery. We need to probe fs_locations information on an FSID, but there's no parent directory available for many operations that can return NFS4ERR_MOVED. Another subtlety: recovering from NFS4ERR_LEASE_MOVED is a process of walking over a list of known FSIDs that reside on the server, and probing whether they have migrated. Once the server has detected that the client has probed all migrated file systems, it stops returning NFS4ERR_LEASE_MOVED. A minor version zero server needs to know what client ID is requesting fs_locations information so it can clear the flag that forces it to continue returning NFS4ERR_LEASE_MOVED. This flag is set per client ID and per FSID. However, the client ID is not an argument of either the PUTFH or GETATTR operations. Later minor versions have client ID information embedded in the compound's SEQUENCE operation. Therefore, by convention, minor version zero clients send a RENEW operation in the same compound as the GETATTR(fs_locations), since RENEW's one argument is a clientid4. This allows a minor version zero server to identify correctly the client that is probing for a migration. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2013-10-17 22:12:50 +04:00
extern int nfs4_proc_get_locations(struct inode *, struct nfs4_fs_locations *,
struct page *page, struct rpc_cred *);
extern int nfs4_proc_fsid_present(struct inode *, struct rpc_cred *);
extern struct rpc_clnt *nfs4_proc_lookup_mountpoint(struct inode *, const struct qstr *,
struct nfs_fh *, struct nfs_fattr *);
extern int nfs4_proc_secinfo(struct inode *, const struct qstr *, struct nfs4_secinfo_flavors *);
extern const struct xattr_handler *nfs4_xattr_handlers[];
extern int nfs4_set_rw_stateid(nfs4_stateid *stateid,
const struct nfs_open_context *ctx,
const struct nfs_lock_context *l_ctx,
fmode_t fmode);
nfs41: sessions client infrastructure NFSv4.1 Sessions basic data types, initialization, and destruction. The session is always associated with a struct nfs_client that holds the exchange_id results. Signed-off-by: Rahul Iyer <iyer@netapp.com> Signed-off-by: Andy Adamson<andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [remove extraneous rpc_clnt pointer, use the struct nfs_client cl_rpcclient. remove the rpc_clnt parameter from nfs4 nfs4_init_session] Signed-off-by: Andy Adamson<andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Use the presence of a session to determine behaviour instead of the minorversion number.] Signed-off-by: Andy Adamson <andros@netapp.com> [constified nfs4_has_session's struct nfs_client parameter] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Rename nfs4_put_session() to nfs4_destroy_session() and call it from nfs4_free_client() not nfs4_free_server(). Also get rid of nfs4_get_session() and the ref_count in nfs4_session struct as keeping track of nfs_client should be sufficient] Signed-off-by: Alexandros Batsakis <Alexandros.Batsakis@netapp.com> [nfs41: pass rsize and wsize into nfs4_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> [separated out removal of rpc_clnt parameter from nfs4_init_session ot a patch of its own] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Pass the nfs_client pointer into nfs4_alloc_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: don't assign to session->clp->cl_session in nfs4_destroy_session] [nfs41: fixup nfs4_clear_client_minor_version] [introduce nfs4_clear_client_minor_version() in this patch] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Refactor nfs4_init_session] Moved session allocation into nfs4_init_client_minor_version, called from nfs4_init_client. Leave rwise and wsize initialization in nfs4_init_session, called from nfs4_init_server. Reverted moving of nfs_fsid definition to nfs_fs_sb.h Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: Move NFS4_MAX_SLOT_TABLE define from under CONFIG_NFS_V4_1] [Fix comile error when CONFIG_NFS_V4_1 is not set.] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [moved nfs4_init_slot_table definition to "create_session operation"] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: alloc session with GFP_KERNEL] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-04-01 17:21:53 +04:00
#if defined(CONFIG_NFS_V4_1)
extern int nfs41_sequence_done(struct rpc_task *, struct nfs4_sequence_res *);
extern int nfs4_proc_create_session(struct nfs_client *, struct rpc_cred *);
extern int nfs4_proc_destroy_session(struct nfs4_session *, struct rpc_cred *);
extern int nfs4_proc_get_lease_time(struct nfs_client *clp,
struct nfs_fsinfo *fsinfo);
extern int nfs4_proc_layoutcommit(struct nfs4_layoutcommit_data *data,
bool sync);
extern int nfs4_detect_session_trunking(struct nfs_client *clp,
struct nfs41_exchange_id_res *res, struct rpc_xprt *xprt);
static inline bool
is_ds_only_client(struct nfs_client *clp)
{
return (clp->cl_exchange_flags & EXCHGID4_FLAG_MASK_PNFS) ==
EXCHGID4_FLAG_USE_PNFS_DS;
}
static inline bool
is_ds_client(struct nfs_client *clp)
{
return clp->cl_exchange_flags & EXCHGID4_FLAG_USE_PNFS_DS;
}
static inline bool
_nfs4_state_protect(struct nfs_client *clp, unsigned long sp4_mode,
struct rpc_clnt **clntp, struct rpc_message *msg)
{
struct rpc_cred *newcred = NULL;
rpc_authflavor_t flavor;
if (test_bit(sp4_mode, &clp->cl_sp4_flags)) {
spin_lock(&clp->cl_lock);
if (clp->cl_machine_cred != NULL)
/* don't call get_rpccred on the machine cred -
* a reference will be held for life of clp */
newcred = clp->cl_machine_cred;
spin_unlock(&clp->cl_lock);
msg->rpc_cred = newcred;
flavor = clp->cl_rpcclient->cl_auth->au_flavor;
WARN_ON_ONCE(flavor != RPC_AUTH_GSS_KRB5I &&
flavor != RPC_AUTH_GSS_KRB5P);
*clntp = clp->cl_rpcclient;
return true;
}
return false;
}
/*
* Function responsible for determining if an rpc_message should use the
* machine cred under SP4_MACH_CRED and if so switching the credential and
* authflavor (using the nfs_client's rpc_clnt which will be krb5i/p).
* Should be called before rpc_call_sync/rpc_call_async.
*/
static inline void
nfs4_state_protect(struct nfs_client *clp, unsigned long sp4_mode,
struct rpc_clnt **clntp, struct rpc_message *msg)
{
_nfs4_state_protect(clp, sp4_mode, clntp, msg);
}
/*
* Special wrapper to nfs4_state_protect for write.
* If WRITE can use machine cred but COMMIT cannot, make sure all writes
* that use machine cred use NFS_FILE_SYNC.
*/
static inline void
nfs4_state_protect_write(struct nfs_client *clp, struct rpc_clnt **clntp,
struct rpc_message *msg, struct nfs_pgio_header *hdr)
{
if (_nfs4_state_protect(clp, NFS_SP4_MACH_CRED_WRITE, clntp, msg) &&
!test_bit(NFS_SP4_MACH_CRED_COMMIT, &clp->cl_sp4_flags))
hdr->args.stable = NFS_FILE_SYNC;
}
nfs41: setup_sequence method Allocate a slot in the session slot table and set the sequence op arguments. Called at the rpc prepare stage. Add a status to nfs41_sequence_res, initialize it to one so that we catch rpc level failures which do not go through decode_sequence which sets the new status field. Note that upon an rpc level failure, we don't know if the server processed the sequence operation or not. Proceed as if the server did process the sequence operation. Signed-off-by: Rahul Iyer <iyer@netapp.com> [nfs41: sequence args use slotid] [nfs41: find slot return slotid] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: remove SEQ4_STATUS_USE_TK_STATUS] As per 11-14-08 review [move extern declaration from nfs41: sequence setup/done support] [removed sa_session definition, changed sa_cache_this into a u8 to reduce footprint] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: rpc_sleep_on slot_tbl_waitq must be called under slot_tbl_lock] Otherwise there's a race (we've hit) with nfs4_free_slot where nfs41_setup_sequence sees a full slot table, unlocks slot_tbl_lock, nfs4_free_slots happen concurrently and call rpc_wake_up_next where there's nobody to wake up yet, context goes back to nfs41_setup_sequence which goes to sleep when the slot table is actually empty now and there's no-one to wake it up anymore. Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-04-01 17:22:15 +04:00
#else /* CONFIG_NFS_v4_1 */
static inline bool
is_ds_only_client(struct nfs_client *clp)
{
return false;
}
static inline bool
is_ds_client(struct nfs_client *clp)
{
return false;
}
static inline void
nfs4_state_protect(struct nfs_client *clp, unsigned long sp4_flags,
struct rpc_clnt **clntp, struct rpc_message *msg)
{
}
static inline void
nfs4_state_protect_write(struct nfs_client *clp, struct rpc_clnt **clntp,
struct rpc_message *msg, struct nfs_pgio_header *hdr)
{
}
nfs41: sessions client infrastructure NFSv4.1 Sessions basic data types, initialization, and destruction. The session is always associated with a struct nfs_client that holds the exchange_id results. Signed-off-by: Rahul Iyer <iyer@netapp.com> Signed-off-by: Andy Adamson<andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [remove extraneous rpc_clnt pointer, use the struct nfs_client cl_rpcclient. remove the rpc_clnt parameter from nfs4 nfs4_init_session] Signed-off-by: Andy Adamson<andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Use the presence of a session to determine behaviour instead of the minorversion number.] Signed-off-by: Andy Adamson <andros@netapp.com> [constified nfs4_has_session's struct nfs_client parameter] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Rename nfs4_put_session() to nfs4_destroy_session() and call it from nfs4_free_client() not nfs4_free_server(). Also get rid of nfs4_get_session() and the ref_count in nfs4_session struct as keeping track of nfs_client should be sufficient] Signed-off-by: Alexandros Batsakis <Alexandros.Batsakis@netapp.com> [nfs41: pass rsize and wsize into nfs4_init_session] Signed-off-by: Andy Adamson <andros@netapp.com> [separated out removal of rpc_clnt parameter from nfs4_init_session ot a patch of its own] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Pass the nfs_client pointer into nfs4_alloc_session] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: don't assign to session->clp->cl_session in nfs4_destroy_session] [nfs41: fixup nfs4_clear_client_minor_version] [introduce nfs4_clear_client_minor_version() in this patch] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [Refactor nfs4_init_session] Moved session allocation into nfs4_init_client_minor_version, called from nfs4_init_client. Leave rwise and wsize initialization in nfs4_init_session, called from nfs4_init_server. Reverted moving of nfs_fsid definition to nfs_fs_sb.h Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: Move NFS4_MAX_SLOT_TABLE define from under CONFIG_NFS_V4_1] [Fix comile error when CONFIG_NFS_V4_1 is not set.] Signed-off-by: Andy Adamson <andros@netapp.com> Signed-off-by: Benny Halevy <bhalevy@panasas.com> [moved nfs4_init_slot_table definition to "create_session operation"] Signed-off-by: Benny Halevy <bhalevy@panasas.com> [nfs41: alloc session with GFP_KERNEL] Signed-off-by: Benny Halevy <bhalevy@panasas.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2009-04-01 17:21:53 +04:00
#endif /* CONFIG_NFS_V4_1 */
extern const struct nfs4_minor_version_ops *nfs_v4_minor_ops[];
extern const u32 nfs4_fattr_bitmap[3];
extern const u32 nfs4_statfs_bitmap[3];
extern const u32 nfs4_pathconf_bitmap[3];
extern const u32 nfs4_fsinfo_bitmap[3];
extern const u32 nfs4_fs_locations_bitmap[3];
void nfs40_shutdown_client(struct nfs_client *);
void nfs41_shutdown_client(struct nfs_client *);
int nfs40_init_client(struct nfs_client *);
int nfs41_init_client(struct nfs_client *);
void nfs4_free_client(struct nfs_client *);
struct nfs_client *nfs4_alloc_client(const struct nfs_client_initdata *);
/* nfs4renewd.c */
extern void nfs4_schedule_state_renewal(struct nfs_client *);
extern void nfs4_renewd_prepare_shutdown(struct nfs_server *);
extern void nfs4_kill_renewd(struct nfs_client *);
2006-11-22 17:55:48 +03:00
extern void nfs4_renew_state(struct work_struct *);
extern void nfs4_set_lease_period(struct nfs_client *clp,
unsigned long lease,
unsigned long lastrenewed);
/* nfs4state.c */
struct rpc_cred *nfs4_get_clid_cred(struct nfs_client *clp);
struct rpc_cred *nfs4_get_machine_cred_locked(struct nfs_client *clp);
struct rpc_cred *nfs4_get_renew_cred_locked(struct nfs_client *clp);
NFS: Discover NFSv4 server trunking when mounting "Server trunking" is a fancy named for a multi-homed NFS server. Trunking might occur if a client sends NFS requests for a single workload to multiple network interfaces on the same server. There are some implications for NFSv4 state management that make it useful for a client to know if a single NFSv4 server instance is multi-homed. (Note this is only a consideration for NFSv4, not for legacy versions of NFS, which are stateless). If a client cares about server trunking, no NFSv4 operations can proceed until that client determines who it is talking to. Thus server IP trunking discovery must be done when the client first encounters an unfamiliar server IP address. The nfs_get_client() function walks the nfs_client_list and matches on server IP address. The outcome of that walk tells us immediately if we have an unfamiliar server IP address. It invokes nfs_init_client() in this case. Thus, nfs4_init_client() is a good spot to perform trunking discovery. Discovery requires a client to establish a fresh client ID, so our client will now send SETCLIENTID or EXCHANGE_ID as the first NFS operation after a successful ping, rather than waiting for an application to perform an operation that requires NFSv4 state. The exact process for detecting trunking is different for NFSv4.0 and NFSv4.1, so a minorversion-specific init_client callout method is introduced. CLID_INUSE recovery is important for the trunking discovery process. CLID_INUSE is a sign the server recognizes the client's nfs_client_id4 id string, but the client is using the wrong principal this time for the SETCLIENTID operation. The SETCLIENTID must be retried with a series of different principals until one works, and then the rest of trunking discovery can proceed. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2012-09-15 01:24:32 +04:00
int nfs4_discover_server_trunking(struct nfs_client *clp,
struct nfs_client **);
int nfs40_discover_server_trunking(struct nfs_client *clp,
struct nfs_client **, struct rpc_cred *);
#if defined(CONFIG_NFS_V4_1)
NFS: Discover NFSv4 server trunking when mounting "Server trunking" is a fancy named for a multi-homed NFS server. Trunking might occur if a client sends NFS requests for a single workload to multiple network interfaces on the same server. There are some implications for NFSv4 state management that make it useful for a client to know if a single NFSv4 server instance is multi-homed. (Note this is only a consideration for NFSv4, not for legacy versions of NFS, which are stateless). If a client cares about server trunking, no NFSv4 operations can proceed until that client determines who it is talking to. Thus server IP trunking discovery must be done when the client first encounters an unfamiliar server IP address. The nfs_get_client() function walks the nfs_client_list and matches on server IP address. The outcome of that walk tells us immediately if we have an unfamiliar server IP address. It invokes nfs_init_client() in this case. Thus, nfs4_init_client() is a good spot to perform trunking discovery. Discovery requires a client to establish a fresh client ID, so our client will now send SETCLIENTID or EXCHANGE_ID as the first NFS operation after a successful ping, rather than waiting for an application to perform an operation that requires NFSv4 state. The exact process for detecting trunking is different for NFSv4.0 and NFSv4.1, so a minorversion-specific init_client callout method is introduced. CLID_INUSE recovery is important for the trunking discovery process. CLID_INUSE is a sign the server recognizes the client's nfs_client_id4 id string, but the client is using the wrong principal this time for the SETCLIENTID operation. The SETCLIENTID must be retried with a series of different principals until one works, and then the rest of trunking discovery can proceed. Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2012-09-15 01:24:32 +04:00
int nfs41_discover_server_trunking(struct nfs_client *clp,
struct nfs_client **, struct rpc_cred *);
extern void nfs4_schedule_session_recovery(struct nfs4_session *, int);
extern void nfs41_notify_server(struct nfs_client *);
#else
static inline void nfs4_schedule_session_recovery(struct nfs4_session *session, int err)
{
}
#endif /* CONFIG_NFS_V4_1 */
extern struct nfs4_state_owner *nfs4_get_state_owner(struct nfs_server *, struct rpc_cred *, gfp_t);
extern void nfs4_put_state_owner(struct nfs4_state_owner *);
NFS: Cache state owners after files are closed Servers have a finite amount of memory to store NFSv4 open and lock owners. Moreover, servers may have a difficult time determining when they can reap their state owner table, thanks to gray areas in the NFSv4 protocol specification. Thus clients should be careful to reuse state owners when possible. Currently Linux is not too careful. When a user has closed all her files on one mount point, the state owner's reference count goes to zero, and it is released. The next OPEN allocates a new one. A workload that serially opens and closes files can run through a large number of open owners this way. When a state owner's reference count goes to zero, slap it onto a free list for that nfs_server, with an expiry time. Garbage collect before looking for a state owner. This makes state owners for active users available for re-use. Now that there can be unused state owners remaining at umount time, purge the state owner free list when a server is destroyed. Also be sure not to reclaim unused state owners during state recovery. This change has benefits for the client as well. For some workloads, this approach drops the number of OPEN_CONFIRM calls from the same as the number of OPEN calls, down to just one. This reduces wire traffic and thus open(2) latency. Before this patch, untarring a kernel source tarball shows the OPEN_CONFIRM call counter steadily increasing through the test. With the patch, the OPEN_CONFIRM count remains at 1 throughout the entire untar. As long as the expiry time is kept short, I don't think garbage collection should be terribly expensive, although it does bounce the clp->cl_lock around a bit. [ At some point we should rationalize the use of the nfs_server ->destroy method. ] Signed-off-by: Chuck Lever <chuck.lever@oracle.com> [Trond: Fixed a garbage collection race and a few efficiency issues] Signed-off-by: Trond Myklebust <Trond.Myklebust@netapp.com>
2011-12-07 01:13:48 +04:00
extern void nfs4_purge_state_owners(struct nfs_server *);
extern struct nfs4_state * nfs4_get_open_state(struct inode *, struct nfs4_state_owner *);
extern void nfs4_put_open_state(struct nfs4_state *);
extern void nfs4_close_state(struct nfs4_state *, fmode_t);
extern void nfs4_close_sync(struct nfs4_state *, fmode_t);
extern void nfs4_state_set_mode_locked(struct nfs4_state *, fmode_t);
extern void nfs_inode_find_state_and_recover(struct inode *inode,
const nfs4_stateid *stateid);
extern int nfs4_state_mark_reclaim_nograce(struct nfs_client *, struct nfs4_state *);
extern void nfs4_schedule_lease_recovery(struct nfs_client *);
extern int nfs4_wait_clnt_recover(struct nfs_client *clp);
extern int nfs4_client_recover_expired_lease(struct nfs_client *clp);
extern void nfs4_schedule_state_manager(struct nfs_client *);
extern void nfs4_schedule_path_down_recovery(struct nfs_client *clp);
extern int nfs4_schedule_stateid_recovery(const struct nfs_server *, struct nfs4_state *);
extern int nfs4_schedule_migration_recovery(const struct nfs_server *);
extern void nfs4_schedule_lease_moved_recovery(struct nfs_client *);
extern void nfs41_handle_sequence_flag_errors(struct nfs_client *clp, u32 flags, bool);
extern void nfs41_handle_server_scope(struct nfs_client *,
struct nfs41_server_scope **);
extern void nfs4_put_lock_state(struct nfs4_lock_state *lsp);
extern int nfs4_set_lock_state(struct nfs4_state *state, struct file_lock *fl);
extern int nfs4_select_rw_stateid(struct nfs4_state *, fmode_t,
const struct nfs_lock_context *, nfs4_stateid *,
struct rpc_cred **);
extern struct nfs_seqid *nfs_alloc_seqid(struct nfs_seqid_counter *counter, gfp_t gfp_mask);
extern int nfs_wait_on_sequence(struct nfs_seqid *seqid, struct rpc_task *task);
extern void nfs_increment_open_seqid(int status, struct nfs_seqid *seqid);
extern void nfs_increment_lock_seqid(int status, struct nfs_seqid *seqid);
extern void nfs_release_seqid(struct nfs_seqid *seqid);
extern void nfs_free_seqid(struct nfs_seqid *seqid);
extern int nfs4_setup_sequence(const struct nfs_client *client,
struct nfs4_sequence_args *args,
struct nfs4_sequence_res *res,
struct rpc_task *task);
extern int nfs4_sequence_done(struct rpc_task *task,
struct nfs4_sequence_res *res);
extern void nfs4_free_lock_state(struct nfs_server *server, struct nfs4_lock_state *lsp);
extern const nfs4_stateid zero_stateid;
/* nfs4super.c */
struct nfs_mount_info;
extern struct nfs_subversion nfs_v4;
struct dentry *nfs4_try_mount(int, const char *, struct nfs_mount_info *, struct nfs_subversion *);
extern bool nfs4_disable_idmapping;
extern unsigned short max_session_slots;
extern unsigned short max_session_cb_slots;
extern unsigned short send_implementation_id;
extern bool recover_lost_locks;
#define NFS4_CLIENT_ID_UNIQ_LEN (64)
extern char nfs4_client_id_uniquifier[NFS4_CLIENT_ID_UNIQ_LEN];
/* nfs4sysctl.c */
#ifdef CONFIG_SYSCTL
int nfs4_register_sysctl(void);
void nfs4_unregister_sysctl(void);
#else
static inline int nfs4_register_sysctl(void)
{
return 0;
}
static inline void nfs4_unregister_sysctl(void)
{
}
#endif
/* nfs4xdr.c */
extern struct rpc_procinfo nfs4_procedures[];
struct nfs4_mount_data;
/* callback_xdr.c */
extern struct svc_version nfs4_callback_version1;
extern struct svc_version nfs4_callback_version4;
static inline void nfs4_stateid_copy(nfs4_stateid *dst, const nfs4_stateid *src)
{
memcpy(dst->data, src->data, sizeof(dst->data));
dst->type = src->type;
}
static inline bool nfs4_stateid_match(const nfs4_stateid *dst, const nfs4_stateid *src)
{
if (dst->type != src->type)
return false;
return memcmp(dst->data, src->data, sizeof(dst->data)) == 0;
}
static inline bool nfs4_stateid_match_other(const nfs4_stateid *dst, const nfs4_stateid *src)
{
return memcmp(dst->other, src->other, NFS4_STATEID_OTHER_SIZE) == 0;
}
static inline bool nfs4_stateid_is_newer(const nfs4_stateid *s1, const nfs4_stateid *s2)
{
return (s32)(be32_to_cpu(s1->seqid) - be32_to_cpu(s2->seqid)) > 0;
}
static inline bool nfs4_valid_open_stateid(const struct nfs4_state *state)
{
return test_bit(NFS_STATE_RECOVERY_FAILED, &state->flags) == 0;
}
static inline bool nfs4_state_match_open_stateid_other(const struct nfs4_state *state,
const nfs4_stateid *stateid)
{
return test_bit(NFS_OPEN_STATE, &state->flags) &&
nfs4_stateid_match_other(&state->open_stateid, stateid);
}
#else
#define nfs4_close_state(a, b) do { } while (0)
#define nfs4_close_sync(a, b) do { } while (0)
#define nfs4_state_protect(a, b, c, d) do { } while (0)
#define nfs4_state_protect_write(a, b, c, d) do { } while (0)
#endif /* CONFIG_NFS_V4 */
#endif /* __LINUX_FS_NFS_NFS4_FS.H */