WSL2-Linux-Kernel/include/net/iucv/iucv.h

496 строки
17 KiB
C
Исходник Обычный вид История

/*
* drivers/s390/net/iucv.h
* IUCV base support.
*
* S390 version
* Copyright 2000, 2006 IBM Corporation
* Author(s):Alan Altmark (Alan_Altmark@us.ibm.com)
* Xenia Tkatschow (xenia@us.ibm.com)
* Rewritten for af_iucv:
* Martin Schwidefsky <schwidefsky@de.ibm.com>
*
*
* Functionality:
* To explore any of the IUCV functions, one must first register their
* program using iucv_register(). Once your program has successfully
* completed a register, it can exploit the other functions.
* For furthur reference on all IUCV functionality, refer to the
* CP Programming Services book, also available on the web thru
* www.vm.ibm.com/pubs, manual # SC24-6084
*
* Definition of Return Codes
* - All positive return codes including zero are reflected back
* from CP. The definition of each return code can be found in
* CP Programming Services book.
* - Return Code of:
* -EINVAL: Invalid value
* -ENOMEM: storage allocation failed
*/
#include <linux/types.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <asm/debug.h>
/*
* IUCV option flags usable by device drivers:
*
* IUCV_IPRMDATA Indicates that your program can handle a message in the
* parameter list / a message is sent in the parameter list.
* Used for iucv_path_accept, iucv_path_connect,
* iucv_message_reply, iucv_message_send, iucv_message_send2way.
* IUCV_IPQUSCE Indicates that you do not want to receive messages on this
* path until an iucv_path_resume is issued.
* Used for iucv_path_accept, iucv_path_connect.
* IUCV_IPBUFLST Indicates that an address list is used for the message data.
* Used for iucv_message_receive, iucv_message_send,
* iucv_message_send2way.
* IUCV_IPPRTY Specifies that you want to send priority messages.
* Used for iucv_path_accept, iucv_path_connect,
* iucv_message_reply, iucv_message_send, iucv_message_send2way.
* IUCV_IPSYNC Indicates a synchronous send request.
* Used for iucv_message_send, iucv_message_send2way.
* IUCV_IPANSLST Indicates that an address list is used for the reply data.
* Used for iucv_message_reply, iucv_message_send2way.
* IUCV_IPLOCAL Specifies that the communication partner has to be on the
* local system. If local is specified no target class can be
* specified.
* Used for iucv_path_connect.
*
* All flags are defined in the input field IPFLAGS1 of each function
* and can be found in CP Programming Services.
*/
#define IUCV_IPRMDATA 0x80
#define IUCV_IPQUSCE 0x40
#define IUCV_IPBUFLST 0x40
#define IUCV_IPPRTY 0x20
#define IUCV_IPANSLST 0x08
#define IUCV_IPSYNC 0x04
#define IUCV_IPLOCAL 0x01
/*
* iucv_array : Defines buffer array.
* Inside the array may be 31- bit addresses and 31-bit lengths.
* Use a pointer to an iucv_array as the buffer, reply or answer
* parameter on iucv_message_send, iucv_message_send2way, iucv_message_receive
* and iucv_message_reply if IUCV_IPBUFLST or IUCV_IPANSLST are used.
*/
struct iucv_array {
u32 address;
u32 length;
} __attribute__ ((aligned (8)));
extern struct bus_type iucv_bus;
extern struct device *iucv_root;
/*
* struct iucv_path
* pathid: 16 bit path identification
* msglim: 16 bit message limit
* flags: properties of the path: IPRMDATA, IPQUSCE, IPPRTY
* handler: address of iucv handler structure
* private: private information of the handler associated with the path
* list: list_head for the iucv_handler path list.
*/
struct iucv_path {
u16 pathid;
u16 msglim;
u8 flags;
void *private;
struct iucv_handler *handler;
struct list_head list;
};
/*
* struct iucv_message
* id: 32 bit message id
* audit: 32 bit error information of purged or replied messages
* class: 32 bit target class of a message (source class for replies)
* tag: 32 bit tag to be associated with the message
* length: 32 bit length of the message / reply
* reply_size: 32 bit maximum allowed length of the reply
* rmmsg: 8 byte inline message
* flags: message properties (IUCV_IPPRTY)
*/
struct iucv_message {
u32 id;
u32 audit;
u32 class;
u32 tag;
u32 length;
u32 reply_size;
u8 rmmsg[8];
u8 flags;
} __packed;
/*
* struct iucv_handler
*
* A vector of functions that handle IUCV interrupts. Each functions gets
* a parameter area as defined by the CP Programming Services and private
* pointer that is provided by the user of the interface.
*/
struct iucv_handler {
/*
* The path_pending function is called after an iucv interrupt
* type 0x01 has been received. The base code allocates a path
* structure and "asks" the handler if this path belongs to the
* handler. To accept the path the path_pending function needs
* to call iucv_path_accept and return 0. If the callback returns
* a value != 0 the iucv base code will continue with the next
* handler. The order in which the path_pending functions are
* called is the order of the registration of the iucv handlers
* to the base code.
*/
int (*path_pending)(struct iucv_path *, u8 ipvmid[8], u8 ipuser[16]);
/*
* The path_complete function is called after an iucv interrupt
* type 0x02 has been received for a path that has been established
* for this handler with iucv_path_connect and got accepted by the
* peer with iucv_path_accept.
*/
void (*path_complete)(struct iucv_path *, u8 ipuser[16]);
/*
* The path_severed function is called after an iucv interrupt
* type 0x03 has been received. The communication peer shutdown
* his end of the communication path. The path still exists and
* remaining messages can be received until a iucv_path_sever
* shuts down the other end of the path as well.
*/
void (*path_severed)(struct iucv_path *, u8 ipuser[16]);
/*
* The path_quiesced function is called after an icuv interrupt
* type 0x04 has been received. The communication peer has quiesced
* the path. Delivery of messages is stopped until iucv_path_resume
* has been called.
*/
void (*path_quiesced)(struct iucv_path *, u8 ipuser[16]);
/*
* The path_resumed function is called after an icuv interrupt
* type 0x05 has been received. The communication peer has resumed
* the path.
*/
void (*path_resumed)(struct iucv_path *, u8 ipuser[16]);
/*
* The message_pending function is called after an icuv interrupt
* type 0x06 or type 0x07 has been received. A new message is
* available and can be received with iucv_message_receive.
*/
void (*message_pending)(struct iucv_path *, struct iucv_message *);
/*
* The message_complete function is called after an icuv interrupt
* type 0x08 or type 0x09 has been received. A message send with
* iucv_message_send2way has been replied to. The reply can be
* received with iucv_message_receive.
*/
void (*message_complete)(struct iucv_path *, struct iucv_message *);
struct list_head list;
struct list_head paths;
};
/**
* iucv_register:
* @handler: address of iucv handler structure
* @smp: != 0 indicates that the handler can deal with out of order messages
*
* Registers a driver with IUCV.
*
* Returns 0 on success, -ENOMEM if the memory allocation for the pathid
* table failed, or -EIO if IUCV_DECLARE_BUFFER failed on all cpus.
*/
int iucv_register(struct iucv_handler *handler, int smp);
/**
* iucv_unregister
* @handler: address of iucv handler structure
* @smp: != 0 indicates that the handler can deal with out of order messages
*
* Unregister driver from IUCV.
*/
void iucv_unregister(struct iucv_handler *handle, int smp);
/**
* iucv_path_alloc
* @msglim: initial message limit
* @flags: initial flags
* @gfp: kmalloc allocation flag
*
* Allocate a new path structure for use with iucv_connect.
*
* Returns NULL if the memory allocation failed or a pointer to the
* path structure.
*/
static inline struct iucv_path *iucv_path_alloc(u16 msglim, u8 flags, gfp_t gfp)
{
struct iucv_path *path;
path = kzalloc(sizeof(struct iucv_path), gfp);
if (path) {
path->msglim = msglim;
path->flags = flags;
}
return path;
}
/**
* iucv_path_free
* @path: address of iucv path structure
*
* Frees a path structure.
*/
static inline void iucv_path_free(struct iucv_path *path)
{
kfree(path);
}
/**
* iucv_path_accept
* @path: address of iucv path structure
* @handler: address of iucv handler structure
* @userdata: 16 bytes of data reflected to the communication partner
* @private: private data passed to interrupt handlers for this path
*
* This function is issued after the user received a connection pending
* external interrupt and now wishes to complete the IUCV communication path.
*
* Returns the result of the CP IUCV call.
*/
int iucv_path_accept(struct iucv_path *path, struct iucv_handler *handler,
u8 userdata[16], void *private);
/**
* iucv_path_connect
* @path: address of iucv path structure
* @handler: address of iucv handler structure
* @userid: 8-byte user identification
* @system: 8-byte target system identification
* @userdata: 16 bytes of data reflected to the communication partner
* @private: private data passed to interrupt handlers for this path
*
* This function establishes an IUCV path. Although the connect may complete
* successfully, you are not able to use the path until you receive an IUCV
* Connection Complete external interrupt.
*
* Returns the result of the CP IUCV call.
*/
int iucv_path_connect(struct iucv_path *path, struct iucv_handler *handler,
u8 userid[8], u8 system[8], u8 userdata[16],
void *private);
/**
* iucv_path_quiesce:
* @path: address of iucv path structure
* @userdata: 16 bytes of data reflected to the communication partner
*
* This function temporarily suspends incoming messages on an IUCV path.
* You can later reactivate the path by invoking the iucv_resume function.
*
* Returns the result from the CP IUCV call.
*/
int iucv_path_quiesce(struct iucv_path *path, u8 userdata[16]);
/**
* iucv_path_resume:
* @path: address of iucv path structure
* @userdata: 16 bytes of data reflected to the communication partner
*
* This function resumes incoming messages on an IUCV path that has
* been stopped with iucv_path_quiesce.
*
* Returns the result from the CP IUCV call.
*/
int iucv_path_resume(struct iucv_path *path, u8 userdata[16]);
/**
* iucv_path_sever
* @path: address of iucv path structure
* @userdata: 16 bytes of data reflected to the communication partner
*
* This function terminates an IUCV path.
*
* Returns the result from the CP IUCV call.
*/
int iucv_path_sever(struct iucv_path *path, u8 userdata[16]);
/**
* iucv_message_purge
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @srccls: source class of message
*
* Cancels a message you have sent.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_purge(struct iucv_path *path, struct iucv_message *msg,
u32 srccls);
/**
* iucv_message_receive
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: flags that affect how the message is received (IUCV_IPBUFLST)
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of data buffer
* @residual:
*
* This function receives messages that are being sent to you over
* established paths. This function will deal with RMDATA messages
* embedded in struct iucv_message as well.
*
* Locking: local_bh_enable/local_bh_disable
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_receive(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *buffer, size_t size, size_t *residual);
/**
* __iucv_message_receive
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: flags that affect how the message is received (IUCV_IPBUFLST)
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of data buffer
* @residual:
*
* This function receives messages that are being sent to you over
* established paths. This function will deal with RMDATA messages
* embedded in struct iucv_message as well.
*
* Locking: no locking.
*
* Returns the result from the CP IUCV call.
*/
int __iucv_message_receive(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *buffer, size_t size,
size_t *residual);
/**
* iucv_message_reject
* @path: address of iucv path structure
* @msg: address of iucv msg structure
*
* The reject function refuses a specified message. Between the time you
* are notified of a message and the time that you complete the message,
* the message may be rejected.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_reject(struct iucv_path *path, struct iucv_message *msg);
/**
* iucv_message_reply
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the reply is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST)
* @reply: address of data buffer or address of struct iucv_array
* @size: length of reply data buffer
*
* This function responds to the two-way messages that you receive. You
* must identify completely the message to which you wish to reply. ie,
* pathid, msgid, and trgcls. Prmmsg signifies the data is moved into
* the parameter list.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_reply(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *reply, size_t size);
/**
* iucv_message_send
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST)
* @srccls: source class of message
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of send buffer
*
* This function transmits data to another application. Data to be
* transmitted is in a buffer and this is a one-way message and the
* receiver will not reply to the message.
*
* Locking: local_bh_enable/local_bh_disable
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_send(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size);
/**
* __iucv_message_send
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is sent (IUCV_IPRMDATA, IUCV_IPPRTY, IUCV_IPBUFLST)
* @srccls: source class of message
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of send buffer
*
* This function transmits data to another application. Data to be
* transmitted is in a buffer and this is a one-way message and the
* receiver will not reply to the message.
*
* Locking: no locking.
*
* Returns the result from the CP IUCV call.
*/
int __iucv_message_send(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size);
/**
* iucv_message_send2way
* @path: address of iucv path structure
* @msg: address of iucv msg structure
* @flags: how the message is sent and the reply is received
* (IUCV_IPRMDATA, IUCV_IPBUFLST, IUCV_IPPRTY, IUCV_ANSLST)
* @srccls: source class of message
* @buffer: address of data buffer or address of struct iucv_array
* @size: length of send buffer
* @ansbuf: address of answer buffer or address of struct iucv_array
* @asize: size of reply buffer
*
* This function transmits data to another application. Data to be
* transmitted is in a buffer. The receiver of the send is expected to
* reply to the message and a buffer is provided into which IUCV moves
* the reply to this message.
*
* Returns the result from the CP IUCV call.
*/
int iucv_message_send2way(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size,
void *answer, size_t asize, size_t *residual);
struct iucv_interface {
int (*message_receive)(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *buffer, size_t size, size_t *residual);
int (*__message_receive)(struct iucv_path *path,
struct iucv_message *msg, u8 flags, void *buffer, size_t size,
size_t *residual);
int (*message_reply)(struct iucv_path *path, struct iucv_message *msg,
u8 flags, void *reply, size_t size);
int (*message_reject)(struct iucv_path *path, struct iucv_message *msg);
int (*message_send)(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size);
int (*__message_send)(struct iucv_path *path, struct iucv_message *msg,
u8 flags, u32 srccls, void *buffer, size_t size);
int (*message_send2way)(struct iucv_path *path,
struct iucv_message *msg, u8 flags, u32 srccls, void *buffer,
size_t size, void *answer, size_t asize, size_t *residual);
int (*message_purge)(struct iucv_path *path, struct iucv_message *msg,
u32 srccls);
int (*path_accept)(struct iucv_path *path, struct iucv_handler *handler,
u8 userdata[16], void *private);
int (*path_connect)(struct iucv_path *path,
struct iucv_handler *handler,
u8 userid[8], u8 system[8], u8 userdata[16], void *private);
int (*path_quiesce)(struct iucv_path *path, u8 userdata[16]);
int (*path_resume)(struct iucv_path *path, u8 userdata[16]);
int (*path_sever)(struct iucv_path *path, u8 userdata[16]);
int (*iucv_register)(struct iucv_handler *handler, int smp);
void (*iucv_unregister)(struct iucv_handler *handler, int smp);
struct bus_type *bus;
struct device *root;
};
extern struct iucv_interface iucv_if;