WSL2-Linux-Kernel/drivers/dma/sprd-dma.c

1004 строки
26 KiB
C
Исходник Обычный вид История

/*
* Copyright (C) 2017 Spreadtrum Communications Inc.
*
* SPDX-License-Identifier: GPL-2.0
*/
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include "virt-dma.h"
#define SPRD_DMA_CHN_REG_OFFSET 0x1000
#define SPRD_DMA_CHN_REG_LENGTH 0x40
#define SPRD_DMA_MEMCPY_MIN_SIZE 64
/* DMA global registers definition */
#define SPRD_DMA_GLB_PAUSE 0x0
#define SPRD_DMA_GLB_FRAG_WAIT 0x4
#define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
#define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
#define SPRD_DMA_GLB_INT_RAW_STS 0x10
#define SPRD_DMA_GLB_INT_MSK_STS 0x14
#define SPRD_DMA_GLB_REQ_STS 0x18
#define SPRD_DMA_GLB_CHN_EN_STS 0x1c
#define SPRD_DMA_GLB_DEBUG_STS 0x20
#define SPRD_DMA_GLB_ARB_SEL_STS 0x24
#define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
#define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
/* DMA channel registers definition */
#define SPRD_DMA_CHN_PAUSE 0x0
#define SPRD_DMA_CHN_REQ 0x4
#define SPRD_DMA_CHN_CFG 0x8
#define SPRD_DMA_CHN_INTC 0xc
#define SPRD_DMA_CHN_SRC_ADDR 0x10
#define SPRD_DMA_CHN_DES_ADDR 0x14
#define SPRD_DMA_CHN_FRG_LEN 0x18
#define SPRD_DMA_CHN_BLK_LEN 0x1c
#define SPRD_DMA_CHN_TRSC_LEN 0x20
#define SPRD_DMA_CHN_TRSF_STEP 0x24
#define SPRD_DMA_CHN_WARP_PTR 0x28
#define SPRD_DMA_CHN_WARP_TO 0x2c
#define SPRD_DMA_CHN_LLIST_PTR 0x30
#define SPRD_DMA_CHN_FRAG_STEP 0x34
#define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
#define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
/* SPRD_DMA_CHN_INTC register definition */
#define SPRD_DMA_INT_MASK GENMASK(4, 0)
#define SPRD_DMA_INT_CLR_OFFSET 24
#define SPRD_DMA_FRAG_INT_EN BIT(0)
#define SPRD_DMA_BLK_INT_EN BIT(1)
#define SPRD_DMA_TRANS_INT_EN BIT(2)
#define SPRD_DMA_LIST_INT_EN BIT(3)
#define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
/* SPRD_DMA_CHN_CFG register definition */
#define SPRD_DMA_CHN_EN BIT(0)
#define SPRD_DMA_WAIT_BDONE_OFFSET 24
#define SPRD_DMA_DONOT_WAIT_BDONE 1
/* SPRD_DMA_CHN_REQ register definition */
#define SPRD_DMA_REQ_EN BIT(0)
/* SPRD_DMA_CHN_PAUSE register definition */
#define SPRD_DMA_PAUSE_EN BIT(0)
#define SPRD_DMA_PAUSE_STS BIT(2)
#define SPRD_DMA_PAUSE_CNT 0x2000
/* DMA_CHN_WARP_* register definition */
#define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
#define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
#define SPRD_DMA_HIGH_ADDR_OFFSET 4
/* SPRD_DMA_CHN_INTC register definition */
#define SPRD_DMA_FRAG_INT_STS BIT(16)
#define SPRD_DMA_BLK_INT_STS BIT(17)
#define SPRD_DMA_TRSC_INT_STS BIT(18)
#define SPRD_DMA_LIST_INT_STS BIT(19)
#define SPRD_DMA_CFGERR_INT_STS BIT(20)
#define SPRD_DMA_CHN_INT_STS \
(SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
SPRD_DMA_CFGERR_INT_STS)
/* SPRD_DMA_CHN_FRG_LEN register definition */
#define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
#define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
#define SPRD_DMA_SWT_MODE_OFFSET 26
#define SPRD_DMA_REQ_MODE_OFFSET 24
#define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
#define SPRD_DMA_FIX_SEL_OFFSET 21
#define SPRD_DMA_FIX_EN_OFFSET 20
#define SPRD_DMA_LLIST_END_OFFSET 19
#define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
/* SPRD_DMA_CHN_BLK_LEN register definition */
#define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
/* SPRD_DMA_CHN_TRSC_LEN register definition */
#define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
/* SPRD_DMA_CHN_TRSF_STEP register definition */
#define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
#define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
#define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
/* define the DMA transfer step type */
#define SPRD_DMA_NONE_STEP 0
#define SPRD_DMA_BYTE_STEP 1
#define SPRD_DMA_SHORT_STEP 2
#define SPRD_DMA_WORD_STEP 4
#define SPRD_DMA_DWORD_STEP 8
#define SPRD_DMA_SOFTWARE_UID 0
/*
* enum sprd_dma_req_mode: define the DMA request mode
* @SPRD_DMA_FRAG_REQ: fragment request mode
* @SPRD_DMA_BLK_REQ: block request mode
* @SPRD_DMA_TRANS_REQ: transaction request mode
* @SPRD_DMA_LIST_REQ: link-list request mode
*
* We have 4 types request mode: fragment mode, block mode, transaction mode
* and linklist mode. One transaction can contain several blocks, one block can
* contain several fragments. Link-list mode means we can save several DMA
* configuration into one reserved memory, then DMA can fetch each DMA
* configuration automatically to start transfer.
*/
enum sprd_dma_req_mode {
SPRD_DMA_FRAG_REQ,
SPRD_DMA_BLK_REQ,
SPRD_DMA_TRANS_REQ,
SPRD_DMA_LIST_REQ,
};
/*
* enum sprd_dma_int_type: define the DMA interrupt type
* @SPRD_DMA_NO_INT: do not need generate DMA interrupts.
* @SPRD_DMA_FRAG_INT: fragment done interrupt when one fragment request
* is done.
* @SPRD_DMA_BLK_INT: block done interrupt when one block request is done.
* @SPRD_DMA_BLK_FRAG_INT: block and fragment interrupt when one fragment
* or one block request is done.
* @SPRD_DMA_TRANS_INT: tansaction done interrupt when one transaction
* request is done.
* @SPRD_DMA_TRANS_FRAG_INT: transaction and fragment interrupt when one
* transaction request or fragment request is done.
* @SPRD_DMA_TRANS_BLK_INT: transaction and block interrupt when one
* transaction request or block request is done.
* @SPRD_DMA_LIST_INT: link-list done interrupt when one link-list request
* is done.
* @SPRD_DMA_CFGERR_INT: configure error interrupt when configuration is
* incorrect.
*/
enum sprd_dma_int_type {
SPRD_DMA_NO_INT,
SPRD_DMA_FRAG_INT,
SPRD_DMA_BLK_INT,
SPRD_DMA_BLK_FRAG_INT,
SPRD_DMA_TRANS_INT,
SPRD_DMA_TRANS_FRAG_INT,
SPRD_DMA_TRANS_BLK_INT,
SPRD_DMA_LIST_INT,
SPRD_DMA_CFGERR_INT,
};
/* dma data width values */
enum sprd_dma_datawidth {
SPRD_DMA_DATAWIDTH_1_BYTE,
SPRD_DMA_DATAWIDTH_2_BYTES,
SPRD_DMA_DATAWIDTH_4_BYTES,
SPRD_DMA_DATAWIDTH_8_BYTES,
};
/* dma channel hardware configuration */
struct sprd_dma_chn_hw {
u32 pause;
u32 req;
u32 cfg;
u32 intc;
u32 src_addr;
u32 des_addr;
u32 frg_len;
u32 blk_len;
u32 trsc_len;
u32 trsf_step;
u32 wrap_ptr;
u32 wrap_to;
u32 llist_ptr;
u32 frg_step;
u32 src_blk_step;
u32 des_blk_step;
};
/* dma request description */
struct sprd_dma_desc {
struct virt_dma_desc vd;
struct sprd_dma_chn_hw chn_hw;
};
/* dma channel description */
struct sprd_dma_chn {
struct virt_dma_chan vc;
void __iomem *chn_base;
u32 chn_num;
u32 dev_id;
struct sprd_dma_desc *cur_desc;
};
/* SPRD dma device */
struct sprd_dma_dev {
struct dma_device dma_dev;
void __iomem *glb_base;
struct clk *clk;
struct clk *ashb_clk;
int irq;
u32 total_chns;
struct sprd_dma_chn channels[0];
};
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
static struct of_dma_filter_info sprd_dma_info = {
.filter_fn = sprd_dma_filter_fn,
};
static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
{
return container_of(c, struct sprd_dma_chn, vc.chan);
}
static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
}
static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct sprd_dma_desc, vd);
}
static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
u32 mask, u32 val)
{
u32 orig = readl(schan->chn_base + reg);
u32 tmp;
tmp = (orig & ~mask) | val;
writel(tmp, schan->chn_base + reg);
}
static int sprd_dma_enable(struct sprd_dma_dev *sdev)
{
int ret;
ret = clk_prepare_enable(sdev->clk);
if (ret)
return ret;
/*
* The ashb_clk is optional and only for AGCP DMA controller, so we
* need add one condition to check if the ashb_clk need enable.
*/
if (!IS_ERR(sdev->ashb_clk))
ret = clk_prepare_enable(sdev->ashb_clk);
return ret;
}
static void sprd_dma_disable(struct sprd_dma_dev *sdev)
{
clk_disable_unprepare(sdev->clk);
/*
* Need to check if we need disable the optional ashb_clk for AGCP DMA.
*/
if (!IS_ERR(sdev->ashb_clk))
clk_disable_unprepare(sdev->ashb_clk);
}
static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 dev_id = schan->dev_id;
if (dev_id != SPRD_DMA_SOFTWARE_UID) {
u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
SPRD_DMA_GLB_REQ_UID(dev_id);
writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
}
}
static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 dev_id = schan->dev_id;
if (dev_id != SPRD_DMA_SOFTWARE_UID) {
u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
SPRD_DMA_GLB_REQ_UID(dev_id);
writel(0, sdev->glb_base + uid_offset);
}
}
static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
}
static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
SPRD_DMA_CHN_EN);
}
static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
}
static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
{
sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
SPRD_DMA_REQ_EN);
}
static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
if (enable) {
sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
do {
pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
if (pause & SPRD_DMA_PAUSE_STS)
break;
cpu_relax();
} while (--timeout > 0);
if (!timeout)
dev_warn(sdev->dma_dev.dev,
"pause dma controller timeout\n");
} else {
sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
SPRD_DMA_PAUSE_EN, 0);
}
}
static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
{
u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
if (!(cfg & SPRD_DMA_CHN_EN))
return;
sprd_dma_pause_resume(schan, true);
sprd_dma_disable_chn(schan);
}
static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
{
unsigned long addr, addr_high;
addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
SPRD_DMA_HIGH_ADDR_MASK;
return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
}
static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
SPRD_DMA_CHN_INT_STS;
switch (intc_sts) {
case SPRD_DMA_CFGERR_INT_STS:
return SPRD_DMA_CFGERR_INT;
case SPRD_DMA_LIST_INT_STS:
return SPRD_DMA_LIST_INT;
case SPRD_DMA_TRSC_INT_STS:
return SPRD_DMA_TRANS_INT;
case SPRD_DMA_BLK_INT_STS:
return SPRD_DMA_BLK_INT;
case SPRD_DMA_FRAG_INT_STS:
return SPRD_DMA_FRAG_INT;
default:
dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
return SPRD_DMA_NO_INT;
}
}
static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
{
u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
}
static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
struct sprd_dma_desc *sdesc)
{
struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
}
static void sprd_dma_start(struct sprd_dma_chn *schan)
{
struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
if (!vd)
return;
list_del(&vd->node);
schan->cur_desc = to_sprd_dma_desc(vd);
/*
* Copy the DMA configuration from DMA descriptor to this hardware
* channel.
*/
sprd_dma_set_chn_config(schan, schan->cur_desc);
sprd_dma_set_uid(schan);
sprd_dma_enable_chn(schan);
if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
sprd_dma_soft_request(schan);
}
static void sprd_dma_stop(struct sprd_dma_chn *schan)
{
sprd_dma_stop_and_disable(schan);
sprd_dma_unset_uid(schan);
sprd_dma_clear_int(schan);
}
static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
enum sprd_dma_int_type int_type,
enum sprd_dma_req_mode req_mode)
{
if (int_type == SPRD_DMA_NO_INT)
return false;
if (int_type >= req_mode + 1)
return true;
else
return false;
}
static irqreturn_t dma_irq_handle(int irq, void *dev_id)
{
struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
struct sprd_dma_chn *schan;
struct sprd_dma_desc *sdesc;
enum sprd_dma_req_mode req_type;
enum sprd_dma_int_type int_type;
bool trans_done = false;
u32 i;
while (irq_status) {
i = __ffs(irq_status);
irq_status &= (irq_status - 1);
schan = &sdev->channels[i];
spin_lock(&schan->vc.lock);
int_type = sprd_dma_get_int_type(schan);
req_type = sprd_dma_get_req_type(schan);
sprd_dma_clear_int(schan);
sdesc = schan->cur_desc;
/* Check if the dma request descriptor is done. */
trans_done = sprd_dma_check_trans_done(sdesc, int_type,
req_type);
if (trans_done == true) {
vchan_cookie_complete(&sdesc->vd);
schan->cur_desc = NULL;
sprd_dma_start(schan);
}
spin_unlock(&schan->vc.lock);
}
return IRQ_HANDLED;
}
static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
int ret;
ret = pm_runtime_get_sync(chan->device->dev);
if (ret < 0)
return ret;
schan->dev_id = SPRD_DMA_SOFTWARE_UID;
return 0;
}
static void sprd_dma_free_chan_resources(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_stop(schan);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_free_chan_resources(&schan->vc);
pm_runtime_put(chan->device->dev);
}
static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct virt_dma_desc *vd;
unsigned long flags;
enum dma_status ret;
u32 pos;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret == DMA_COMPLETE || !txstate)
return ret;
spin_lock_irqsave(&schan->vc.lock, flags);
vd = vchan_find_desc(&schan->vc, cookie);
if (vd) {
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
if (hw->trsc_len > 0)
pos = hw->trsc_len;
else if (hw->blk_len > 0)
pos = hw->blk_len;
else if (hw->frg_len > 0)
pos = hw->frg_len;
else
pos = 0;
} else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
pos = sprd_dma_get_dst_addr(schan);
} else {
pos = 0;
}
spin_unlock_irqrestore(&schan->vc.lock, flags);
dma_set_residue(txstate, pos);
return ret;
}
static void sprd_dma_issue_pending(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
sprd_dma_start(schan);
spin_unlock_irqrestore(&schan->vc.lock, flags);
}
static int sprd_dma_config(struct dma_chan *chan, struct sprd_dma_desc *sdesc,
dma_addr_t dest, dma_addr_t src, size_t len)
{
struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
u32 datawidth, src_step, des_step, fragment_len;
u32 block_len, req_mode, irq_mode, transcation_len;
u32 fix_mode = 0, fix_en = 0;
if (IS_ALIGNED(len, 4)) {
datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
src_step = SPRD_DMA_WORD_STEP;
des_step = SPRD_DMA_WORD_STEP;
} else if (IS_ALIGNED(len, 2)) {
datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
src_step = SPRD_DMA_SHORT_STEP;
des_step = SPRD_DMA_SHORT_STEP;
} else {
datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
src_step = SPRD_DMA_BYTE_STEP;
des_step = SPRD_DMA_BYTE_STEP;
}
fragment_len = SPRD_DMA_MEMCPY_MIN_SIZE;
if (len <= SPRD_DMA_BLK_LEN_MASK) {
block_len = len;
transcation_len = 0;
req_mode = SPRD_DMA_BLK_REQ;
irq_mode = SPRD_DMA_BLK_INT;
} else {
block_len = SPRD_DMA_MEMCPY_MIN_SIZE;
transcation_len = len;
req_mode = SPRD_DMA_TRANS_REQ;
irq_mode = SPRD_DMA_TRANS_INT;
}
hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
hw->wrap_ptr = (u32)((src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
SPRD_DMA_HIGH_ADDR_MASK);
hw->wrap_to = (u32)((dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
SPRD_DMA_HIGH_ADDR_MASK);
hw->src_addr = (u32)(src & SPRD_DMA_LOW_ADDR_MASK);
hw->des_addr = (u32)(dest & SPRD_DMA_LOW_ADDR_MASK);
if ((src_step != 0 && des_step != 0) || (src_step | des_step) == 0) {
fix_en = 0;
} else {
fix_en = 1;
if (src_step)
fix_mode = 1;
else
fix_mode = 0;
}
hw->frg_len = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET |
datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET |
req_mode << SPRD_DMA_REQ_MODE_OFFSET |
fix_mode << SPRD_DMA_FIX_SEL_OFFSET |
fix_en << SPRD_DMA_FIX_EN_OFFSET |
(fragment_len & SPRD_DMA_FRG_LEN_MASK);
hw->blk_len = block_len & SPRD_DMA_BLK_LEN_MASK;
hw->intc = SPRD_DMA_CFG_ERR_INT_EN;
switch (irq_mode) {
case SPRD_DMA_NO_INT:
break;
case SPRD_DMA_FRAG_INT:
hw->intc |= SPRD_DMA_FRAG_INT_EN;
break;
case SPRD_DMA_BLK_INT:
hw->intc |= SPRD_DMA_BLK_INT_EN;
break;
case SPRD_DMA_BLK_FRAG_INT:
hw->intc |= SPRD_DMA_BLK_INT_EN | SPRD_DMA_FRAG_INT_EN;
break;
case SPRD_DMA_TRANS_INT:
hw->intc |= SPRD_DMA_TRANS_INT_EN;
break;
case SPRD_DMA_TRANS_FRAG_INT:
hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_FRAG_INT_EN;
break;
case SPRD_DMA_TRANS_BLK_INT:
hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_BLK_INT_EN;
break;
case SPRD_DMA_LIST_INT:
hw->intc |= SPRD_DMA_LIST_INT_EN;
break;
case SPRD_DMA_CFGERR_INT:
hw->intc |= SPRD_DMA_CFG_ERR_INT_EN;
break;
default:
dev_err(sdev->dma_dev.dev, "invalid irq mode\n");
return -EINVAL;
}
if (transcation_len == 0)
hw->trsc_len = block_len & SPRD_DMA_TRSC_LEN_MASK;
else
hw->trsc_len = transcation_len & SPRD_DMA_TRSC_LEN_MASK;
hw->trsf_step = (des_step & SPRD_DMA_TRSF_STEP_MASK) <<
SPRD_DMA_DEST_TRSF_STEP_OFFSET |
(src_step & SPRD_DMA_TRSF_STEP_MASK) <<
SPRD_DMA_SRC_TRSF_STEP_OFFSET;
hw->frg_step = 0;
hw->src_blk_step = 0;
hw->des_blk_step = 0;
hw->src_blk_step = 0;
return 0;
}
static struct dma_async_tx_descriptor *
sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
size_t len, unsigned long flags)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_desc *sdesc;
int ret;
sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
if (!sdesc)
return NULL;
ret = sprd_dma_config(chan, sdesc, dest, src, len);
if (ret) {
kfree(sdesc);
return NULL;
}
return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
}
static int sprd_dma_pause(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_pause_resume(schan, true);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return 0;
}
static int sprd_dma_resume(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_pause_resume(schan, false);
spin_unlock_irqrestore(&schan->vc.lock, flags);
return 0;
}
static int sprd_dma_terminate_all(struct dma_chan *chan)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
unsigned long flags;
LIST_HEAD(head);
spin_lock_irqsave(&schan->vc.lock, flags);
sprd_dma_stop(schan);
vchan_get_all_descriptors(&schan->vc, &head);
spin_unlock_irqrestore(&schan->vc.lock, flags);
vchan_dma_desc_free_list(&schan->vc, &head);
return 0;
}
static void sprd_dma_free_desc(struct virt_dma_desc *vd)
{
struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
kfree(sdesc);
}
static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
{
struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
u32 req = *(u32 *)param;
if (req < sdev->total_chns)
return req == schan->chn_num + 1;
else
return false;
}
static int sprd_dma_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct sprd_dma_dev *sdev;
struct sprd_dma_chn *dma_chn;
struct resource *res;
u32 chn_count;
int ret, i;
ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
if (ret) {
dev_err(&pdev->dev, "get dma channels count failed\n");
return ret;
}
sdev = devm_kzalloc(&pdev->dev, sizeof(*sdev) +
sizeof(*dma_chn) * chn_count,
GFP_KERNEL);
if (!sdev)
return -ENOMEM;
sdev->clk = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(sdev->clk)) {
dev_err(&pdev->dev, "get enable clock failed\n");
return PTR_ERR(sdev->clk);
}
/* ashb clock is optional for AGCP DMA */
sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
if (IS_ERR(sdev->ashb_clk))
dev_warn(&pdev->dev, "no optional ashb eb clock\n");
/*
* We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
* DMA controller, it can or do not request the irq, which will save
* system power without resuming system by DMA interrupts if AGCP DMA
* does not request the irq. Thus the DMA interrupts property should
* be optional.
*/
sdev->irq = platform_get_irq(pdev, 0);
if (sdev->irq > 0) {
ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
0, "sprd_dma", (void *)sdev);
if (ret < 0) {
dev_err(&pdev->dev, "request dma irq failed\n");
return ret;
}
} else {
dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sdev->glb_base = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!sdev->glb_base)
return -ENOMEM;
dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
sdev->total_chns = chn_count;
sdev->dma_dev.chancnt = chn_count;
INIT_LIST_HEAD(&sdev->dma_dev.channels);
INIT_LIST_HEAD(&sdev->dma_dev.global_node);
sdev->dma_dev.dev = &pdev->dev;
sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
sdev->dma_dev.device_pause = sprd_dma_pause;
sdev->dma_dev.device_resume = sprd_dma_resume;
sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
for (i = 0; i < chn_count; i++) {
dma_chn = &sdev->channels[i];
dma_chn->chn_num = i;
dma_chn->cur_desc = NULL;
/* get each channel's registers base address. */
dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
SPRD_DMA_CHN_REG_LENGTH * i;
dma_chn->vc.desc_free = sprd_dma_free_desc;
vchan_init(&dma_chn->vc, &sdev->dma_dev);
}
platform_set_drvdata(pdev, sdev);
ret = sprd_dma_enable(sdev);
if (ret)
return ret;
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
goto err_rpm;
ret = dma_async_device_register(&sdev->dma_dev);
if (ret < 0) {
dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
goto err_register;
}
sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
ret = of_dma_controller_register(np, of_dma_simple_xlate,
&sprd_dma_info);
if (ret)
goto err_of_register;
pm_runtime_put(&pdev->dev);
return 0;
err_of_register:
dma_async_device_unregister(&sdev->dma_dev);
err_register:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
err_rpm:
sprd_dma_disable(sdev);
return ret;
}
static int sprd_dma_remove(struct platform_device *pdev)
{
struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
struct sprd_dma_chn *c, *cn;
int ret;
ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0)
return ret;
/* explicitly free the irq */
if (sdev->irq > 0)
devm_free_irq(&pdev->dev, sdev->irq, sdev);
list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
vc.chan.device_node) {
list_del(&c->vc.chan.device_node);
tasklet_kill(&c->vc.task);
}
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&sdev->dma_dev);
sprd_dma_disable(sdev);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id sprd_dma_match[] = {
{ .compatible = "sprd,sc9860-dma", },
{},
};
static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
{
struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
sprd_dma_disable(sdev);
return 0;
}
static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
{
struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
int ret;
ret = sprd_dma_enable(sdev);
if (ret)
dev_err(sdev->dma_dev.dev, "enable dma failed\n");
return ret;
}
static const struct dev_pm_ops sprd_dma_pm_ops = {
SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
sprd_dma_runtime_resume,
NULL)
};
static struct platform_driver sprd_dma_driver = {
.probe = sprd_dma_probe,
.remove = sprd_dma_remove,
.driver = {
.name = "sprd-dma",
.of_match_table = sprd_dma_match,
.pm = &sprd_dma_pm_ops,
},
};
module_platform_driver(sprd_dma_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("DMA driver for Spreadtrum");
MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
MODULE_ALIAS("platform:sprd-dma");