WSL2-Linux-Kernel/drivers/net/netxen/netxen_nic_init.c

1181 строка
30 KiB
C
Исходник Обычный вид История

/*
* Copyright (C) 2003 - 2009 NetXen, Inc.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston,
* MA 02111-1307, USA.
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.
*
* Contact Information:
* info@netxen.com
* NetXen Inc,
* 18922 Forge Drive
* Cupertino, CA 95014-0701
*
*/
#include <linux/netdevice.h>
#include <linux/delay.h>
#include "netxen_nic.h"
#include "netxen_nic_hw.h"
#include "netxen_nic_phan_reg.h"
struct crb_addr_pair {
u32 addr;
u32 data;
};
#define NETXEN_MAX_CRB_XFORM 60
static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM];
#define NETXEN_ADDR_ERROR (0xffffffff)
#define crb_addr_transform(name) \
crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \
NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20
#define NETXEN_NIC_XDMA_RESET 0x8000ff
static void
netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring);
static void crb_addr_transform_setup(void)
{
crb_addr_transform(XDMA);
crb_addr_transform(TIMR);
crb_addr_transform(SRE);
crb_addr_transform(SQN3);
crb_addr_transform(SQN2);
crb_addr_transform(SQN1);
crb_addr_transform(SQN0);
crb_addr_transform(SQS3);
crb_addr_transform(SQS2);
crb_addr_transform(SQS1);
crb_addr_transform(SQS0);
crb_addr_transform(RPMX7);
crb_addr_transform(RPMX6);
crb_addr_transform(RPMX5);
crb_addr_transform(RPMX4);
crb_addr_transform(RPMX3);
crb_addr_transform(RPMX2);
crb_addr_transform(RPMX1);
crb_addr_transform(RPMX0);
crb_addr_transform(ROMUSB);
crb_addr_transform(SN);
crb_addr_transform(QMN);
crb_addr_transform(QMS);
crb_addr_transform(PGNI);
crb_addr_transform(PGND);
crb_addr_transform(PGN3);
crb_addr_transform(PGN2);
crb_addr_transform(PGN1);
crb_addr_transform(PGN0);
crb_addr_transform(PGSI);
crb_addr_transform(PGSD);
crb_addr_transform(PGS3);
crb_addr_transform(PGS2);
crb_addr_transform(PGS1);
crb_addr_transform(PGS0);
crb_addr_transform(PS);
crb_addr_transform(PH);
crb_addr_transform(NIU);
crb_addr_transform(I2Q);
crb_addr_transform(EG);
crb_addr_transform(MN);
crb_addr_transform(MS);
crb_addr_transform(CAS2);
crb_addr_transform(CAS1);
crb_addr_transform(CAS0);
crb_addr_transform(CAM);
crb_addr_transform(C2C1);
crb_addr_transform(C2C0);
crb_addr_transform(SMB);
crb_addr_transform(OCM0);
crb_addr_transform(I2C0);
}
int netxen_init_firmware(struct netxen_adapter *adapter)
{
u32 state = 0, loops = 0, err = 0;
/* Window 1 call */
state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE);
if (state == PHAN_INITIALIZE_ACK)
return 0;
while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) {
msleep(1);
/* Window 1 call */
state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE);
loops++;
}
if (loops >= 2000) {
printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n",
state);
err = -EIO;
return err;
}
/* Window 1 call */
adapter->pci_write_normalize(adapter,
CRB_NIC_CAPABILITIES_HOST, INTR_SCHEME_PERPORT);
adapter->pci_write_normalize(adapter,
CRB_NIC_MSI_MODE_HOST, MSI_MODE_MULTIFUNC);
adapter->pci_write_normalize(adapter,
CRB_MPORT_MODE, MPORT_MULTI_FUNCTION_MODE);
adapter->pci_write_normalize(adapter,
CRB_CMDPEG_STATE, PHAN_INITIALIZE_ACK);
return err;
}
void netxen_release_rx_buffers(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct netxen_rx_buffer *rx_buf;
int i, ring;
recv_ctx = &adapter->recv_ctx;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
for (i = 0; i < rds_ring->num_desc; ++i) {
rx_buf = &(rds_ring->rx_buf_arr[i]);
if (rx_buf->state == NETXEN_BUFFER_FREE)
continue;
pci_unmap_single(adapter->pdev,
rx_buf->dma,
rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
if (rx_buf->skb != NULL)
dev_kfree_skb_any(rx_buf->skb);
}
}
}
void netxen_release_tx_buffers(struct netxen_adapter *adapter)
{
struct netxen_cmd_buffer *cmd_buf;
struct netxen_skb_frag *buffrag;
int i, j;
struct nx_host_tx_ring *tx_ring = &adapter->tx_ring;
cmd_buf = tx_ring->cmd_buf_arr;
for (i = 0; i < tx_ring->num_desc; i++) {
buffrag = cmd_buf->frag_array;
if (buffrag->dma) {
pci_unmap_single(adapter->pdev, buffrag->dma,
buffrag->length, PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
for (j = 0; j < cmd_buf->frag_count; j++) {
buffrag++;
if (buffrag->dma) {
pci_unmap_page(adapter->pdev, buffrag->dma,
buffrag->length,
PCI_DMA_TODEVICE);
buffrag->dma = 0ULL;
}
}
if (cmd_buf->skb) {
dev_kfree_skb_any(cmd_buf->skb);
cmd_buf->skb = NULL;
}
cmd_buf++;
}
}
void netxen_free_sw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct nx_host_tx_ring *tx_ring;
int ring;
recv_ctx = &adapter->recv_ctx;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
if (rds_ring->rx_buf_arr) {
vfree(rds_ring->rx_buf_arr);
rds_ring->rx_buf_arr = NULL;
}
}
tx_ring = &adapter->tx_ring;
if (tx_ring->cmd_buf_arr)
vfree(tx_ring->cmd_buf_arr);
return;
}
int netxen_alloc_sw_resources(struct netxen_adapter *adapter)
{
struct netxen_recv_context *recv_ctx;
struct nx_host_rds_ring *rds_ring;
struct nx_host_sds_ring *sds_ring;
struct nx_host_tx_ring *tx_ring = &adapter->tx_ring;
struct netxen_rx_buffer *rx_buf;
int ring, i, num_rx_bufs;
struct netxen_cmd_buffer *cmd_buf_arr;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
tx_ring->num_desc = adapter->num_txd;
cmd_buf_arr =
(struct netxen_cmd_buffer *)vmalloc(TX_BUFF_RINGSIZE(tx_ring));
if (cmd_buf_arr == NULL) {
dev_err(&pdev->dev, "%s: failed to allocate cmd buffer ring\n",
netdev->name);
return -ENOMEM;
}
memset(cmd_buf_arr, 0, TX_BUFF_RINGSIZE(tx_ring));
tx_ring->cmd_buf_arr = cmd_buf_arr;
recv_ctx = &adapter->recv_ctx;
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
rds_ring = &recv_ctx->rds_rings[ring];
switch (ring) {
case RCV_RING_NORMAL:
rds_ring->num_desc = adapter->num_rxd;
if (adapter->ahw.cut_through) {
rds_ring->dma_size =
NX_CT_DEFAULT_RX_BUF_LEN;
rds_ring->skb_size =
NX_CT_DEFAULT_RX_BUF_LEN;
} else {
rds_ring->dma_size = RX_DMA_MAP_LEN;
rds_ring->skb_size =
MAX_RX_BUFFER_LENGTH;
}
break;
case RCV_RING_JUMBO:
rds_ring->num_desc = adapter->num_jumbo_rxd;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id))
rds_ring->dma_size =
NX_P3_RX_JUMBO_BUF_MAX_LEN;
else
rds_ring->dma_size =
NX_P2_RX_JUMBO_BUF_MAX_LEN;
rds_ring->skb_size =
rds_ring->dma_size + NET_IP_ALIGN;
break;
case RCV_RING_LRO:
rds_ring->num_desc = adapter->num_lro_rxd;
rds_ring->dma_size = RX_LRO_DMA_MAP_LEN;
rds_ring->skb_size = MAX_RX_LRO_BUFFER_LENGTH;
break;
}
rds_ring->rx_buf_arr = (struct netxen_rx_buffer *)
vmalloc(RCV_BUFF_RINGSIZE(rds_ring));
if (rds_ring->rx_buf_arr == NULL) {
printk(KERN_ERR "%s: Failed to allocate "
"rx buffer ring %d\n",
netdev->name, ring);
/* free whatever was already allocated */
goto err_out;
}
memset(rds_ring->rx_buf_arr, 0, RCV_BUFF_RINGSIZE(rds_ring));
INIT_LIST_HEAD(&rds_ring->free_list);
/*
* Now go through all of them, set reference handles
* and put them in the queues.
*/
num_rx_bufs = rds_ring->num_desc;
rx_buf = rds_ring->rx_buf_arr;
for (i = 0; i < num_rx_bufs; i++) {
list_add_tail(&rx_buf->list,
&rds_ring->free_list);
rx_buf->ref_handle = i;
rx_buf->state = NETXEN_BUFFER_FREE;
rx_buf++;
}
spin_lock_init(&rds_ring->lock);
}
for (ring = 0; ring < adapter->max_sds_rings; ring++) {
sds_ring = &recv_ctx->sds_rings[ring];
sds_ring->irq = adapter->msix_entries[ring].vector;
sds_ring->adapter = adapter;
sds_ring->num_desc = adapter->num_rxd;
for (i = 0; i < NUM_RCV_DESC_RINGS; i++)
INIT_LIST_HEAD(&sds_ring->free_list[i]);
}
return 0;
err_out:
netxen_free_sw_resources(adapter);
return -ENOMEM;
}
void netxen_initialize_adapter_ops(struct netxen_adapter *adapter)
{
switch (adapter->ahw.port_type) {
case NETXEN_NIC_GBE:
adapter->enable_phy_interrupts =
netxen_niu_gbe_enable_phy_interrupts;
adapter->disable_phy_interrupts =
netxen_niu_gbe_disable_phy_interrupts;
adapter->macaddr_set = netxen_niu_macaddr_set;
adapter->set_mtu = netxen_nic_set_mtu_gb;
adapter->set_promisc = netxen_niu_set_promiscuous_mode;
adapter->phy_read = netxen_niu_gbe_phy_read;
adapter->phy_write = netxen_niu_gbe_phy_write;
adapter->init_port = netxen_niu_gbe_init_port;
adapter->stop_port = netxen_niu_disable_gbe_port;
break;
case NETXEN_NIC_XGBE:
adapter->enable_phy_interrupts =
netxen_niu_xgbe_enable_phy_interrupts;
adapter->disable_phy_interrupts =
netxen_niu_xgbe_disable_phy_interrupts;
adapter->macaddr_set = netxen_niu_xg_macaddr_set;
adapter->set_mtu = netxen_nic_set_mtu_xgb;
adapter->init_port = netxen_niu_xg_init_port;
adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode;
adapter->stop_port = netxen_niu_disable_xg_port;
break;
default:
break;
}
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
adapter->set_mtu = nx_fw_cmd_set_mtu;
adapter->set_promisc = netxen_p3_nic_set_promisc;
}
}
/*
* netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB
* address to external PCI CRB address.
*/
static u32 netxen_decode_crb_addr(u32 addr)
{
int i;
u32 base_addr, offset, pci_base;
crb_addr_transform_setup();
pci_base = NETXEN_ADDR_ERROR;
base_addr = addr & 0xfff00000;
offset = addr & 0x000fffff;
for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) {
if (crb_addr_xform[i] == base_addr) {
pci_base = i << 20;
break;
}
}
if (pci_base == NETXEN_ADDR_ERROR)
return pci_base;
else
return (pci_base + offset);
}
static long rom_max_timeout = 100;
static long rom_lock_timeout = 10000;
static int rom_lock(struct netxen_adapter *adapter)
{
int iter;
u32 done = 0;
int timeout = 0;
while (!done) {
/* acquire semaphore2 from PCI HW block */
netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK),
&done);
if (done == 1)
break;
if (timeout >= rom_lock_timeout)
return -EIO;
timeout++;
/*
* Yield CPU
*/
if (!in_atomic())
schedule();
else {
for (iter = 0; iter < 20; iter++)
cpu_relax(); /*This a nop instr on i386 */
}
}
netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER);
return 0;
}
static int netxen_wait_rom_done(struct netxen_adapter *adapter)
{
long timeout = 0;
long done = 0;
cond_resched();
while (done == 0) {
done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS);
done &= 2;
timeout++;
if (timeout >= rom_max_timeout) {
printk("Timeout reached waiting for rom done");
return -EIO;
}
}
return 0;
}
static void netxen_rom_unlock(struct netxen_adapter *adapter)
{
u32 val;
/* release semaphore2 */
netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val);
}
static int do_rom_fast_read(struct netxen_adapter *adapter,
int addr, int *valp)
{
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb);
if (netxen_wait_rom_done(adapter)) {
printk("Error waiting for rom done\n");
return -EIO;
}
/* reset abyte_cnt and dummy_byte_cnt */
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0);
udelay(10);
netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0);
*valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA);
return 0;
}
static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int addridx;
int ret = 0;
for (addridx = addr; addridx < (addr + size); addridx += 4) {
int v;
ret = do_rom_fast_read(adapter, addridx, &v);
if (ret != 0)
break;
*(__le32 *)bytes = cpu_to_le32(v);
bytes += 4;
}
return ret;
}
int
netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr,
u8 *bytes, size_t size)
{
int ret;
ret = rom_lock(adapter);
if (ret < 0)
return ret;
ret = do_rom_fast_read_words(adapter, addr, bytes, size);
netxen_rom_unlock(adapter);
return ret;
}
int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp)
{
int ret;
if (rom_lock(adapter) != 0)
return -EIO;
ret = do_rom_fast_read(adapter, addr, valp);
netxen_rom_unlock(adapter);
return ret;
}
#define NETXEN_BOARDTYPE 0x4008
#define NETXEN_BOARDNUM 0x400c
#define NETXEN_CHIPNUM 0x4010
int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose)
{
int addr, val;
int i, n, init_delay = 0;
struct crb_addr_pair *buf;
unsigned offset;
u32 off;
/* resetall */
rom_lock(adapter);
netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET,
0xffffffff);
netxen_rom_unlock(adapter);
if (verbose) {
if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0)
printk("P2 ROM board type: 0x%08x\n", val);
else
printk("Could not read board type\n");
if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0)
printk("P2 ROM board num: 0x%08x\n", val);
else
printk("Could not read board number\n");
if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0)
printk("P2 ROM chip num: 0x%08x\n", val);
else
printk("Could not read chip number\n");
}
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
(n != 0xcafecafe) ||
netxen_rom_fast_read(adapter, 4, &n) != 0) {
printk(KERN_ERR "%s: ERROR Reading crb_init area: "
"n: %08x\n", netxen_nic_driver_name, n);
return -EIO;
}
offset = n & 0xffffU;
n = (n >> 16) & 0xffffU;
} else {
if (netxen_rom_fast_read(adapter, 0, &n) != 0 ||
!(n & 0x80000000)) {
printk(KERN_ERR "%s: ERROR Reading crb_init area: "
"n: %08x\n", netxen_nic_driver_name, n);
return -EIO;
}
offset = 1;
n &= ~0x80000000;
}
if (n < 1024) {
if (verbose)
printk(KERN_DEBUG "%s: %d CRB init values found"
" in ROM.\n", netxen_nic_driver_name, n);
} else {
printk(KERN_ERR "%s:n=0x%x Error! NetXen card flash not"
" initialized.\n", __func__, n);
return -EIO;
}
buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL);
if (buf == NULL) {
printk("%s: netxen_pinit_from_rom: Unable to calloc memory.\n",
netxen_nic_driver_name);
return -ENOMEM;
}
for (i = 0; i < n; i++) {
if (netxen_rom_fast_read(adapter, 8*i + 4*offset, &val) != 0 ||
netxen_rom_fast_read(adapter, 8*i + 4*offset + 4, &addr) != 0) {
kfree(buf);
return -EIO;
}
buf[i].addr = addr;
buf[i].data = val;
if (verbose)
printk(KERN_DEBUG "%s: PCI: 0x%08x == 0x%08x\n",
netxen_nic_driver_name,
(u32)netxen_decode_crb_addr(addr), val);
}
for (i = 0; i < n; i++) {
off = netxen_decode_crb_addr(buf[i].addr);
if (off == NETXEN_ADDR_ERROR) {
printk(KERN_ERR"CRB init value out of range %x\n",
buf[i].addr);
continue;
}
off += NETXEN_PCI_CRBSPACE;
/* skipping cold reboot MAGIC */
if (off == NETXEN_CAM_RAM(0x1fc))
continue;
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
/* do not reset PCI */
if (off == (ROMUSB_GLB + 0xbc))
continue;
if (off == (ROMUSB_GLB + 0xa8))
continue;
if (off == (ROMUSB_GLB + 0xc8)) /* core clock */
continue;
if (off == (ROMUSB_GLB + 0x24)) /* MN clock */
continue;
if (off == (ROMUSB_GLB + 0x1c)) /* MS clock */
continue;
if (off == (NETXEN_CRB_PEG_NET_1 + 0x18))
buf[i].data = 0x1020;
/* skip the function enable register */
if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION))
continue;
if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION2))
continue;
if ((off & 0x0ff00000) == NETXEN_CRB_SMB)
continue;
}
if (off == NETXEN_ADDR_ERROR) {
printk(KERN_ERR "%s: Err: Unknown addr: 0x%08x\n",
netxen_nic_driver_name, buf[i].addr);
continue;
}
init_delay = 1;
/* After writing this register, HW needs time for CRB */
/* to quiet down (else crb_window returns 0xffffffff) */
if (off == NETXEN_ROMUSB_GLB_SW_RESET) {
init_delay = 1000;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
/* hold xdma in reset also */
buf[i].data = NETXEN_NIC_XDMA_RESET;
buf[i].data = 0x8000ff;
}
}
adapter->hw_write_wx(adapter, off, &buf[i].data, 4);
msleep(init_delay);
}
kfree(buf);
/* disable_peg_cache_all */
/* unreset_net_cache */
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
adapter->hw_read_wx(adapter,
NETXEN_ROMUSB_GLB_SW_RESET, &val, 4);
netxen_crb_writelit_adapter(adapter,
NETXEN_ROMUSB_GLB_SW_RESET, (val & 0xffffff0f));
}
/* p2dn replyCount */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0xec, 0x1e);
/* disable_peg_cache 0 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0x4c, 8);
/* disable_peg_cache 1 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_I + 0x4c, 8);
/* peg_clr_all */
/* peg_clr 0 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc, 0);
/* peg_clr 1 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc, 0);
/* peg_clr 2 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc, 0);
/* peg_clr 3 */
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8, 0);
netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc, 0);
return 0;
}
int netxen_initialize_adapter_offload(struct netxen_adapter *adapter)
{
uint64_t addr;
uint32_t hi;
uint32_t lo;
adapter->dummy_dma.addr =
pci_alloc_consistent(adapter->pdev,
NETXEN_HOST_DUMMY_DMA_SIZE,
&adapter->dummy_dma.phys_addr);
if (adapter->dummy_dma.addr == NULL) {
printk("%s: ERROR: Could not allocate dummy DMA memory\n",
__func__);
return -ENOMEM;
}
addr = (uint64_t) adapter->dummy_dma.phys_addr;
hi = (addr >> 32) & 0xffffffff;
lo = addr & 0xffffffff;
adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI, hi);
adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO, lo);
if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) {
uint32_t temp = 0;
adapter->hw_write_wx(adapter, CRB_HOST_DUMMY_BUF, &temp, 4);
}
return 0;
}
void netxen_free_adapter_offload(struct netxen_adapter *adapter)
{
int i = 100;
if (!adapter->dummy_dma.addr)
return;
if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) {
do {
if (dma_watchdog_shutdown_request(adapter) == 1)
break;
msleep(50);
if (dma_watchdog_shutdown_poll_result(adapter) == 1)
break;
} while (--i);
}
if (i) {
pci_free_consistent(adapter->pdev,
NETXEN_HOST_DUMMY_DMA_SIZE,
adapter->dummy_dma.addr,
adapter->dummy_dma.phys_addr);
adapter->dummy_dma.addr = NULL;
} else {
printk(KERN_ERR "%s: dma_watchdog_shutdown failed\n",
adapter->netdev->name);
}
}
int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val)
{
u32 val = 0;
int retries = 60;
if (!pegtune_val) {
do {
val = adapter->pci_read_normalize(adapter,
CRB_CMDPEG_STATE);
if (val == PHAN_INITIALIZE_COMPLETE ||
val == PHAN_INITIALIZE_ACK)
return 0;
msleep(500);
} while (--retries);
if (!retries) {
pegtune_val = adapter->pci_read_normalize(adapter,
NETXEN_ROMUSB_GLB_PEGTUNE_DONE);
printk(KERN_WARNING "netxen_phantom_init: init failed, "
"pegtune_val=%x\n", pegtune_val);
return -1;
}
}
return 0;
}
int netxen_receive_peg_ready(struct netxen_adapter *adapter)
{
u32 val = 0;
int retries = 2000;
do {
val = adapter->pci_read_normalize(adapter, CRB_RCVPEG_STATE);
if (val == PHAN_PEG_RCV_INITIALIZED)
return 0;
msleep(10);
} while (--retries);
if (!retries) {
printk(KERN_ERR "Receive Peg initialization not "
"complete, state: 0x%x.\n", val);
return -EIO;
}
return 0;
}
static int
netxen_alloc_rx_skb(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring,
struct netxen_rx_buffer *buffer)
{
struct sk_buff *skb;
dma_addr_t dma;
struct pci_dev *pdev = adapter->pdev;
buffer->skb = dev_alloc_skb(rds_ring->skb_size);
if (!buffer->skb)
return 1;
skb = buffer->skb;
if (!adapter->ahw.cut_through)
skb_reserve(skb, 2);
dma = pci_map_single(pdev, skb->data,
rds_ring->dma_size, PCI_DMA_FROMDEVICE);
if (pci_dma_mapping_error(pdev, dma)) {
dev_kfree_skb_any(skb);
buffer->skb = NULL;
return 1;
}
buffer->skb = skb;
buffer->dma = dma;
buffer->state = NETXEN_BUFFER_BUSY;
return 0;
}
static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring, u16 index, u16 cksum)
{
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
buffer = &rds_ring->rx_buf_arr[index];
pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size,
PCI_DMA_FROMDEVICE);
skb = buffer->skb;
if (!skb)
goto no_skb;
if (likely(adapter->rx_csum && cksum == STATUS_CKSUM_OK)) {
adapter->stats.csummed++;
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
skb->ip_summed = CHECKSUM_NONE;
skb->dev = adapter->netdev;
buffer->skb = NULL;
no_skb:
buffer->state = NETXEN_BUFFER_FREE;
return skb;
}
static struct netxen_rx_buffer *
netxen_process_rcv(struct netxen_adapter *adapter,
int ring, int index, int length, int cksum, int pkt_offset)
{
struct net_device *netdev = adapter->netdev;
struct netxen_recv_context *recv_ctx = &adapter->recv_ctx;
struct netxen_rx_buffer *buffer;
struct sk_buff *skb;
struct nx_host_rds_ring *rds_ring = &recv_ctx->rds_rings[ring];
if (unlikely(index > rds_ring->num_desc))
return NULL;
buffer = &rds_ring->rx_buf_arr[index];
skb = netxen_process_rxbuf(adapter, rds_ring, index, cksum);
if (!skb)
return buffer;
if (length > rds_ring->skb_size)
skb_put(skb, rds_ring->skb_size);
else
skb_put(skb, length);
if (pkt_offset)
skb_pull(skb, pkt_offset);
skb->protocol = eth_type_trans(skb, netdev);
netif_receive_skb(skb);
adapter->stats.no_rcv++;
adapter->stats.rxbytes += length;
return buffer;
}
#define netxen_merge_rx_buffers(list, head) \
do { list_splice_tail_init(list, head); } while (0);
int
netxen_process_rcv_ring(struct nx_host_sds_ring *sds_ring, int max)
{
struct netxen_adapter *adapter = sds_ring->adapter;
struct list_head *cur;
struct status_desc *desc;
struct netxen_rx_buffer *rxbuf;
u32 consumer = sds_ring->consumer;
int count = 0;
u64 sts_data;
int opcode, ring, index, length, cksum, pkt_offset;
while (count < max) {
desc = &sds_ring->desc_head[consumer];
sts_data = le64_to_cpu(desc->status_desc_data);
if (!(sts_data & STATUS_OWNER_HOST))
break;
ring = netxen_get_sts_type(sts_data);
if (ring > RCV_RING_JUMBO)
continue;
opcode = netxen_get_sts_opcode(sts_data);
index = netxen_get_sts_refhandle(sts_data);
length = netxen_get_sts_totallength(sts_data);
cksum = netxen_get_sts_status(sts_data);
pkt_offset = netxen_get_sts_pkt_offset(sts_data);
rxbuf = netxen_process_rcv(adapter, ring, index,
length, cksum, pkt_offset);
if (rxbuf)
list_add_tail(&rxbuf->list, &sds_ring->free_list[ring]);
desc->status_desc_data = cpu_to_le64(STATUS_OWNER_PHANTOM);
consumer = get_next_index(consumer, sds_ring->num_desc);
count++;
}
for (ring = 0; ring < adapter->max_rds_rings; ring++) {
struct nx_host_rds_ring *rds_ring =
&adapter->recv_ctx.rds_rings[ring];
if (!list_empty(&sds_ring->free_list[ring])) {
list_for_each(cur, &sds_ring->free_list[ring]) {
rxbuf = list_entry(cur,
struct netxen_rx_buffer, list);
netxen_alloc_rx_skb(adapter, rds_ring, rxbuf);
}
spin_lock(&rds_ring->lock);
netxen_merge_rx_buffers(&sds_ring->free_list[ring],
&rds_ring->free_list);
spin_unlock(&rds_ring->lock);
}
netxen_post_rx_buffers_nodb(adapter, rds_ring);
}
if (count) {
sds_ring->consumer = consumer;
adapter->pci_write_normalize(adapter,
sds_ring->crb_sts_consumer, consumer);
}
return count;
}
/* Process Command status ring */
int netxen_process_cmd_ring(struct netxen_adapter *adapter)
{
u32 sw_consumer, hw_consumer;
int count = 0, i;
struct netxen_cmd_buffer *buffer;
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
struct netxen_skb_frag *frag;
int done = 0;
struct nx_host_tx_ring *tx_ring = &adapter->tx_ring;
if (!spin_trylock(&adapter->tx_clean_lock))
return 1;
sw_consumer = tx_ring->sw_consumer;
barrier(); /* hw_consumer can change underneath */
hw_consumer = le32_to_cpu(*(tx_ring->hw_consumer));
while (sw_consumer != hw_consumer) {
buffer = &tx_ring->cmd_buf_arr[sw_consumer];
if (buffer->skb) {
frag = &buffer->frag_array[0];
pci_unmap_single(pdev, frag->dma, frag->length,
PCI_DMA_TODEVICE);
frag->dma = 0ULL;
for (i = 1; i < buffer->frag_count; i++) {
frag++; /* Get the next frag */
pci_unmap_page(pdev, frag->dma, frag->length,
PCI_DMA_TODEVICE);
frag->dma = 0ULL;
}
adapter->stats.xmitfinished++;
dev_kfree_skb_any(buffer->skb);
buffer->skb = NULL;
}
sw_consumer = get_next_index(sw_consumer, tx_ring->num_desc);
if (++count >= MAX_STATUS_HANDLE)
break;
}
if (count) {
tx_ring->sw_consumer = sw_consumer;
smp_mb();
if (netif_queue_stopped(netdev) && netif_running(netdev)) {
netif_tx_lock(netdev);
netif_wake_queue(netdev);
smp_mb();
netif_tx_unlock(netdev);
}
}
/*
* If everything is freed up to consumer then check if the ring is full
* If the ring is full then check if more needs to be freed and
* schedule the call back again.
*
* This happens when there are 2 CPUs. One could be freeing and the
* other filling it. If the ring is full when we get out of here and
* the card has already interrupted the host then the host can miss the
* interrupt.
*
* There is still a possible race condition and the host could miss an
* interrupt. The card has to take care of this.
*/
barrier(); /* hw_consumer can change underneath */
hw_consumer = le32_to_cpu(*(tx_ring->hw_consumer));
done = (sw_consumer == hw_consumer);
spin_unlock(&adapter->tx_clean_lock);
return (done);
}
void
netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ringid,
struct nx_host_rds_ring *rds_ring)
{
struct rcv_desc *pdesc;
struct netxen_rx_buffer *buffer;
int producer, count = 0;
netxen_ctx_msg msg = 0;
struct list_head *head;
producer = rds_ring->producer;
spin_lock(&rds_ring->lock);
head = &rds_ring->free_list;
while (!list_empty(head)) {
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
if (!buffer->skb) {
if (netxen_alloc_rx_skb(adapter, rds_ring, buffer))
break;
}
count++;
list_del(&buffer->list);
/* make a rcv descriptor */
pdesc = &rds_ring->desc_head[producer];
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
producer = get_next_index(producer, rds_ring->num_desc);
}
spin_unlock(&rds_ring->lock);
if (count) {
rds_ring->producer = producer;
adapter->pci_write_normalize(adapter,
rds_ring->crb_rcv_producer,
(producer-1) & (rds_ring->num_desc-1));
if (adapter->fw_major < 4) {
/*
* Write a doorbell msg to tell phanmon of change in
* receive ring producer
* Only for firmware version < 4.0.0
*/
netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID);
netxen_set_msg_privid(msg);
netxen_set_msg_count(msg,
((producer - 1) &
(rds_ring->num_desc - 1)));
netxen_set_msg_ctxid(msg, adapter->portnum);
netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid));
writel(msg,
DB_NORMALIZE(adapter,
NETXEN_RCV_PRODUCER_OFFSET));
}
}
}
static void
netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter,
struct nx_host_rds_ring *rds_ring)
{
struct rcv_desc *pdesc;
struct netxen_rx_buffer *buffer;
int producer, count = 0;
struct list_head *head;
producer = rds_ring->producer;
if (!spin_trylock(&rds_ring->lock))
return;
head = &rds_ring->free_list;
while (!list_empty(head)) {
buffer = list_entry(head->next, struct netxen_rx_buffer, list);
if (!buffer->skb) {
if (netxen_alloc_rx_skb(adapter, rds_ring, buffer))
break;
}
count++;
list_del(&buffer->list);
/* make a rcv descriptor */
pdesc = &rds_ring->desc_head[producer];
pdesc->reference_handle = cpu_to_le16(buffer->ref_handle);
pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size);
pdesc->addr_buffer = cpu_to_le64(buffer->dma);
producer = get_next_index(producer, rds_ring->num_desc);
}
if (count) {
rds_ring->producer = producer;
adapter->pci_write_normalize(adapter,
rds_ring->crb_rcv_producer,
(producer - 1) & (rds_ring->num_desc - 1));
wmb();
}
spin_unlock(&rds_ring->lock);
}
void netxen_nic_clear_stats(struct netxen_adapter *adapter)
{
memset(&adapter->stats, 0, sizeof(adapter->stats));
return;
}