703 строки
16 KiB
C
703 строки
16 KiB
C
|
#ifndef _ASM_M32R_BITOPS_H
|
||
|
#define _ASM_M32R_BITOPS_H
|
||
|
|
||
|
/*
|
||
|
* linux/include/asm-m32r/bitops.h
|
||
|
*
|
||
|
* Copyright 1992, Linus Torvalds.
|
||
|
*
|
||
|
* M32R version:
|
||
|
* Copyright (C) 2001, 2002 Hitoshi Yamamoto
|
||
|
* Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
|
||
|
*/
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
#include <linux/compiler.h>
|
||
|
#include <asm/assembler.h>
|
||
|
#include <asm/system.h>
|
||
|
#include <asm/byteorder.h>
|
||
|
#include <asm/types.h>
|
||
|
|
||
|
/*
|
||
|
* These have to be done with inline assembly: that way the bit-setting
|
||
|
* is guaranteed to be atomic. All bit operations return 0 if the bit
|
||
|
* was cleared before the operation and != 0 if it was not.
|
||
|
*
|
||
|
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* set_bit - Atomically set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* This function is atomic and may not be reordered. See __set_bit()
|
||
|
* if you do not require the atomic guarantees.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
static __inline__ void set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
volatile __u32 *a = addr;
|
||
|
unsigned long flags;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
__asm__ __volatile__ (
|
||
|
DCACHE_CLEAR("%0", "r6", "%1")
|
||
|
M32R_LOCK" %0, @%1; \n\t"
|
||
|
"or %0, %2; \n\t"
|
||
|
M32R_UNLOCK" %0, @%1; \n\t"
|
||
|
: "=&r" (tmp)
|
||
|
: "r" (a), "r" (mask)
|
||
|
: "memory"
|
||
|
#ifdef CONFIG_CHIP_M32700_TS1
|
||
|
, "r6"
|
||
|
#endif /* CONFIG_CHIP_M32700_TS1 */
|
||
|
);
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __set_bit - Set a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike set_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
static __inline__ void __set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
volatile __u32 *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
*a |= mask;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* clear_bit - Clears a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* clear_bit() is atomic and may not be reordered. However, it does
|
||
|
* not contain a memory barrier, so if it is used for locking purposes,
|
||
|
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
|
||
|
* in order to ensure changes are visible on other processors.
|
||
|
*/
|
||
|
static __inline__ void clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
volatile __u32 *a = addr;
|
||
|
unsigned long flags;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
__asm__ __volatile__ (
|
||
|
DCACHE_CLEAR("%0", "r6", "%1")
|
||
|
M32R_LOCK" %0, @%1; \n\t"
|
||
|
"and %0, %2; \n\t"
|
||
|
M32R_UNLOCK" %0, @%1; \n\t"
|
||
|
: "=&r" (tmp)
|
||
|
: "r" (a), "r" (~mask)
|
||
|
: "memory"
|
||
|
#ifdef CONFIG_CHIP_M32700_TS1
|
||
|
, "r6"
|
||
|
#endif /* CONFIG_CHIP_M32700_TS1 */
|
||
|
);
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
static __inline__ void __clear_bit(int nr, volatile unsigned long * addr)
|
||
|
{
|
||
|
unsigned long mask;
|
||
|
volatile unsigned long *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
*a &= ~mask;
|
||
|
}
|
||
|
|
||
|
#define smp_mb__before_clear_bit() barrier()
|
||
|
#define smp_mb__after_clear_bit() barrier()
|
||
|
|
||
|
/**
|
||
|
* __change_bit - Toggle a bit in memory
|
||
|
* @nr: the bit to set
|
||
|
* @addr: the address to start counting from
|
||
|
*
|
||
|
* Unlike change_bit(), this function is non-atomic and may be reordered.
|
||
|
* If it's called on the same region of memory simultaneously, the effect
|
||
|
* may be that only one operation succeeds.
|
||
|
*/
|
||
|
static __inline__ void __change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
volatile __u32 *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
*a ^= mask;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* change_bit - Toggle a bit in memory
|
||
|
* @nr: Bit to clear
|
||
|
* @addr: Address to start counting from
|
||
|
*
|
||
|
* change_bit() is atomic and may not be reordered.
|
||
|
* Note that @nr may be almost arbitrarily large; this function is not
|
||
|
* restricted to acting on a single-word quantity.
|
||
|
*/
|
||
|
static __inline__ void change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
volatile __u32 *a = addr;
|
||
|
unsigned long flags;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
__asm__ __volatile__ (
|
||
|
DCACHE_CLEAR("%0", "r6", "%1")
|
||
|
M32R_LOCK" %0, @%1; \n\t"
|
||
|
"xor %0, %2; \n\t"
|
||
|
M32R_UNLOCK" %0, @%1; \n\t"
|
||
|
: "=&r" (tmp)
|
||
|
: "r" (a), "r" (mask)
|
||
|
: "memory"
|
||
|
#ifdef CONFIG_CHIP_M32700_TS1
|
||
|
, "r6"
|
||
|
#endif /* CONFIG_CHIP_M32700_TS1 */
|
||
|
);
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
static __inline__ int test_and_set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask, oldbit;
|
||
|
volatile __u32 *a = addr;
|
||
|
unsigned long flags;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
__asm__ __volatile__ (
|
||
|
DCACHE_CLEAR("%0", "%1", "%2")
|
||
|
M32R_LOCK" %0, @%2; \n\t"
|
||
|
"mv %1, %0; \n\t"
|
||
|
"and %0, %3; \n\t"
|
||
|
"or %1, %3; \n\t"
|
||
|
M32R_UNLOCK" %1, @%2; \n\t"
|
||
|
: "=&r" (oldbit), "=&r" (tmp)
|
||
|
: "r" (a), "r" (mask)
|
||
|
: "memory"
|
||
|
);
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __test_and_set_bit - Set a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask, oldbit;
|
||
|
volatile __u32 *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
oldbit = (*a & mask);
|
||
|
*a |= mask;
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask, oldbit;
|
||
|
volatile __u32 *a = addr;
|
||
|
unsigned long flags;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
__asm__ __volatile__ (
|
||
|
DCACHE_CLEAR("%0", "%1", "%3")
|
||
|
M32R_LOCK" %0, @%3; \n\t"
|
||
|
"mv %1, %0; \n\t"
|
||
|
"and %0, %2; \n\t"
|
||
|
"not %2, %2; \n\t"
|
||
|
"and %1, %2; \n\t"
|
||
|
M32R_UNLOCK" %1, @%3; \n\t"
|
||
|
: "=&r" (oldbit), "=&r" (tmp), "+r" (mask)
|
||
|
: "r" (a)
|
||
|
: "memory"
|
||
|
);
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __test_and_clear_bit - Clear a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is non-atomic and can be reordered.
|
||
|
* If two examples of this operation race, one can appear to succeed
|
||
|
* but actually fail. You must protect multiple accesses with a lock.
|
||
|
*/
|
||
|
static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask, oldbit;
|
||
|
volatile __u32 *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
oldbit = (*a & mask);
|
||
|
*a &= ~mask;
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
/* WARNING: non atomic and it can be reordered! */
|
||
|
static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask, oldbit;
|
||
|
volatile __u32 *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
oldbit = (*a & mask);
|
||
|
*a ^= mask;
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_and_change_bit - Change a bit and return its old value
|
||
|
* @nr: Bit to set
|
||
|
* @addr: Address to count from
|
||
|
*
|
||
|
* This operation is atomic and cannot be reordered.
|
||
|
* It also implies a memory barrier.
|
||
|
*/
|
||
|
static __inline__ int test_and_change_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u32 mask, oldbit;
|
||
|
volatile __u32 *a = addr;
|
||
|
unsigned long flags;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
__asm__ __volatile__ (
|
||
|
DCACHE_CLEAR("%0", "%1", "%2")
|
||
|
M32R_LOCK" %0, @%2; \n\t"
|
||
|
"mv %1, %0; \n\t"
|
||
|
"and %0, %3; \n\t"
|
||
|
"xor %1, %3; \n\t"
|
||
|
M32R_UNLOCK" %1, @%2; \n\t"
|
||
|
: "=&r" (oldbit), "=&r" (tmp)
|
||
|
: "r" (a), "r" (mask)
|
||
|
: "memory"
|
||
|
);
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* test_bit - Determine whether a bit is set
|
||
|
* @nr: bit number to test
|
||
|
* @addr: Address to start counting from
|
||
|
*/
|
||
|
static __inline__ int test_bit(int nr, const volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
const volatile __u32 *a = addr;
|
||
|
|
||
|
a += (nr >> 5);
|
||
|
mask = (1 << (nr & 0x1F));
|
||
|
|
||
|
return ((*a & mask) != 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* ffz - find first zero in word.
|
||
|
* @word: The word to search
|
||
|
*
|
||
|
* Undefined if no zero exists, so code should check against ~0UL first.
|
||
|
*/
|
||
|
static __inline__ unsigned long ffz(unsigned long word)
|
||
|
{
|
||
|
int k;
|
||
|
|
||
|
word = ~word;
|
||
|
k = 0;
|
||
|
if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
|
||
|
if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
|
||
|
if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
|
||
|
if (!(word & 0x00000003)) { k += 2; word >>= 2; }
|
||
|
if (!(word & 0x00000001)) { k += 1; }
|
||
|
|
||
|
return k;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* find_first_zero_bit - find the first zero bit in a memory region
|
||
|
* @addr: The address to start the search at
|
||
|
* @size: The maximum size to search
|
||
|
*
|
||
|
* Returns the bit-number of the first zero bit, not the number of the byte
|
||
|
* containing a bit.
|
||
|
*/
|
||
|
|
||
|
#define find_first_zero_bit(addr, size) \
|
||
|
find_next_zero_bit((addr), (size), 0)
|
||
|
|
||
|
/**
|
||
|
* find_next_zero_bit - find the first zero bit in a memory region
|
||
|
* @addr: The address to base the search on
|
||
|
* @offset: The bitnumber to start searching at
|
||
|
* @size: The maximum size to search
|
||
|
*/
|
||
|
static __inline__ int find_next_zero_bit(const unsigned long *addr,
|
||
|
int size, int offset)
|
||
|
{
|
||
|
const unsigned long *p = addr + (offset >> 5);
|
||
|
unsigned long result = offset & ~31UL;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
if (offset >= size)
|
||
|
return size;
|
||
|
size -= result;
|
||
|
offset &= 31UL;
|
||
|
if (offset) {
|
||
|
tmp = *(p++);
|
||
|
tmp |= ~0UL >> (32-offset);
|
||
|
if (size < 32)
|
||
|
goto found_first;
|
||
|
if (~tmp)
|
||
|
goto found_middle;
|
||
|
size -= 32;
|
||
|
result += 32;
|
||
|
}
|
||
|
while (size & ~31UL) {
|
||
|
if (~(tmp = *(p++)))
|
||
|
goto found_middle;
|
||
|
result += 32;
|
||
|
size -= 32;
|
||
|
}
|
||
|
if (!size)
|
||
|
return result;
|
||
|
tmp = *p;
|
||
|
|
||
|
found_first:
|
||
|
tmp |= ~0UL << size;
|
||
|
found_middle:
|
||
|
return result + ffz(tmp);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* __ffs - find first bit in word.
|
||
|
* @word: The word to search
|
||
|
*
|
||
|
* Undefined if no bit exists, so code should check against 0 first.
|
||
|
*/
|
||
|
static __inline__ unsigned long __ffs(unsigned long word)
|
||
|
{
|
||
|
int k = 0;
|
||
|
|
||
|
if (!(word & 0x0000ffff)) { k += 16; word >>= 16; }
|
||
|
if (!(word & 0x000000ff)) { k += 8; word >>= 8; }
|
||
|
if (!(word & 0x0000000f)) { k += 4; word >>= 4; }
|
||
|
if (!(word & 0x00000003)) { k += 2; word >>= 2; }
|
||
|
if (!(word & 0x00000001)) { k += 1;}
|
||
|
|
||
|
return k;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* fls: find last bit set.
|
||
|
*/
|
||
|
#define fls(x) generic_fls(x)
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/*
|
||
|
* Every architecture must define this function. It's the fastest
|
||
|
* way of searching a 140-bit bitmap where the first 100 bits are
|
||
|
* unlikely to be set. It's guaranteed that at least one of the 140
|
||
|
* bits is cleared.
|
||
|
*/
|
||
|
static inline int sched_find_first_bit(unsigned long *b)
|
||
|
{
|
||
|
if (unlikely(b[0]))
|
||
|
return __ffs(b[0]);
|
||
|
if (unlikely(b[1]))
|
||
|
return __ffs(b[1]) + 32;
|
||
|
if (unlikely(b[2]))
|
||
|
return __ffs(b[2]) + 64;
|
||
|
if (b[3])
|
||
|
return __ffs(b[3]) + 96;
|
||
|
return __ffs(b[4]) + 128;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* find_next_bit - find the first set bit in a memory region
|
||
|
* @addr: The address to base the search on
|
||
|
* @offset: The bitnumber to start searching at
|
||
|
* @size: The maximum size to search
|
||
|
*/
|
||
|
static inline unsigned long find_next_bit(const unsigned long *addr,
|
||
|
unsigned long size, unsigned long offset)
|
||
|
{
|
||
|
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
|
||
|
unsigned int result = offset & ~31UL;
|
||
|
unsigned int tmp;
|
||
|
|
||
|
if (offset >= size)
|
||
|
return size;
|
||
|
size -= result;
|
||
|
offset &= 31UL;
|
||
|
if (offset) {
|
||
|
tmp = *p++;
|
||
|
tmp &= ~0UL << offset;
|
||
|
if (size < 32)
|
||
|
goto found_first;
|
||
|
if (tmp)
|
||
|
goto found_middle;
|
||
|
size -= 32;
|
||
|
result += 32;
|
||
|
}
|
||
|
while (size >= 32) {
|
||
|
if ((tmp = *p++) != 0)
|
||
|
goto found_middle;
|
||
|
result += 32;
|
||
|
size -= 32;
|
||
|
}
|
||
|
if (!size)
|
||
|
return result;
|
||
|
tmp = *p;
|
||
|
|
||
|
found_first:
|
||
|
tmp &= ~0UL >> (32 - size);
|
||
|
if (tmp == 0UL) /* Are any bits set? */
|
||
|
return result + size; /* Nope. */
|
||
|
found_middle:
|
||
|
return result + __ffs(tmp);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* find_first_bit - find the first set bit in a memory region
|
||
|
* @addr: The address to start the search at
|
||
|
* @size: The maximum size to search
|
||
|
*
|
||
|
* Returns the bit-number of the first set bit, not the number of the byte
|
||
|
* containing a bit.
|
||
|
*/
|
||
|
#define find_first_bit(addr, size) \
|
||
|
find_next_bit((addr), (size), 0)
|
||
|
|
||
|
/**
|
||
|
* ffs - find first bit set
|
||
|
* @x: the word to search
|
||
|
*
|
||
|
* This is defined the same way as
|
||
|
* the libc and compiler builtin ffs routines, therefore
|
||
|
* differs in spirit from the above ffz (man ffs).
|
||
|
*/
|
||
|
#define ffs(x) generic_ffs(x)
|
||
|
|
||
|
/**
|
||
|
* hweightN - returns the hamming weight of a N-bit word
|
||
|
* @x: the word to weigh
|
||
|
*
|
||
|
* The Hamming Weight of a number is the total number of bits set in it.
|
||
|
*/
|
||
|
|
||
|
#define hweight32(x) generic_hweight32(x)
|
||
|
#define hweight16(x) generic_hweight16(x)
|
||
|
#define hweight8(x) generic_hweight8(x)
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
#ifdef __KERNEL__
|
||
|
|
||
|
/*
|
||
|
* ext2_XXXX function
|
||
|
* orig: include/asm-sh/bitops.h
|
||
|
*/
|
||
|
|
||
|
#ifdef __LITTLE_ENDIAN__
|
||
|
#define ext2_set_bit test_and_set_bit
|
||
|
#define ext2_clear_bit __test_and_clear_bit
|
||
|
#define ext2_test_bit test_bit
|
||
|
#define ext2_find_first_zero_bit find_first_zero_bit
|
||
|
#define ext2_find_next_zero_bit find_next_zero_bit
|
||
|
#else
|
||
|
static inline int ext2_set_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u8 mask, oldbit;
|
||
|
volatile __u8 *a = addr;
|
||
|
|
||
|
a += (nr >> 3);
|
||
|
mask = (1 << (nr & 0x07));
|
||
|
oldbit = (*a & mask);
|
||
|
*a |= mask;
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
static inline int ext2_clear_bit(int nr, volatile void * addr)
|
||
|
{
|
||
|
__u8 mask, oldbit;
|
||
|
volatile __u8 *a = addr;
|
||
|
|
||
|
a += (nr >> 3);
|
||
|
mask = (1 << (nr & 0x07));
|
||
|
oldbit = (*a & mask);
|
||
|
*a &= ~mask;
|
||
|
|
||
|
return (oldbit != 0);
|
||
|
}
|
||
|
|
||
|
static inline int ext2_test_bit(int nr, const volatile void * addr)
|
||
|
{
|
||
|
__u32 mask;
|
||
|
const volatile __u8 *a = addr;
|
||
|
|
||
|
a += (nr >> 3);
|
||
|
mask = (1 << (nr & 0x07));
|
||
|
|
||
|
return ((mask & *a) != 0);
|
||
|
}
|
||
|
|
||
|
#define ext2_find_first_zero_bit(addr, size) \
|
||
|
ext2_find_next_zero_bit((addr), (size), 0)
|
||
|
|
||
|
static inline unsigned long ext2_find_next_zero_bit(void *addr,
|
||
|
unsigned long size, unsigned long offset)
|
||
|
{
|
||
|
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
|
||
|
unsigned long result = offset & ~31UL;
|
||
|
unsigned long tmp;
|
||
|
|
||
|
if (offset >= size)
|
||
|
return size;
|
||
|
size -= result;
|
||
|
offset &= 31UL;
|
||
|
if(offset) {
|
||
|
/* We hold the little endian value in tmp, but then the
|
||
|
* shift is illegal. So we could keep a big endian value
|
||
|
* in tmp, like this:
|
||
|
*
|
||
|
* tmp = __swab32(*(p++));
|
||
|
* tmp |= ~0UL >> (32-offset);
|
||
|
*
|
||
|
* but this would decrease preformance, so we change the
|
||
|
* shift:
|
||
|
*/
|
||
|
tmp = *(p++);
|
||
|
tmp |= __swab32(~0UL >> (32-offset));
|
||
|
if(size < 32)
|
||
|
goto found_first;
|
||
|
if(~tmp)
|
||
|
goto found_middle;
|
||
|
size -= 32;
|
||
|
result += 32;
|
||
|
}
|
||
|
while(size & ~31UL) {
|
||
|
if(~(tmp = *(p++)))
|
||
|
goto found_middle;
|
||
|
result += 32;
|
||
|
size -= 32;
|
||
|
}
|
||
|
if(!size)
|
||
|
return result;
|
||
|
tmp = *p;
|
||
|
|
||
|
found_first:
|
||
|
/* tmp is little endian, so we would have to swab the shift,
|
||
|
* see above. But then we have to swab tmp below for ffz, so
|
||
|
* we might as well do this here.
|
||
|
*/
|
||
|
return result + ffz(__swab32(tmp) | (~0UL << size));
|
||
|
found_middle:
|
||
|
return result + ffz(__swab32(tmp));
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#define ext2_set_bit_atomic(lock, nr, addr) \
|
||
|
({ \
|
||
|
int ret; \
|
||
|
spin_lock(lock); \
|
||
|
ret = ext2_set_bit((nr), (addr)); \
|
||
|
spin_unlock(lock); \
|
||
|
ret; \
|
||
|
})
|
||
|
|
||
|
#define ext2_clear_bit_atomic(lock, nr, addr) \
|
||
|
({ \
|
||
|
int ret; \
|
||
|
spin_lock(lock); \
|
||
|
ret = ext2_clear_bit((nr), (addr)); \
|
||
|
spin_unlock(lock); \
|
||
|
ret; \
|
||
|
})
|
||
|
|
||
|
/* Bitmap functions for the minix filesystem. */
|
||
|
#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
|
||
|
#define minix_set_bit(nr,addr) __set_bit(nr,addr)
|
||
|
#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
|
||
|
#define minix_test_bit(nr,addr) test_bit(nr,addr)
|
||
|
#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
|
||
|
|
||
|
#endif /* __KERNEL__ */
|
||
|
|
||
|
#endif /* _ASM_M32R_BITOPS_H */
|