2020-11-13 01:01:34 +03:00
|
|
|
.. SPDX-License-Identifier: GPL-2.0
|
|
|
|
|
|
|
|
===============================
|
|
|
|
Software Guard eXtensions (SGX)
|
|
|
|
===============================
|
|
|
|
|
|
|
|
Overview
|
|
|
|
========
|
|
|
|
|
|
|
|
Software Guard eXtensions (SGX) hardware enables for user space applications
|
|
|
|
to set aside private memory regions of code and data:
|
|
|
|
|
2021-10-29 20:49:56 +03:00
|
|
|
* Privileged (ring-0) ENCLS functions orchestrate the construction of the
|
2020-11-13 01:01:34 +03:00
|
|
|
regions.
|
|
|
|
* Unprivileged (ring-3) ENCLU functions allow an application to enter and
|
|
|
|
execute inside the regions.
|
|
|
|
|
|
|
|
These memory regions are called enclaves. An enclave can be only entered at a
|
|
|
|
fixed set of entry points. Each entry point can hold a single hardware thread
|
|
|
|
at a time. While the enclave is loaded from a regular binary file by using
|
|
|
|
ENCLS functions, only the threads inside the enclave can access its memory. The
|
|
|
|
region is denied from outside access by the CPU, and encrypted before it leaves
|
|
|
|
from LLC.
|
|
|
|
|
|
|
|
The support can be determined by
|
|
|
|
|
|
|
|
``grep sgx /proc/cpuinfo``
|
|
|
|
|
|
|
|
SGX must both be supported in the processor and enabled by the BIOS. If SGX
|
|
|
|
appears to be unsupported on a system which has hardware support, ensure
|
|
|
|
support is enabled in the BIOS. If a BIOS presents a choice between "Enabled"
|
|
|
|
and "Software Enabled" modes for SGX, choose "Enabled".
|
|
|
|
|
|
|
|
Enclave Page Cache
|
|
|
|
==================
|
|
|
|
|
|
|
|
SGX utilizes an *Enclave Page Cache (EPC)* to store pages that are associated
|
|
|
|
with an enclave. It is contained in a BIOS-reserved region of physical memory.
|
|
|
|
Unlike pages used for regular memory, pages can only be accessed from outside of
|
|
|
|
the enclave during enclave construction with special, limited SGX instructions.
|
|
|
|
|
|
|
|
Only a CPU executing inside an enclave can directly access enclave memory.
|
|
|
|
However, a CPU executing inside an enclave may access normal memory outside the
|
|
|
|
enclave.
|
|
|
|
|
|
|
|
The kernel manages enclave memory similar to how it treats device memory.
|
|
|
|
|
|
|
|
Enclave Page Types
|
|
|
|
------------------
|
|
|
|
|
|
|
|
**SGX Enclave Control Structure (SECS)**
|
|
|
|
Enclave's address range, attributes and other global data are defined
|
|
|
|
by this structure.
|
|
|
|
|
|
|
|
**Regular (REG)**
|
|
|
|
Regular EPC pages contain the code and data of an enclave.
|
|
|
|
|
|
|
|
**Thread Control Structure (TCS)**
|
|
|
|
Thread Control Structure pages define the entry points to an enclave and
|
|
|
|
track the execution state of an enclave thread.
|
|
|
|
|
|
|
|
**Version Array (VA)**
|
|
|
|
Version Array pages contain 512 slots, each of which can contain a version
|
|
|
|
number for a page evicted from the EPC.
|
|
|
|
|
|
|
|
Enclave Page Cache Map
|
|
|
|
----------------------
|
|
|
|
|
|
|
|
The processor tracks EPC pages in a hardware metadata structure called the
|
|
|
|
*Enclave Page Cache Map (EPCM)*. The EPCM contains an entry for each EPC page
|
|
|
|
which describes the owning enclave, access rights and page type among the other
|
|
|
|
things.
|
|
|
|
|
|
|
|
EPCM permissions are separate from the normal page tables. This prevents the
|
|
|
|
kernel from, for instance, allowing writes to data which an enclave wishes to
|
|
|
|
remain read-only. EPCM permissions may only impose additional restrictions on
|
|
|
|
top of normal x86 page permissions.
|
|
|
|
|
|
|
|
For all intents and purposes, the SGX architecture allows the processor to
|
|
|
|
invalidate all EPCM entries at will. This requires that software be prepared to
|
|
|
|
handle an EPCM fault at any time. In practice, this can happen on events like
|
|
|
|
power transitions when the ephemeral key that encrypts enclave memory is lost.
|
|
|
|
|
|
|
|
Application interface
|
|
|
|
=====================
|
|
|
|
|
|
|
|
Enclave build functions
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
In addition to the traditional compiler and linker build process, SGX has a
|
|
|
|
separate enclave “build” process. Enclaves must be built before they can be
|
|
|
|
executed (entered). The first step in building an enclave is opening the
|
|
|
|
**/dev/sgx_enclave** device. Since enclave memory is protected from direct
|
2021-10-29 20:49:56 +03:00
|
|
|
access, special privileged instructions are then used to copy data into enclave
|
2020-11-13 01:01:34 +03:00
|
|
|
pages and establish enclave page permissions.
|
|
|
|
|
|
|
|
.. kernel-doc:: arch/x86/kernel/cpu/sgx/ioctl.c
|
|
|
|
:functions: sgx_ioc_enclave_create
|
|
|
|
sgx_ioc_enclave_add_pages
|
|
|
|
sgx_ioc_enclave_init
|
|
|
|
sgx_ioc_enclave_provision
|
|
|
|
|
2022-05-10 21:08:57 +03:00
|
|
|
Enclave runtime management
|
|
|
|
--------------------------
|
|
|
|
|
|
|
|
Systems supporting SGX2 additionally support changes to initialized
|
|
|
|
enclaves: modifying enclave page permissions and type, and dynamically
|
|
|
|
adding and removing of enclave pages. When an enclave accesses an address
|
|
|
|
within its address range that does not have a backing page then a new
|
|
|
|
regular page will be dynamically added to the enclave. The enclave is
|
|
|
|
still required to run EACCEPT on the new page before it can be used.
|
|
|
|
|
|
|
|
.. kernel-doc:: arch/x86/kernel/cpu/sgx/ioctl.c
|
|
|
|
:functions: sgx_ioc_enclave_restrict_permissions
|
|
|
|
sgx_ioc_enclave_modify_types
|
|
|
|
sgx_ioc_enclave_remove_pages
|
|
|
|
|
2020-11-13 01:01:34 +03:00
|
|
|
Enclave vDSO
|
|
|
|
------------
|
|
|
|
|
|
|
|
Entering an enclave can only be done through SGX-specific EENTER and ERESUME
|
|
|
|
functions, and is a non-trivial process. Because of the complexity of
|
|
|
|
transitioning to and from an enclave, enclaves typically utilize a library to
|
|
|
|
handle the actual transitions. This is roughly analogous to how glibc
|
|
|
|
implementations are used by most applications to wrap system calls.
|
|
|
|
|
|
|
|
Another crucial characteristic of enclaves is that they can generate exceptions
|
|
|
|
as part of their normal operation that need to be handled in the enclave or are
|
|
|
|
unique to SGX.
|
|
|
|
|
|
|
|
Instead of the traditional signal mechanism to handle these exceptions, SGX
|
|
|
|
can leverage special exception fixup provided by the vDSO. The kernel-provided
|
|
|
|
vDSO function wraps low-level transitions to/from the enclave like EENTER and
|
|
|
|
ERESUME. The vDSO function intercepts exceptions that would otherwise generate
|
|
|
|
a signal and return the fault information directly to its caller. This avoids
|
|
|
|
the need to juggle signal handlers.
|
|
|
|
|
|
|
|
.. kernel-doc:: arch/x86/include/uapi/asm/sgx.h
|
|
|
|
:functions: vdso_sgx_enter_enclave_t
|
|
|
|
|
|
|
|
ksgxd
|
|
|
|
=====
|
|
|
|
|
2021-10-29 20:49:56 +03:00
|
|
|
SGX support includes a kernel thread called *ksgxd*.
|
2020-11-13 01:01:34 +03:00
|
|
|
|
|
|
|
EPC sanitization
|
|
|
|
----------------
|
|
|
|
|
|
|
|
ksgxd is started when SGX initializes. Enclave memory is typically ready
|
2021-10-29 20:49:56 +03:00
|
|
|
for use when the processor powers on or resets. However, if SGX has been in
|
2020-11-13 01:01:34 +03:00
|
|
|
use since the reset, enclave pages may be in an inconsistent state. This might
|
|
|
|
occur after a crash and kexec() cycle, for instance. At boot, ksgxd
|
|
|
|
reinitializes all enclave pages so that they can be allocated and re-used.
|
|
|
|
|
|
|
|
The sanitization is done by going through EPC address space and applying the
|
|
|
|
EREMOVE function to each physical page. Some enclave pages like SECS pages have
|
|
|
|
hardware dependencies on other pages which prevents EREMOVE from functioning.
|
|
|
|
Executing two EREMOVE passes removes the dependencies.
|
|
|
|
|
|
|
|
Page reclaimer
|
|
|
|
--------------
|
|
|
|
|
|
|
|
Similar to the core kswapd, ksgxd, is responsible for managing the
|
|
|
|
overcommitment of enclave memory. If the system runs out of enclave memory,
|
2021-10-29 20:49:56 +03:00
|
|
|
*ksgxd* “swaps” enclave memory to normal memory.
|
2020-11-13 01:01:34 +03:00
|
|
|
|
|
|
|
Launch Control
|
|
|
|
==============
|
|
|
|
|
|
|
|
SGX provides a launch control mechanism. After all enclave pages have been
|
|
|
|
copied, kernel executes EINIT function, which initializes the enclave. Only after
|
|
|
|
this the CPU can execute inside the enclave.
|
|
|
|
|
2021-10-29 20:49:56 +03:00
|
|
|
EINIT function takes an RSA-3072 signature of the enclave measurement. The function
|
2020-11-13 01:01:34 +03:00
|
|
|
checks that the measurement is correct and signature is signed with the key
|
|
|
|
hashed to the four **IA32_SGXLEPUBKEYHASH{0, 1, 2, 3}** MSRs representing the
|
|
|
|
SHA256 of a public key.
|
|
|
|
|
|
|
|
Those MSRs can be configured by the BIOS to be either readable or writable.
|
|
|
|
Linux supports only writable configuration in order to give full control to the
|
|
|
|
kernel on launch control policy. Before calling EINIT function, the driver sets
|
|
|
|
the MSRs to match the enclave's signing key.
|
|
|
|
|
|
|
|
Encryption engines
|
|
|
|
==================
|
|
|
|
|
|
|
|
In order to conceal the enclave data while it is out of the CPU package, the
|
|
|
|
memory controller has an encryption engine to transparently encrypt and decrypt
|
|
|
|
enclave memory.
|
|
|
|
|
|
|
|
In CPUs prior to Ice Lake, the Memory Encryption Engine (MEE) is used to
|
|
|
|
encrypt pages leaving the CPU caches. MEE uses a n-ary Merkle tree with root in
|
|
|
|
SRAM to maintain integrity of the encrypted data. This provides integrity and
|
|
|
|
anti-replay protection but does not scale to large memory sizes because the time
|
|
|
|
required to update the Merkle tree grows logarithmically in relation to the
|
|
|
|
memory size.
|
|
|
|
|
|
|
|
CPUs starting from Icelake use Total Memory Encryption (TME) in the place of
|
|
|
|
MEE. TME-based SGX implementations do not have an integrity Merkle tree, which
|
|
|
|
means integrity and replay-attacks are not mitigated. B, it includes
|
|
|
|
additional changes to prevent cipher text from being returned and SW memory
|
2021-10-29 20:49:56 +03:00
|
|
|
aliases from being created.
|
2020-11-13 01:01:34 +03:00
|
|
|
|
|
|
|
DMA to enclave memory is blocked by range registers on both MEE and TME systems
|
|
|
|
(SDM section 41.10).
|
|
|
|
|
|
|
|
Usage Models
|
|
|
|
============
|
|
|
|
|
|
|
|
Shared Library
|
|
|
|
--------------
|
|
|
|
|
|
|
|
Sensitive data and the code that acts on it is partitioned from the application
|
|
|
|
into a separate library. The library is then linked as a DSO which can be loaded
|
|
|
|
into an enclave. The application can then make individual function calls into
|
|
|
|
the enclave through special SGX instructions. A run-time within the enclave is
|
|
|
|
configured to marshal function parameters into and out of the enclave and to
|
|
|
|
call the correct library function.
|
|
|
|
|
|
|
|
Application Container
|
|
|
|
---------------------
|
|
|
|
|
|
|
|
An application may be loaded into a container enclave which is specially
|
|
|
|
configured with a library OS and run-time which permits the application to run.
|
|
|
|
The enclave run-time and library OS work together to execute the application
|
|
|
|
when a thread enters the enclave.
|
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page()
EREMOVE takes a page and removes any association between that page and
an enclave. It must be run on a page before it can be added into another
enclave. Currently, EREMOVE is run as part of pages being freed into the
SGX page allocator. It is not expected to fail, as it would indicate a
use-after-free of EPC pages. Rather than add the page back to the pool
of available EPC pages, the kernel intentionally leaks the page to avoid
additional errors in the future.
However, KVM does not track how guest pages are used, which means that
SGX virtualization use of EREMOVE might fail. Specifically, it is
legitimate that EREMOVE returns SGX_CHILD_PRESENT for EPC assigned to
KVM guest, because KVM/kernel doesn't track SECS pages.
To allow SGX/KVM to introduce a more permissive EREMOVE helper and
to let the SGX virtualization code use the allocator directly, break
out the EREMOVE call from the SGX page allocator. Rename the original
sgx_free_epc_page() to sgx_encl_free_epc_page(), indicating that
it is used to free an EPC page assigned to a host enclave. Replace
sgx_free_epc_page() with sgx_encl_free_epc_page() in all call sites so
there's no functional change.
At the same time, improve the error message when EREMOVE fails, and
add documentation to explain to the user what that failure means and
to suggest to the user what to do when this bug happens in the case it
happens.
[ bp: Massage commit message, fix typos and sanitize text, simplify. ]
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/20210325093057.122834-1-kai.huang@intel.com
2021-03-25 12:30:57 +03:00
|
|
|
|
|
|
|
Impact of Potential Kernel SGX Bugs
|
|
|
|
===================================
|
|
|
|
|
|
|
|
EPC leaks
|
|
|
|
---------
|
|
|
|
|
|
|
|
When EPC page leaks happen, a WARNING like this is shown in dmesg:
|
|
|
|
|
|
|
|
"EREMOVE returned ... and an EPC page was leaked. SGX may become unusable..."
|
|
|
|
|
|
|
|
This is effectively a kernel use-after-free of an EPC page, and due
|
|
|
|
to the way SGX works, the bug is detected at freeing. Rather than
|
|
|
|
adding the page back to the pool of available EPC pages, the kernel
|
|
|
|
intentionally leaks the page to avoid additional errors in the future.
|
|
|
|
|
|
|
|
When this happens, the kernel will likely soon leak more EPC pages, and
|
|
|
|
SGX will likely become unusable because the memory available to SGX is
|
|
|
|
limited. However, while this may be fatal to SGX, the rest of the kernel
|
|
|
|
is unlikely to be impacted and should continue to work.
|
|
|
|
|
|
|
|
As a result, when this happpens, user should stop running any new
|
|
|
|
SGX workloads, (or just any new workloads), and migrate all valuable
|
|
|
|
workloads. Although a machine reboot can recover all EPC memory, the bug
|
|
|
|
should be reported to Linux developers.
|
x86/sgx: Introduce virtual EPC for use by KVM guests
Add a misc device /dev/sgx_vepc to allow userspace to allocate "raw"
Enclave Page Cache (EPC) without an associated enclave. The intended
and only known use case for raw EPC allocation is to expose EPC to a
KVM guest, hence the 'vepc' moniker, virt.{c,h} files and X86_SGX_KVM
Kconfig.
The SGX driver uses the misc device /dev/sgx_enclave to support
userspace in creating an enclave. Each file descriptor returned from
opening /dev/sgx_enclave represents an enclave. Unlike the SGX driver,
KVM doesn't control how the guest uses the EPC, therefore EPC allocated
to a KVM guest is not associated with an enclave, and /dev/sgx_enclave
is not suitable for allocating EPC for a KVM guest.
Having separate device nodes for the SGX driver and KVM virtual EPC also
allows separate permission control for running host SGX enclaves and KVM
SGX guests.
To use /dev/sgx_vepc to allocate a virtual EPC instance with particular
size, the hypervisor opens /dev/sgx_vepc, and uses mmap() with the
intended size to get an address range of virtual EPC. Then it may use
the address range to create one KVM memory slot as virtual EPC for
a guest.
Implement the "raw" EPC allocation in the x86 core-SGX subsystem via
/dev/sgx_vepc rather than in KVM. Doing so has two major advantages:
- Does not require changes to KVM's uAPI, e.g. EPC gets handled as
just another memory backend for guests.
- EPC management is wholly contained in the SGX subsystem, e.g. SGX
does not have to export any symbols, changes to reclaim flows don't
need to be routed through KVM, SGX's dirty laundry doesn't have to
get aired out for the world to see, and so on and so forth.
The virtual EPC pages allocated to guests are currently not reclaimable.
Reclaiming an EPC page used by enclave requires a special reclaim
mechanism separate from normal page reclaim, and that mechanism is not
supported for virutal EPC pages. Due to the complications of handling
reclaim conflicts between guest and host, reclaiming virtual EPC pages
is significantly more complex than basic support for SGX virtualization.
[ bp:
- Massage commit message and comments
- use cpu_feature_enabled()
- vertically align struct members init
- massage Virtual EPC clarification text
- move Kconfig prompt to Virtualization ]
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/0c38ced8c8e5a69872db4d6a1c0dabd01e07cad7.1616136308.git.kai.huang@intel.com
2021-03-19 10:22:21 +03:00
|
|
|
|
|
|
|
|
|
|
|
Virtual EPC
|
|
|
|
===========
|
|
|
|
|
|
|
|
The implementation has also a virtual EPC driver to support SGX enclaves
|
|
|
|
in guests. Unlike the SGX driver, an EPC page allocated by the virtual
|
|
|
|
EPC driver doesn't have a specific enclave associated with it. This is
|
|
|
|
because KVM doesn't track how a guest uses EPC pages.
|
|
|
|
|
|
|
|
As a result, the SGX core page reclaimer doesn't support reclaiming EPC
|
|
|
|
pages allocated to KVM guests through the virtual EPC driver. If the
|
|
|
|
user wants to deploy SGX applications both on the host and in guests
|
|
|
|
on the same machine, the user should reserve enough EPC (by taking out
|
|
|
|
total virtual EPC size of all SGX VMs from the physical EPC size) for
|
|
|
|
host SGX applications so they can run with acceptable performance.
|
x86/sgx/virt: implement SGX_IOC_VEPC_REMOVE ioctl
For bare-metal SGX on real hardware, the hardware provides guarantees
SGX state at reboot. For instance, all pages start out uninitialized.
The vepc driver provides a similar guarantee today for freshly-opened
vepc instances, but guests such as Windows expect all pages to be in
uninitialized state on startup, including after every guest reboot.
Some userspace implementations of virtual SGX would rather avoid having
to close and reopen the /dev/sgx_vepc file descriptor and re-mmap the
virtual EPC. For example, they could sandbox themselves after the guest
starts and forbid further calls to open(), in order to mitigate exploits
from untrusted guests.
Therefore, add a ioctl that does this with EREMOVE. Userspace can
invoke the ioctl to bring its vEPC pages back to uninitialized state.
There is a possibility that some pages fail to be removed if they are
SECS pages, and the child and SECS pages could be in separate vEPC
regions. Therefore, the ioctl returns the number of EREMOVE failures,
telling userspace to try the ioctl again after it's done with all
vEPC regions. A more verbose description of the correct usage and
the possible error conditions is documented in sgx.rst.
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20211021201155.1523989-3-pbonzini@redhat.com
2021-10-21 23:11:55 +03:00
|
|
|
|
|
|
|
Architectural behavior is to restore all EPC pages to an uninitialized
|
|
|
|
state also after a guest reboot. Because this state can be reached only
|
|
|
|
through the privileged ``ENCLS[EREMOVE]`` instruction, ``/dev/sgx_vepc``
|
|
|
|
provides the ``SGX_IOC_VEPC_REMOVE_ALL`` ioctl to execute the instruction
|
|
|
|
on all pages in the virtual EPC.
|
|
|
|
|
|
|
|
``EREMOVE`` can fail for three reasons. Userspace must pay attention
|
|
|
|
to expected failures and handle them as follows:
|
|
|
|
|
|
|
|
1. Page removal will always fail when any thread is running in the
|
|
|
|
enclave to which the page belongs. In this case the ioctl will
|
|
|
|
return ``EBUSY`` independent of whether it has successfully removed
|
|
|
|
some pages; userspace can avoid these failures by preventing execution
|
|
|
|
of any vcpu which maps the virtual EPC.
|
|
|
|
|
|
|
|
2. Page removal will cause a general protection fault if two calls to
|
|
|
|
``EREMOVE`` happen concurrently for pages that refer to the same
|
|
|
|
"SECS" metadata pages. This can happen if there are concurrent
|
|
|
|
invocations to ``SGX_IOC_VEPC_REMOVE_ALL``, or if a ``/dev/sgx_vepc``
|
|
|
|
file descriptor in the guest is closed at the same time as
|
|
|
|
``SGX_IOC_VEPC_REMOVE_ALL``; it will also be reported as ``EBUSY``.
|
|
|
|
This can be avoided in userspace by serializing calls to the ioctl()
|
|
|
|
and to close(), but in general it should not be a problem.
|
|
|
|
|
|
|
|
3. Finally, page removal will fail for SECS metadata pages which still
|
|
|
|
have child pages. Child pages can be removed by executing
|
|
|
|
``SGX_IOC_VEPC_REMOVE_ALL`` on all ``/dev/sgx_vepc`` file descriptors
|
|
|
|
mapped into the guest. This means that the ioctl() must be called
|
|
|
|
twice: an initial set of calls to remove child pages and a subsequent
|
|
|
|
set of calls to remove SECS pages. The second set of calls is only
|
|
|
|
required for those mappings that returned a nonzero value from the
|
|
|
|
first call. It indicates a bug in the kernel or the userspace client
|
|
|
|
if any of the second round of ``SGX_IOC_VEPC_REMOVE_ALL`` calls has
|
|
|
|
a return code other than 0.
|