WSL2-Linux-Kernel/drivers/scsi/isci/host.c

3138 строки
97 KiB
C
Исходник Обычный вид История

/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* BSD LICENSE
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <linux/circ_buf.h>
#include <linux/device.h>
#include <scsi/sas.h>
#include "host.h"
#include "isci.h"
#include "port.h"
#include "host.h"
#include "probe_roms.h"
#include "remote_device.h"
#include "request.h"
#include "scu_completion_codes.h"
#include "scu_event_codes.h"
#include "registers.h"
#include "scu_remote_node_context.h"
#include "scu_task_context.h"
#include "scu_unsolicited_frame.h"
#define SCU_CONTEXT_RAM_INIT_STALL_TIME 200
#define smu_max_ports(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_LP_SHIFT) + 1 \
)
#define smu_max_task_contexts(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_TC_SHIFT) + 1 \
)
#define smu_max_rncs(dcc_value) \
(\
(((dcc_value) & SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_MASK) \
>> SMU_DEVICE_CONTEXT_CAPACITY_MAX_RNC_SHIFT) + 1 \
)
#define SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT 100
/**
*
*
* The number of milliseconds to wait while a given phy is consuming power
* before allowing another set of phys to consume power. Ultimately, this will
* be specified by OEM parameter.
*/
#define SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL 500
/**
* NORMALIZE_PUT_POINTER() -
*
* This macro will normalize the completion queue put pointer so its value can
* be used as an array inde
*/
#define NORMALIZE_PUT_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_PUT_POINTER_MASK)
/**
* NORMALIZE_EVENT_POINTER() -
*
* This macro will normalize the completion queue event entry so its value can
* be used as an index.
*/
#define NORMALIZE_EVENT_POINTER(x) \
(\
((x) & SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_MASK) \
>> SMU_COMPLETION_QUEUE_GET_EVENT_POINTER_SHIFT \
)
/**
* INCREMENT_COMPLETION_QUEUE_GET() -
*
* This macro will increment the controllers completion queue index value and
* possibly toggle the cycle bit if the completion queue index wraps back to 0.
*/
#define INCREMENT_COMPLETION_QUEUE_GET(controller, index, cycle) \
INCREMENT_QUEUE_GET(\
(index), \
(cycle), \
SCU_MAX_COMPLETION_QUEUE_ENTRIES, \
SMU_CQGR_CYCLE_BIT)
/**
* INCREMENT_EVENT_QUEUE_GET() -
*
* This macro will increment the controllers event queue index value and
* possibly toggle the event cycle bit if the event queue index wraps back to 0.
*/
#define INCREMENT_EVENT_QUEUE_GET(controller, index, cycle) \
INCREMENT_QUEUE_GET(\
(index), \
(cycle), \
SCU_MAX_EVENTS, \
SMU_CQGR_EVENT_CYCLE_BIT \
)
/**
* NORMALIZE_GET_POINTER() -
*
* This macro will normalize the completion queue get pointer so its value can
* be used as an index into an array
*/
#define NORMALIZE_GET_POINTER(x) \
((x) & SMU_COMPLETION_QUEUE_GET_POINTER_MASK)
/**
* NORMALIZE_GET_POINTER_CYCLE_BIT() -
*
* This macro will normalize the completion queue cycle pointer so it matches
* the completion queue cycle bit
*/
#define NORMALIZE_GET_POINTER_CYCLE_BIT(x) \
((SMU_CQGR_CYCLE_BIT & (x)) << (31 - SMU_COMPLETION_QUEUE_GET_CYCLE_BIT_SHIFT))
/**
* COMPLETION_QUEUE_CYCLE_BIT() -
*
* This macro will return the cycle bit of the completion queue entry
*/
#define COMPLETION_QUEUE_CYCLE_BIT(x) ((x) & 0x80000000)
/* Init the state machine and call the state entry function (if any) */
void sci_init_sm(struct sci_base_state_machine *sm,
const struct sci_base_state *state_table, u32 initial_state)
{
sci_state_transition_t handler;
sm->initial_state_id = initial_state;
sm->previous_state_id = initial_state;
sm->current_state_id = initial_state;
sm->state_table = state_table;
handler = sm->state_table[initial_state].enter_state;
if (handler)
handler(sm);
}
/* Call the state exit fn, update the current state, call the state entry fn */
void sci_change_state(struct sci_base_state_machine *sm, u32 next_state)
{
sci_state_transition_t handler;
handler = sm->state_table[sm->current_state_id].exit_state;
if (handler)
handler(sm);
sm->previous_state_id = sm->current_state_id;
sm->current_state_id = next_state;
handler = sm->state_table[sm->current_state_id].enter_state;
if (handler)
handler(sm);
}
static bool scic_sds_controller_completion_queue_has_entries(
struct scic_sds_controller *scic)
{
u32 get_value = scic->completion_queue_get;
u32 get_index = get_value & SMU_COMPLETION_QUEUE_GET_POINTER_MASK;
if (NORMALIZE_GET_POINTER_CYCLE_BIT(get_value) ==
COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index]))
return true;
return false;
}
static bool scic_sds_controller_isr(struct scic_sds_controller *scic)
{
if (scic_sds_controller_completion_queue_has_entries(scic)) {
return true;
} else {
/*
* we have a spurious interrupt it could be that we have already
* emptied the completion queue from a previous interrupt */
writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
/*
* There is a race in the hardware that could cause us not to be notified
* of an interrupt completion if we do not take this step. We will mask
* then unmask the interrupts so if there is another interrupt pending
* the clearing of the interrupt source we get the next interrupt message. */
writel(0xFF000000, &scic->smu_registers->interrupt_mask);
writel(0, &scic->smu_registers->interrupt_mask);
}
return false;
}
irqreturn_t isci_msix_isr(int vec, void *data)
{
struct isci_host *ihost = data;
if (scic_sds_controller_isr(&ihost->sci))
tasklet_schedule(&ihost->completion_tasklet);
return IRQ_HANDLED;
}
static bool scic_sds_controller_error_isr(struct scic_sds_controller *scic)
{
u32 interrupt_status;
interrupt_status =
readl(&scic->smu_registers->interrupt_status);
interrupt_status &= (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND);
if (interrupt_status != 0) {
/*
* There is an error interrupt pending so let it through and handle
* in the callback */
return true;
}
/*
* There is a race in the hardware that could cause us not to be notified
* of an interrupt completion if we do not take this step. We will mask
* then unmask the error interrupts so if there was another interrupt
* pending we will be notified.
* Could we write the value of (SMU_ISR_QUEUE_ERROR | SMU_ISR_QUEUE_SUSPEND)? */
writel(0xff, &scic->smu_registers->interrupt_mask);
writel(0, &scic->smu_registers->interrupt_mask);
return false;
}
static void scic_sds_controller_task_completion(struct scic_sds_controller *scic,
u32 completion_entry)
{
u32 index;
struct scic_sds_request *sci_req;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
sci_req = scic->io_request_table[index];
/* Make sure that we really want to process this IO request */
if (sci_req && sci_req->io_tag != SCI_CONTROLLER_INVALID_IO_TAG &&
ISCI_TAG_SEQ(sci_req->io_tag) == scic->io_request_sequence[index])
/* Yep this is a valid io request pass it along to the io request handler */
scic_sds_io_request_tc_completion(sci_req, completion_entry);
}
static void scic_sds_controller_sdma_completion(struct scic_sds_controller *scic,
u32 completion_entry)
{
u32 index;
struct scic_sds_request *io_request;
struct scic_sds_remote_device *device;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
switch (scu_get_command_request_type(completion_entry)) {
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_TC:
io_request = scic->io_request_table[index];
dev_warn(scic_to_dev(scic),
"%s: SCIC SDS Completion type SDMA %x for io request "
"%p\n",
__func__,
completion_entry,
io_request);
/* @todo For a post TC operation we need to fail the IO
* request
*/
break;
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_DUMP_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_OTHER_RNC:
case SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_RNC:
device = scic->device_table[index];
dev_warn(scic_to_dev(scic),
"%s: SCIC SDS Completion type SDMA %x for remote "
"device %p\n",
__func__,
completion_entry,
device);
/* @todo For a port RNC operation we need to fail the
* device
*/
break;
default:
dev_warn(scic_to_dev(scic),
"%s: SCIC SDS Completion unknown SDMA completion "
"type %x\n",
__func__,
completion_entry);
break;
}
}
static void scic_sds_controller_unsolicited_frame(struct scic_sds_controller *scic,
u32 completion_entry)
{
u32 index;
u32 frame_index;
struct isci_host *ihost = scic_to_ihost(scic);
struct scu_unsolicited_frame_header *frame_header;
struct scic_sds_phy *phy;
struct scic_sds_remote_device *device;
enum sci_status result = SCI_FAILURE;
frame_index = SCU_GET_FRAME_INDEX(completion_entry);
frame_header = scic->uf_control.buffers.array[frame_index].header;
scic->uf_control.buffers.array[frame_index].state = UNSOLICITED_FRAME_IN_USE;
if (SCU_GET_FRAME_ERROR(completion_entry)) {
/*
* / @todo If the IAF frame or SIGNATURE FIS frame has an error will
* / this cause a problem? We expect the phy initialization will
* / fail if there is an error in the frame. */
scic_sds_controller_release_frame(scic, frame_index);
return;
}
if (frame_header->is_address_frame) {
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &ihost->phys[index].sci;
result = scic_sds_phy_frame_handler(phy, frame_index);
} else {
index = SCU_GET_COMPLETION_INDEX(completion_entry);
if (index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
/*
* This is a signature fis or a frame from a direct attached SATA
* device that has not yet been created. In either case forwared
* the frame to the PE and let it take care of the frame data. */
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &ihost->phys[index].sci;
result = scic_sds_phy_frame_handler(phy, frame_index);
} else {
if (index < scic->remote_node_entries)
device = scic->device_table[index];
else
device = NULL;
if (device != NULL)
result = scic_sds_remote_device_frame_handler(device, frame_index);
else
scic_sds_controller_release_frame(scic, frame_index);
}
}
if (result != SCI_SUCCESS) {
/*
* / @todo Is there any reason to report some additional error message
* / when we get this failure notifiction? */
}
}
static void scic_sds_controller_event_completion(struct scic_sds_controller *scic,
u32 completion_entry)
{
struct isci_host *ihost = scic_to_ihost(scic);
struct scic_sds_request *io_request;
struct scic_sds_remote_device *device;
struct scic_sds_phy *phy;
u32 index;
index = SCU_GET_COMPLETION_INDEX(completion_entry);
switch (scu_get_event_type(completion_entry)) {
case SCU_EVENT_TYPE_SMU_COMMAND_ERROR:
/* / @todo The driver did something wrong and we need to fix the condtion. */
dev_err(scic_to_dev(scic),
"%s: SCIC Controller 0x%p received SMU command error "
"0x%x\n",
__func__,
scic,
completion_entry);
break;
case SCU_EVENT_TYPE_SMU_PCQ_ERROR:
case SCU_EVENT_TYPE_SMU_ERROR:
case SCU_EVENT_TYPE_FATAL_MEMORY_ERROR:
/*
* / @todo This is a hardware failure and its likely that we want to
* / reset the controller. */
dev_err(scic_to_dev(scic),
"%s: SCIC Controller 0x%p received fatal controller "
"event 0x%x\n",
__func__,
scic,
completion_entry);
break;
case SCU_EVENT_TYPE_TRANSPORT_ERROR:
io_request = scic->io_request_table[index];
scic_sds_io_request_event_handler(io_request, completion_entry);
break;
case SCU_EVENT_TYPE_PTX_SCHEDULE_EVENT:
switch (scu_get_event_specifier(completion_entry)) {
case SCU_EVENT_SPECIFIC_SMP_RESPONSE_NO_PE:
case SCU_EVENT_SPECIFIC_TASK_TIMEOUT:
io_request = scic->io_request_table[index];
if (io_request != NULL)
scic_sds_io_request_event_handler(io_request, completion_entry);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller 0x%p received "
"event 0x%x for io request object "
"that doesnt exist.\n",
__func__,
scic,
completion_entry);
break;
case SCU_EVENT_SPECIFIC_IT_NEXUS_TIMEOUT:
device = scic->device_table[index];
if (device != NULL)
scic_sds_remote_device_event_handler(device, completion_entry);
else
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller 0x%p received "
"event 0x%x for remote device object "
"that doesnt exist.\n",
__func__,
scic,
completion_entry);
break;
}
break;
case SCU_EVENT_TYPE_BROADCAST_CHANGE:
/*
* direct the broadcast change event to the phy first and then let
* the phy redirect the broadcast change to the port object */
case SCU_EVENT_TYPE_ERR_CNT_EVENT:
/*
* direct error counter event to the phy object since that is where
* we get the event notification. This is a type 4 event. */
case SCU_EVENT_TYPE_OSSP_EVENT:
index = SCU_GET_PROTOCOL_ENGINE_INDEX(completion_entry);
phy = &ihost->phys[index].sci;
scic_sds_phy_event_handler(phy, completion_entry);
break;
case SCU_EVENT_TYPE_RNC_SUSPEND_TX:
case SCU_EVENT_TYPE_RNC_SUSPEND_TX_RX:
case SCU_EVENT_TYPE_RNC_OPS_MISC:
if (index < scic->remote_node_entries) {
device = scic->device_table[index];
if (device != NULL)
scic_sds_remote_device_event_handler(device, completion_entry);
} else
dev_err(scic_to_dev(scic),
"%s: SCIC Controller 0x%p received event 0x%x "
"for remote device object 0x%0x that doesnt "
"exist.\n",
__func__,
scic,
completion_entry,
index);
break;
default:
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller received unknown event code %x\n",
__func__,
completion_entry);
break;
}
}
static void scic_sds_controller_process_completions(struct scic_sds_controller *scic)
{
u32 completion_count = 0;
u32 completion_entry;
u32 get_index;
u32 get_cycle;
u32 event_index;
u32 event_cycle;
dev_dbg(scic_to_dev(scic),
"%s: completion queue begining get:0x%08x\n",
__func__,
scic->completion_queue_get);
/* Get the component parts of the completion queue */
get_index = NORMALIZE_GET_POINTER(scic->completion_queue_get);
get_cycle = SMU_CQGR_CYCLE_BIT & scic->completion_queue_get;
event_index = NORMALIZE_EVENT_POINTER(scic->completion_queue_get);
event_cycle = SMU_CQGR_EVENT_CYCLE_BIT & scic->completion_queue_get;
while (
NORMALIZE_GET_POINTER_CYCLE_BIT(get_cycle)
== COMPLETION_QUEUE_CYCLE_BIT(scic->completion_queue[get_index])
) {
completion_count++;
completion_entry = scic->completion_queue[get_index];
INCREMENT_COMPLETION_QUEUE_GET(scic, get_index, get_cycle);
dev_dbg(scic_to_dev(scic),
"%s: completion queue entry:0x%08x\n",
__func__,
completion_entry);
switch (SCU_GET_COMPLETION_TYPE(completion_entry)) {
case SCU_COMPLETION_TYPE_TASK:
scic_sds_controller_task_completion(scic, completion_entry);
break;
case SCU_COMPLETION_TYPE_SDMA:
scic_sds_controller_sdma_completion(scic, completion_entry);
break;
case SCU_COMPLETION_TYPE_UFI:
scic_sds_controller_unsolicited_frame(scic, completion_entry);
break;
case SCU_COMPLETION_TYPE_EVENT:
INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
scic_sds_controller_event_completion(scic, completion_entry);
break;
case SCU_COMPLETION_TYPE_NOTIFY:
/*
* Presently we do the same thing with a notify event that we do with the
* other event codes. */
INCREMENT_EVENT_QUEUE_GET(scic, event_index, event_cycle);
scic_sds_controller_event_completion(scic, completion_entry);
break;
default:
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller received unknown "
"completion type %x\n",
__func__,
completion_entry);
break;
}
}
/* Update the get register if we completed one or more entries */
if (completion_count > 0) {
scic->completion_queue_get =
SMU_CQGR_GEN_BIT(ENABLE) |
SMU_CQGR_GEN_BIT(EVENT_ENABLE) |
event_cycle |
SMU_CQGR_GEN_VAL(EVENT_POINTER, event_index) |
get_cycle |
SMU_CQGR_GEN_VAL(POINTER, get_index);
writel(scic->completion_queue_get,
&scic->smu_registers->completion_queue_get);
}
dev_dbg(scic_to_dev(scic),
"%s: completion queue ending get:0x%08x\n",
__func__,
scic->completion_queue_get);
}
static void scic_sds_controller_error_handler(struct scic_sds_controller *scic)
{
u32 interrupt_status;
interrupt_status =
readl(&scic->smu_registers->interrupt_status);
if ((interrupt_status & SMU_ISR_QUEUE_SUSPEND) &&
scic_sds_controller_completion_queue_has_entries(scic)) {
scic_sds_controller_process_completions(scic);
writel(SMU_ISR_QUEUE_SUSPEND, &scic->smu_registers->interrupt_status);
} else {
dev_err(scic_to_dev(scic), "%s: status: %#x\n", __func__,
interrupt_status);
sci_change_state(&scic->sm, SCIC_FAILED);
return;
}
/* If we dont process any completions I am not sure that we want to do this.
* We are in the middle of a hardware fault and should probably be reset.
*/
writel(0, &scic->smu_registers->interrupt_mask);
}
irqreturn_t isci_intx_isr(int vec, void *data)
{
irqreturn_t ret = IRQ_NONE;
struct isci_host *ihost = data;
struct scic_sds_controller *scic = &ihost->sci;
if (scic_sds_controller_isr(scic)) {
writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
tasklet_schedule(&ihost->completion_tasklet);
ret = IRQ_HANDLED;
} else if (scic_sds_controller_error_isr(scic)) {
spin_lock(&ihost->scic_lock);
scic_sds_controller_error_handler(scic);
spin_unlock(&ihost->scic_lock);
ret = IRQ_HANDLED;
}
return ret;
}
irqreturn_t isci_error_isr(int vec, void *data)
{
struct isci_host *ihost = data;
if (scic_sds_controller_error_isr(&ihost->sci))
scic_sds_controller_error_handler(&ihost->sci);
return IRQ_HANDLED;
}
/**
* isci_host_start_complete() - This function is called by the core library,
* through the ISCI Module, to indicate controller start status.
* @isci_host: This parameter specifies the ISCI host object
* @completion_status: This parameter specifies the completion status from the
* core library.
*
*/
static void isci_host_start_complete(struct isci_host *ihost, enum sci_status completion_status)
{
if (completion_status != SCI_SUCCESS)
dev_info(&ihost->pdev->dev,
"controller start timed out, continuing...\n");
isci_host_change_state(ihost, isci_ready);
clear_bit(IHOST_START_PENDING, &ihost->flags);
wake_up(&ihost->eventq);
}
int isci_host_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
if (test_bit(IHOST_START_PENDING, &ihost->flags))
return 0;
/* todo: use sas_flush_discovery once it is upstream */
scsi_flush_work(shost);
scsi_flush_work(shost);
dev_dbg(&ihost->pdev->dev,
"%s: ihost->status = %d, time = %ld\n",
__func__, isci_host_get_state(ihost), time);
return 1;
}
/**
* scic_controller_get_suggested_start_timeout() - This method returns the
* suggested scic_controller_start() timeout amount. The user is free to
* use any timeout value, but this method provides the suggested minimum
* start timeout value. The returned value is based upon empirical
* information determined as a result of interoperability testing.
* @controller: the handle to the controller object for which to return the
* suggested start timeout.
*
* This method returns the number of milliseconds for the suggested start
* operation timeout.
*/
static u32 scic_controller_get_suggested_start_timeout(
struct scic_sds_controller *sc)
{
/* Validate the user supplied parameters. */
if (sc == NULL)
return 0;
/*
* The suggested minimum timeout value for a controller start operation:
*
* Signature FIS Timeout
* + Phy Start Timeout
* + Number of Phy Spin Up Intervals
* ---------------------------------
* Number of milliseconds for the controller start operation.
*
* NOTE: The number of phy spin up intervals will be equivalent
* to the number of phys divided by the number phys allowed
* per interval - 1 (once OEM parameters are supported).
* Currently we assume only 1 phy per interval. */
return SCIC_SDS_SIGNATURE_FIS_TIMEOUT
+ SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT
+ ((SCI_MAX_PHYS - 1) * SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
}
static void scic_controller_enable_interrupts(
struct scic_sds_controller *scic)
{
BUG_ON(scic->smu_registers == NULL);
writel(0, &scic->smu_registers->interrupt_mask);
}
void scic_controller_disable_interrupts(
struct scic_sds_controller *scic)
{
BUG_ON(scic->smu_registers == NULL);
writel(0xffffffff, &scic->smu_registers->interrupt_mask);
}
static void scic_sds_controller_enable_port_task_scheduler(
struct scic_sds_controller *scic)
{
u32 port_task_scheduler_value;
port_task_scheduler_value =
readl(&scic->scu_registers->peg0.ptsg.control);
port_task_scheduler_value |=
(SCU_PTSGCR_GEN_BIT(ETM_ENABLE) |
SCU_PTSGCR_GEN_BIT(PTSG_ENABLE));
writel(port_task_scheduler_value,
&scic->scu_registers->peg0.ptsg.control);
}
static void scic_sds_controller_assign_task_entries(struct scic_sds_controller *scic)
{
u32 task_assignment;
/*
* Assign all the TCs to function 0
* TODO: Do we actually need to read this register to write it back?
*/
task_assignment =
readl(&scic->smu_registers->task_context_assignment[0]);
task_assignment |= (SMU_TCA_GEN_VAL(STARTING, 0)) |
(SMU_TCA_GEN_VAL(ENDING, scic->task_context_entries - 1)) |
(SMU_TCA_GEN_BIT(RANGE_CHECK_ENABLE));
writel(task_assignment,
&scic->smu_registers->task_context_assignment[0]);
}
static void scic_sds_controller_initialize_completion_queue(struct scic_sds_controller *scic)
{
u32 index;
u32 completion_queue_control_value;
u32 completion_queue_get_value;
u32 completion_queue_put_value;
scic->completion_queue_get = 0;
completion_queue_control_value =
(SMU_CQC_QUEUE_LIMIT_SET(SCU_MAX_COMPLETION_QUEUE_ENTRIES - 1) |
SMU_CQC_EVENT_LIMIT_SET(SCU_MAX_EVENTS - 1));
writel(completion_queue_control_value,
&scic->smu_registers->completion_queue_control);
/* Set the completion queue get pointer and enable the queue */
completion_queue_get_value = (
(SMU_CQGR_GEN_VAL(POINTER, 0))
| (SMU_CQGR_GEN_VAL(EVENT_POINTER, 0))
| (SMU_CQGR_GEN_BIT(ENABLE))
| (SMU_CQGR_GEN_BIT(EVENT_ENABLE))
);
writel(completion_queue_get_value,
&scic->smu_registers->completion_queue_get);
/* Set the completion queue put pointer */
completion_queue_put_value = (
(SMU_CQPR_GEN_VAL(POINTER, 0))
| (SMU_CQPR_GEN_VAL(EVENT_POINTER, 0))
);
writel(completion_queue_put_value,
&scic->smu_registers->completion_queue_put);
/* Initialize the cycle bit of the completion queue entries */
for (index = 0; index < SCU_MAX_COMPLETION_QUEUE_ENTRIES; index++) {
/*
* If get.cycle_bit != completion_queue.cycle_bit
* its not a valid completion queue entry
* so at system start all entries are invalid */
scic->completion_queue[index] = 0x80000000;
}
}
static void scic_sds_controller_initialize_unsolicited_frame_queue(struct scic_sds_controller *scic)
{
u32 frame_queue_control_value;
u32 frame_queue_get_value;
u32 frame_queue_put_value;
/* Write the queue size */
frame_queue_control_value =
SCU_UFQC_GEN_VAL(QUEUE_SIZE, SCU_MAX_UNSOLICITED_FRAMES);
writel(frame_queue_control_value,
&scic->scu_registers->sdma.unsolicited_frame_queue_control);
/* Setup the get pointer for the unsolicited frame queue */
frame_queue_get_value = (
SCU_UFQGP_GEN_VAL(POINTER, 0)
| SCU_UFQGP_GEN_BIT(ENABLE_BIT)
);
writel(frame_queue_get_value,
&scic->scu_registers->sdma.unsolicited_frame_get_pointer);
/* Setup the put pointer for the unsolicited frame queue */
frame_queue_put_value = SCU_UFQPP_GEN_VAL(POINTER, 0);
writel(frame_queue_put_value,
&scic->scu_registers->sdma.unsolicited_frame_put_pointer);
}
/**
* This method will attempt to transition into the ready state for the
* controller and indicate that the controller start operation has completed
* if all criteria are met.
* @scic: This parameter indicates the controller object for which
* to transition to ready.
* @status: This parameter indicates the status value to be pass into the call
* to scic_cb_controller_start_complete().
*
* none.
*/
static void scic_sds_controller_transition_to_ready(
struct scic_sds_controller *scic,
enum sci_status status)
{
struct isci_host *ihost = scic_to_ihost(scic);
if (scic->sm.current_state_id == SCIC_STARTING) {
/*
* We move into the ready state, because some of the phys/ports
* may be up and operational.
*/
sci_change_state(&scic->sm, SCIC_READY);
isci_host_start_complete(ihost, status);
}
}
static bool is_phy_starting(struct scic_sds_phy *sci_phy)
{
enum scic_sds_phy_states state;
state = sci_phy->sm.current_state_id;
switch (state) {
case SCI_PHY_STARTING:
case SCI_PHY_SUB_INITIAL:
case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
case SCI_PHY_SUB_AWAIT_IAF_UF:
case SCI_PHY_SUB_AWAIT_SAS_POWER:
case SCI_PHY_SUB_AWAIT_SATA_POWER:
case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
case SCI_PHY_SUB_FINAL:
return true;
default:
return false;
}
}
/**
* scic_sds_controller_start_next_phy - start phy
* @scic: controller
*
* If all the phys have been started, then attempt to transition the
* controller to the READY state and inform the user
* (scic_cb_controller_start_complete()).
*/
static enum sci_status scic_sds_controller_start_next_phy(struct scic_sds_controller *scic)
{
struct isci_host *ihost = scic_to_ihost(scic);
struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
struct scic_sds_phy *sci_phy;
enum sci_status status;
status = SCI_SUCCESS;
if (scic->phy_startup_timer_pending)
return status;
if (scic->next_phy_to_start >= SCI_MAX_PHYS) {
bool is_controller_start_complete = true;
u32 state;
u8 index;
for (index = 0; index < SCI_MAX_PHYS; index++) {
sci_phy = &ihost->phys[index].sci;
state = sci_phy->sm.current_state_id;
if (!phy_get_non_dummy_port(sci_phy))
continue;
/* The controller start operation is complete iff:
* - all links have been given an opportunity to start
* - have no indication of a connected device
* - have an indication of a connected device and it has
* finished the link training process.
*/
if ((sci_phy->is_in_link_training == false && state == SCI_PHY_INITIAL) ||
(sci_phy->is_in_link_training == false && state == SCI_PHY_STOPPED) ||
(sci_phy->is_in_link_training == true && is_phy_starting(sci_phy))) {
is_controller_start_complete = false;
break;
}
}
/*
* The controller has successfully finished the start process.
* Inform the SCI Core user and transition to the READY state. */
if (is_controller_start_complete == true) {
scic_sds_controller_transition_to_ready(scic, SCI_SUCCESS);
sci_del_timer(&scic->phy_timer);
scic->phy_startup_timer_pending = false;
}
} else {
sci_phy = &ihost->phys[scic->next_phy_to_start].sci;
if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
if (phy_get_non_dummy_port(sci_phy) == NULL) {
scic->next_phy_to_start++;
/* Caution recursion ahead be forwarned
*
* The PHY was never added to a PORT in MPC mode
* so start the next phy in sequence This phy
* will never go link up and will not draw power
* the OEM parameters either configured the phy
* incorrectly for the PORT or it was never
* assigned to a PORT
*/
return scic_sds_controller_start_next_phy(scic);
}
}
status = scic_sds_phy_start(sci_phy);
if (status == SCI_SUCCESS) {
sci_mod_timer(&scic->phy_timer,
SCIC_SDS_CONTROLLER_PHY_START_TIMEOUT);
scic->phy_startup_timer_pending = true;
} else {
dev_warn(scic_to_dev(scic),
"%s: Controller stop operation failed "
"to stop phy %d because of status "
"%d.\n",
__func__,
ihost->phys[scic->next_phy_to_start].sci.phy_index,
status);
}
scic->next_phy_to_start++;
}
return status;
}
static void phy_startup_timeout(unsigned long data)
{
struct sci_timer *tmr = (struct sci_timer *)data;
struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), phy_timer);
struct isci_host *ihost = scic_to_ihost(scic);
unsigned long flags;
enum sci_status status;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
scic->phy_startup_timer_pending = false;
do {
status = scic_sds_controller_start_next_phy(scic);
} while (status != SCI_SUCCESS);
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
static void isci_tci_free(struct isci_host *ihost, u16 tci)
{
u16 tail = ihost->tci_tail & (SCI_MAX_IO_REQUESTS-1);
ihost->tci_pool[tail] = tci;
ihost->tci_tail = tail + 1;
}
static u16 isci_tci_alloc(struct isci_host *ihost)
{
u16 head = ihost->tci_head & (SCI_MAX_IO_REQUESTS-1);
u16 tci = ihost->tci_pool[head];
ihost->tci_head = head + 1;
return tci;
}
static u16 isci_tci_active(struct isci_host *ihost)
{
return CIRC_CNT(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}
static u16 isci_tci_space(struct isci_host *ihost)
{
return CIRC_SPACE(ihost->tci_head, ihost->tci_tail, SCI_MAX_IO_REQUESTS);
}
static enum sci_status scic_controller_start(struct scic_sds_controller *scic,
u32 timeout)
{
struct isci_host *ihost = scic_to_ihost(scic);
enum sci_status result;
u16 index;
if (scic->sm.current_state_id != SCIC_INITIALIZED) {
dev_warn(scic_to_dev(scic),
"SCIC Controller start operation requested in "
"invalid state\n");
return SCI_FAILURE_INVALID_STATE;
}
/* Build the TCi free pool */
BUILD_BUG_ON(SCI_MAX_IO_REQUESTS > 1 << sizeof(ihost->tci_pool[0]) * 8);
ihost->tci_head = 0;
ihost->tci_tail = 0;
for (index = 0; index < scic->task_context_entries; index++)
isci_tci_free(ihost, index);
/* Build the RNi free pool */
scic_sds_remote_node_table_initialize(
&scic->available_remote_nodes,
scic->remote_node_entries);
/*
* Before anything else lets make sure we will not be
* interrupted by the hardware.
*/
scic_controller_disable_interrupts(scic);
/* Enable the port task scheduler */
scic_sds_controller_enable_port_task_scheduler(scic);
/* Assign all the task entries to scic physical function */
scic_sds_controller_assign_task_entries(scic);
/* Now initialize the completion queue */
scic_sds_controller_initialize_completion_queue(scic);
/* Initialize the unsolicited frame queue for use */
scic_sds_controller_initialize_unsolicited_frame_queue(scic);
/* Start all of the ports on this controller */
for (index = 0; index < scic->logical_port_entries; index++) {
struct scic_sds_port *sci_port = &ihost->ports[index].sci;
result = scic_sds_port_start(sci_port);
if (result)
return result;
}
scic_sds_controller_start_next_phy(scic);
sci_mod_timer(&scic->timer, timeout);
sci_change_state(&scic->sm, SCIC_STARTING);
return SCI_SUCCESS;
}
void isci_host_scan_start(struct Scsi_Host *shost)
{
struct isci_host *ihost = SHOST_TO_SAS_HA(shost)->lldd_ha;
unsigned long tmo = scic_controller_get_suggested_start_timeout(&ihost->sci);
set_bit(IHOST_START_PENDING, &ihost->flags);
spin_lock_irq(&ihost->scic_lock);
scic_controller_start(&ihost->sci, tmo);
scic_controller_enable_interrupts(&ihost->sci);
spin_unlock_irq(&ihost->scic_lock);
}
static void isci_host_stop_complete(struct isci_host *ihost, enum sci_status completion_status)
{
isci_host_change_state(ihost, isci_stopped);
scic_controller_disable_interrupts(&ihost->sci);
clear_bit(IHOST_STOP_PENDING, &ihost->flags);
wake_up(&ihost->eventq);
}
static void scic_sds_controller_completion_handler(struct scic_sds_controller *scic)
{
/* Empty out the completion queue */
if (scic_sds_controller_completion_queue_has_entries(scic))
scic_sds_controller_process_completions(scic);
/* Clear the interrupt and enable all interrupts again */
writel(SMU_ISR_COMPLETION, &scic->smu_registers->interrupt_status);
/* Could we write the value of SMU_ISR_COMPLETION? */
writel(0xFF000000, &scic->smu_registers->interrupt_mask);
writel(0, &scic->smu_registers->interrupt_mask);
}
/**
* isci_host_completion_routine() - This function is the delayed service
* routine that calls the sci core library's completion handler. It's
* scheduled as a tasklet from the interrupt service routine when interrupts
* in use, or set as the timeout function in polled mode.
* @data: This parameter specifies the ISCI host object
*
*/
static void isci_host_completion_routine(unsigned long data)
{
struct isci_host *isci_host = (struct isci_host *)data;
struct list_head completed_request_list;
struct list_head errored_request_list;
struct list_head *current_position;
struct list_head *next_position;
struct isci_request *request;
struct isci_request *next_request;
struct sas_task *task;
INIT_LIST_HEAD(&completed_request_list);
INIT_LIST_HEAD(&errored_request_list);
spin_lock_irq(&isci_host->scic_lock);
scic_sds_controller_completion_handler(&isci_host->sci);
/* Take the lists of completed I/Os from the host. */
list_splice_init(&isci_host->requests_to_complete,
&completed_request_list);
/* Take the list of errored I/Os from the host. */
list_splice_init(&isci_host->requests_to_errorback,
&errored_request_list);
spin_unlock_irq(&isci_host->scic_lock);
/* Process any completions in the lists. */
list_for_each_safe(current_position, next_position,
&completed_request_list) {
request = list_entry(current_position, struct isci_request,
completed_node);
task = isci_request_access_task(request);
/* Normal notification (task_done) */
dev_dbg(&isci_host->pdev->dev,
"%s: Normal - request/task = %p/%p\n",
__func__,
request,
task);
/* Return the task to libsas */
if (task != NULL) {
task->lldd_task = NULL;
if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
/* If the task is already in the abort path,
* the task_done callback cannot be called.
*/
task->task_done(task);
}
}
/* Free the request object. */
isci_request_free(isci_host, request);
}
list_for_each_entry_safe(request, next_request, &errored_request_list,
completed_node) {
task = isci_request_access_task(request);
/* Use sas_task_abort */
dev_warn(&isci_host->pdev->dev,
"%s: Error - request/task = %p/%p\n",
__func__,
request,
task);
if (task != NULL) {
/* Put the task into the abort path if it's not there
* already.
*/
if (!(task->task_state_flags & SAS_TASK_STATE_ABORTED))
sas_task_abort(task);
} else {
/* This is a case where the request has completed with a
* status such that it needed further target servicing,
* but the sas_task reference has already been removed
* from the request. Since it was errored, it was not
* being aborted, so there is nothing to do except free
* it.
*/
spin_lock_irq(&isci_host->scic_lock);
/* Remove the request from the remote device's list
* of pending requests.
*/
list_del_init(&request->dev_node);
spin_unlock_irq(&isci_host->scic_lock);
/* Free the request object. */
isci_request_free(isci_host, request);
}
}
}
/**
* scic_controller_stop() - This method will stop an individual controller
* object.This method will invoke the associated user callback upon
* completion. The completion callback is called when the following
* conditions are met: -# the method return status is SCI_SUCCESS. -# the
* controller has been quiesced. This method will ensure that all IO
* requests are quiesced, phys are stopped, and all additional operation by
* the hardware is halted.
* @controller: the handle to the controller object to stop.
* @timeout: This parameter specifies the number of milliseconds in which the
* stop operation should complete.
*
* The controller must be in the STARTED or STOPPED state. Indicate if the
* controller stop method succeeded or failed in some way. SCI_SUCCESS if the
* stop operation successfully began. SCI_WARNING_ALREADY_IN_STATE if the
* controller is already in the STOPPED state. SCI_FAILURE_INVALID_STATE if the
* controller is not either in the STARTED or STOPPED states.
*/
static enum sci_status scic_controller_stop(struct scic_sds_controller *scic,
u32 timeout)
{
if (scic->sm.current_state_id != SCIC_READY) {
dev_warn(scic_to_dev(scic),
"SCIC Controller stop operation requested in "
"invalid state\n");
return SCI_FAILURE_INVALID_STATE;
}
sci_mod_timer(&scic->timer, timeout);
sci_change_state(&scic->sm, SCIC_STOPPING);
return SCI_SUCCESS;
}
/**
* scic_controller_reset() - This method will reset the supplied core
* controller regardless of the state of said controller. This operation is
* considered destructive. In other words, all current operations are wiped
* out. No IO completions for outstanding devices occur. Outstanding IO
* requests are not aborted or completed at the actual remote device.
* @controller: the handle to the controller object to reset.
*
* Indicate if the controller reset method succeeded or failed in some way.
* SCI_SUCCESS if the reset operation successfully started. SCI_FATAL_ERROR if
* the controller reset operation is unable to complete.
*/
static enum sci_status scic_controller_reset(struct scic_sds_controller *scic)
{
switch (scic->sm.current_state_id) {
case SCIC_RESET:
case SCIC_READY:
case SCIC_STOPPED:
case SCIC_FAILED:
/*
* The reset operation is not a graceful cleanup, just
* perform the state transition.
*/
sci_change_state(&scic->sm, SCIC_RESETTING);
return SCI_SUCCESS;
default:
dev_warn(scic_to_dev(scic),
"SCIC Controller reset operation requested in "
"invalid state\n");
return SCI_FAILURE_INVALID_STATE;
}
}
void isci_host_deinit(struct isci_host *ihost)
{
int i;
isci_host_change_state(ihost, isci_stopping);
for (i = 0; i < SCI_MAX_PORTS; i++) {
struct isci_port *iport = &ihost->ports[i];
struct isci_remote_device *idev, *d;
list_for_each_entry_safe(idev, d, &iport->remote_dev_list, node) {
isci_remote_device_change_state(idev, isci_stopping);
isci_remote_device_stop(ihost, idev);
}
}
set_bit(IHOST_STOP_PENDING, &ihost->flags);
spin_lock_irq(&ihost->scic_lock);
scic_controller_stop(&ihost->sci, SCIC_CONTROLLER_STOP_TIMEOUT);
spin_unlock_irq(&ihost->scic_lock);
wait_for_stop(ihost);
scic_controller_reset(&ihost->sci);
/* Cancel any/all outstanding port timers */
for (i = 0; i < ihost->sci.logical_port_entries; i++) {
struct scic_sds_port *sci_port = &ihost->ports[i].sci;
del_timer_sync(&sci_port->timer.timer);
}
/* Cancel any/all outstanding phy timers */
for (i = 0; i < SCI_MAX_PHYS; i++) {
struct scic_sds_phy *sci_phy = &ihost->phys[i].sci;
del_timer_sync(&sci_phy->sata_timer.timer);
}
del_timer_sync(&ihost->sci.port_agent.timer.timer);
del_timer_sync(&ihost->sci.power_control.timer.timer);
del_timer_sync(&ihost->sci.timer.timer);
del_timer_sync(&ihost->sci.phy_timer.timer);
}
static void __iomem *scu_base(struct isci_host *isci_host)
{
struct pci_dev *pdev = isci_host->pdev;
int id = isci_host->id;
return pcim_iomap_table(pdev)[SCI_SCU_BAR * 2] + SCI_SCU_BAR_SIZE * id;
}
static void __iomem *smu_base(struct isci_host *isci_host)
{
struct pci_dev *pdev = isci_host->pdev;
int id = isci_host->id;
return pcim_iomap_table(pdev)[SCI_SMU_BAR * 2] + SCI_SMU_BAR_SIZE * id;
}
static void isci_user_parameters_get(
struct isci_host *isci_host,
union scic_user_parameters *scic_user_params)
{
struct scic_sds_user_parameters *u = &scic_user_params->sds1;
int i;
for (i = 0; i < SCI_MAX_PHYS; i++) {
struct sci_phy_user_params *u_phy = &u->phys[i];
u_phy->max_speed_generation = phy_gen;
/* we are not exporting these for now */
u_phy->align_insertion_frequency = 0x7f;
u_phy->in_connection_align_insertion_frequency = 0xff;
u_phy->notify_enable_spin_up_insertion_frequency = 0x33;
}
u->stp_inactivity_timeout = stp_inactive_to;
u->ssp_inactivity_timeout = ssp_inactive_to;
u->stp_max_occupancy_timeout = stp_max_occ_to;
u->ssp_max_occupancy_timeout = ssp_max_occ_to;
u->no_outbound_task_timeout = no_outbound_task_to;
u->max_number_concurrent_device_spin_up = max_concurr_spinup;
}
static void scic_sds_controller_initial_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
sci_change_state(&scic->sm, SCIC_RESET);
}
static inline void scic_sds_controller_starting_state_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
sci_del_timer(&scic->timer);
}
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS 853
#define INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS 1280
#define INTERRUPT_COALESCE_TIMEOUT_MAX_US 2700000
#define INTERRUPT_COALESCE_NUMBER_MAX 256
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN 7
#define INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX 28
/**
* scic_controller_set_interrupt_coalescence() - This method allows the user to
* configure the interrupt coalescence.
* @controller: This parameter represents the handle to the controller object
* for which its interrupt coalesce register is overridden.
* @coalesce_number: Used to control the number of entries in the Completion
* Queue before an interrupt is generated. If the number of entries exceed
* this number, an interrupt will be generated. The valid range of the input
* is [0, 256]. A setting of 0 results in coalescing being disabled.
* @coalesce_timeout: Timeout value in microseconds. The valid range of the
* input is [0, 2700000] . A setting of 0 is allowed and results in no
* interrupt coalescing timeout.
*
* Indicate if the user successfully set the interrupt coalesce parameters.
* SCI_SUCCESS The user successfully updated the interrutp coalescence.
* SCI_FAILURE_INVALID_PARAMETER_VALUE The user input value is out of range.
*/
static enum sci_status scic_controller_set_interrupt_coalescence(
struct scic_sds_controller *scic_controller,
u32 coalesce_number,
u32 coalesce_timeout)
{
u8 timeout_encode = 0;
u32 min = 0;
u32 max = 0;
/* Check if the input parameters fall in the range. */
if (coalesce_number > INTERRUPT_COALESCE_NUMBER_MAX)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
/*
* Defined encoding for interrupt coalescing timeout:
* Value Min Max Units
* ----- --- --- -----
* 0 - - Disabled
* 1 13.3 20.0 ns
* 2 26.7 40.0
* 3 53.3 80.0
* 4 106.7 160.0
* 5 213.3 320.0
* 6 426.7 640.0
* 7 853.3 1280.0
* 8 1.7 2.6 us
* 9 3.4 5.1
* 10 6.8 10.2
* 11 13.7 20.5
* 12 27.3 41.0
* 13 54.6 81.9
* 14 109.2 163.8
* 15 218.5 327.7
* 16 436.9 655.4
* 17 873.8 1310.7
* 18 1.7 2.6 ms
* 19 3.5 5.2
* 20 7.0 10.5
* 21 14.0 21.0
* 22 28.0 41.9
* 23 55.9 83.9
* 24 111.8 167.8
* 25 223.7 335.5
* 26 447.4 671.1
* 27 894.8 1342.2
* 28 1.8 2.7 s
* Others Undefined */
/*
* Use the table above to decide the encode of interrupt coalescing timeout
* value for register writing. */
if (coalesce_timeout == 0)
timeout_encode = 0;
else{
/* make the timeout value in unit of (10 ns). */
coalesce_timeout = coalesce_timeout * 100;
min = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_LOWER_BOUND_NS / 10;
max = INTERRUPT_COALESCE_TIMEOUT_BASE_RANGE_UPPER_BOUND_NS / 10;
/* get the encode of timeout for register writing. */
for (timeout_encode = INTERRUPT_COALESCE_TIMEOUT_ENCODE_MIN;
timeout_encode <= INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX;
timeout_encode++) {
if (min <= coalesce_timeout && max > coalesce_timeout)
break;
else if (coalesce_timeout >= max && coalesce_timeout < min * 2
&& coalesce_timeout <= INTERRUPT_COALESCE_TIMEOUT_MAX_US * 100) {
if ((coalesce_timeout - max) < (2 * min - coalesce_timeout))
break;
else{
timeout_encode++;
break;
}
} else {
max = max * 2;
min = min * 2;
}
}
if (timeout_encode == INTERRUPT_COALESCE_TIMEOUT_ENCODE_MAX + 1)
/* the value is out of range. */
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
writel(SMU_ICC_GEN_VAL(NUMBER, coalesce_number) |
SMU_ICC_GEN_VAL(TIMER, timeout_encode),
&scic_controller->smu_registers->interrupt_coalesce_control);
scic_controller->interrupt_coalesce_number = (u16)coalesce_number;
scic_controller->interrupt_coalesce_timeout = coalesce_timeout / 100;
return SCI_SUCCESS;
}
static void scic_sds_controller_ready_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
/* set the default interrupt coalescence number and timeout value. */
scic_controller_set_interrupt_coalescence(scic, 0x10, 250);
}
static void scic_sds_controller_ready_state_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
/* disable interrupt coalescence. */
scic_controller_set_interrupt_coalescence(scic, 0, 0);
}
static enum sci_status scic_sds_controller_stop_phys(struct scic_sds_controller *scic)
{
u32 index;
enum sci_status status;
enum sci_status phy_status;
struct isci_host *ihost = scic_to_ihost(scic);
status = SCI_SUCCESS;
for (index = 0; index < SCI_MAX_PHYS; index++) {
phy_status = scic_sds_phy_stop(&ihost->phys[index].sci);
if (phy_status != SCI_SUCCESS &&
phy_status != SCI_FAILURE_INVALID_STATE) {
status = SCI_FAILURE;
dev_warn(scic_to_dev(scic),
"%s: Controller stop operation failed to stop "
"phy %d because of status %d.\n",
__func__,
ihost->phys[index].sci.phy_index, phy_status);
}
}
return status;
}
static enum sci_status scic_sds_controller_stop_ports(struct scic_sds_controller *scic)
{
u32 index;
enum sci_status port_status;
enum sci_status status = SCI_SUCCESS;
struct isci_host *ihost = scic_to_ihost(scic);
for (index = 0; index < scic->logical_port_entries; index++) {
struct scic_sds_port *sci_port = &ihost->ports[index].sci;
port_status = scic_sds_port_stop(sci_port);
if ((port_status != SCI_SUCCESS) &&
(port_status != SCI_FAILURE_INVALID_STATE)) {
status = SCI_FAILURE;
dev_warn(scic_to_dev(scic),
"%s: Controller stop operation failed to "
"stop port %d because of status %d.\n",
__func__,
sci_port->logical_port_index,
port_status);
}
}
return status;
}
static enum sci_status scic_sds_controller_stop_devices(struct scic_sds_controller *scic)
{
u32 index;
enum sci_status status;
enum sci_status device_status;
status = SCI_SUCCESS;
for (index = 0; index < scic->remote_node_entries; index++) {
if (scic->device_table[index] != NULL) {
/* / @todo What timeout value do we want to provide to this request? */
device_status = scic_remote_device_stop(scic->device_table[index], 0);
if ((device_status != SCI_SUCCESS) &&
(device_status != SCI_FAILURE_INVALID_STATE)) {
dev_warn(scic_to_dev(scic),
"%s: Controller stop operation failed "
"to stop device 0x%p because of "
"status %d.\n",
__func__,
scic->device_table[index], device_status);
}
}
}
return status;
}
static void scic_sds_controller_stopping_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
/* Stop all of the components for this controller */
scic_sds_controller_stop_phys(scic);
scic_sds_controller_stop_ports(scic);
scic_sds_controller_stop_devices(scic);
}
static void scic_sds_controller_stopping_state_exit(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
sci_del_timer(&scic->timer);
}
/**
* scic_sds_controller_reset_hardware() -
*
* This method will reset the controller hardware.
*/
static void scic_sds_controller_reset_hardware(struct scic_sds_controller *scic)
{
/* Disable interrupts so we dont take any spurious interrupts */
scic_controller_disable_interrupts(scic);
/* Reset the SCU */
writel(0xFFFFFFFF, &scic->smu_registers->soft_reset_control);
/* Delay for 1ms to before clearing the CQP and UFQPR. */
udelay(1000);
/* The write to the CQGR clears the CQP */
writel(0x00000000, &scic->smu_registers->completion_queue_get);
/* The write to the UFQGP clears the UFQPR */
writel(0, &scic->scu_registers->sdma.unsolicited_frame_get_pointer);
}
static void scic_sds_controller_resetting_state_enter(struct sci_base_state_machine *sm)
{
struct scic_sds_controller *scic = container_of(sm, typeof(*scic), sm);
scic_sds_controller_reset_hardware(scic);
sci_change_state(&scic->sm, SCIC_RESET);
}
static const struct sci_base_state scic_sds_controller_state_table[] = {
[SCIC_INITIAL] = {
.enter_state = scic_sds_controller_initial_state_enter,
},
[SCIC_RESET] = {},
[SCIC_INITIALIZING] = {},
[SCIC_INITIALIZED] = {},
[SCIC_STARTING] = {
.exit_state = scic_sds_controller_starting_state_exit,
},
[SCIC_READY] = {
.enter_state = scic_sds_controller_ready_state_enter,
.exit_state = scic_sds_controller_ready_state_exit,
},
[SCIC_RESETTING] = {
.enter_state = scic_sds_controller_resetting_state_enter,
},
[SCIC_STOPPING] = {
.enter_state = scic_sds_controller_stopping_state_enter,
.exit_state = scic_sds_controller_stopping_state_exit,
},
[SCIC_STOPPED] = {},
[SCIC_FAILED] = {}
};
static void scic_sds_controller_set_default_config_parameters(struct scic_sds_controller *scic)
{
/* these defaults are overridden by the platform / firmware */
struct isci_host *ihost = scic_to_ihost(scic);
u16 index;
/* Default to APC mode. */
scic->oem_parameters.sds1.controller.mode_type = SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE;
/* Default to APC mode. */
scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up = 1;
/* Default to no SSC operation. */
scic->oem_parameters.sds1.controller.do_enable_ssc = false;
/* Initialize all of the port parameter information to narrow ports. */
for (index = 0; index < SCI_MAX_PORTS; index++) {
scic->oem_parameters.sds1.ports[index].phy_mask = 0;
}
/* Initialize all of the phy parameter information. */
for (index = 0; index < SCI_MAX_PHYS; index++) {
/* Default to 6G (i.e. Gen 3) for now. */
scic->user_parameters.sds1.phys[index].max_speed_generation = 3;
/* the frequencies cannot be 0 */
scic->user_parameters.sds1.phys[index].align_insertion_frequency = 0x7f;
scic->user_parameters.sds1.phys[index].in_connection_align_insertion_frequency = 0xff;
scic->user_parameters.sds1.phys[index].notify_enable_spin_up_insertion_frequency = 0x33;
/*
* Previous Vitesse based expanders had a arbitration issue that
* is worked around by having the upper 32-bits of SAS address
* with a value greater then the Vitesse company identifier.
* Hence, usage of 0x5FCFFFFF. */
scic->oem_parameters.sds1.phys[index].sas_address.low = 0x1 + ihost->id;
scic->oem_parameters.sds1.phys[index].sas_address.high = 0x5FCFFFFF;
}
scic->user_parameters.sds1.stp_inactivity_timeout = 5;
scic->user_parameters.sds1.ssp_inactivity_timeout = 5;
scic->user_parameters.sds1.stp_max_occupancy_timeout = 5;
scic->user_parameters.sds1.ssp_max_occupancy_timeout = 20;
scic->user_parameters.sds1.no_outbound_task_timeout = 20;
}
static void controller_timeout(unsigned long data)
{
struct sci_timer *tmr = (struct sci_timer *)data;
struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), timer);
struct isci_host *ihost = scic_to_ihost(scic);
struct sci_base_state_machine *sm = &scic->sm;
unsigned long flags;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
if (sm->current_state_id == SCIC_STARTING)
scic_sds_controller_transition_to_ready(scic, SCI_FAILURE_TIMEOUT);
else if (sm->current_state_id == SCIC_STOPPING) {
sci_change_state(sm, SCIC_FAILED);
isci_host_stop_complete(ihost, SCI_FAILURE_TIMEOUT);
} else /* / @todo Now what do we want to do in this case? */
dev_err(scic_to_dev(scic),
"%s: Controller timer fired when controller was not "
"in a state being timed.\n",
__func__);
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
/**
* scic_controller_construct() - This method will attempt to construct a
* controller object utilizing the supplied parameter information.
* @c: This parameter specifies the controller to be constructed.
* @scu_base: mapped base address of the scu registers
* @smu_base: mapped base address of the smu registers
*
* Indicate if the controller was successfully constructed or if it failed in
* some way. SCI_SUCCESS This value is returned if the controller was
* successfully constructed. SCI_WARNING_TIMER_CONFLICT This value is returned
* if the interrupt coalescence timer may cause SAS compliance issues for SMP
* Target mode response processing. SCI_FAILURE_UNSUPPORTED_CONTROLLER_TYPE
* This value is returned if the controller does not support the supplied type.
* SCI_FAILURE_UNSUPPORTED_INIT_DATA_VERSION This value is returned if the
* controller does not support the supplied initialization data version.
*/
static enum sci_status scic_controller_construct(struct scic_sds_controller *scic,
void __iomem *scu_base,
void __iomem *smu_base)
{
struct isci_host *ihost = scic_to_ihost(scic);
u8 i;
sci_init_sm(&scic->sm, scic_sds_controller_state_table, SCIC_INITIAL);
scic->scu_registers = scu_base;
scic->smu_registers = smu_base;
scic_sds_port_configuration_agent_construct(&scic->port_agent);
/* Construct the ports for this controller */
for (i = 0; i < SCI_MAX_PORTS; i++)
scic_sds_port_construct(&ihost->ports[i].sci, i, scic);
scic_sds_port_construct(&ihost->ports[i].sci, SCIC_SDS_DUMMY_PORT, scic);
/* Construct the phys for this controller */
for (i = 0; i < SCI_MAX_PHYS; i++) {
/* Add all the PHYs to the dummy port */
scic_sds_phy_construct(&ihost->phys[i].sci,
&ihost->ports[SCI_MAX_PORTS].sci, i);
}
scic->invalid_phy_mask = 0;
sci_init_timer(&scic->timer, controller_timeout);
/* Initialize the User and OEM parameters to default values. */
scic_sds_controller_set_default_config_parameters(scic);
return scic_controller_reset(scic);
}
int scic_oem_parameters_validate(struct scic_sds_oem_params *oem)
{
int i;
for (i = 0; i < SCI_MAX_PORTS; i++)
if (oem->ports[i].phy_mask > SCIC_SDS_PARM_PHY_MASK_MAX)
return -EINVAL;
for (i = 0; i < SCI_MAX_PHYS; i++)
if (oem->phys[i].sas_address.high == 0 &&
oem->phys[i].sas_address.low == 0)
return -EINVAL;
if (oem->controller.mode_type == SCIC_PORT_AUTOMATIC_CONFIGURATION_MODE) {
for (i = 0; i < SCI_MAX_PHYS; i++)
if (oem->ports[i].phy_mask != 0)
return -EINVAL;
} else if (oem->controller.mode_type == SCIC_PORT_MANUAL_CONFIGURATION_MODE) {
u8 phy_mask = 0;
for (i = 0; i < SCI_MAX_PHYS; i++)
phy_mask |= oem->ports[i].phy_mask;
if (phy_mask == 0)
return -EINVAL;
} else
return -EINVAL;
if (oem->controller.max_concurrent_dev_spin_up > MAX_CONCURRENT_DEVICE_SPIN_UP_COUNT)
return -EINVAL;
return 0;
}
static enum sci_status scic_oem_parameters_set(struct scic_sds_controller *scic,
union scic_oem_parameters *scic_parms)
{
u32 state = scic->sm.current_state_id;
if (state == SCIC_RESET ||
state == SCIC_INITIALIZING ||
state == SCIC_INITIALIZED) {
if (scic_oem_parameters_validate(&scic_parms->sds1))
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
scic->oem_parameters.sds1 = scic_parms->sds1;
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_STATE;
}
void scic_oem_parameters_get(
struct scic_sds_controller *scic,
union scic_oem_parameters *scic_parms)
{
memcpy(scic_parms, (&scic->oem_parameters), sizeof(*scic_parms));
}
static void power_control_timeout(unsigned long data)
{
struct sci_timer *tmr = (struct sci_timer *)data;
struct scic_sds_controller *scic = container_of(tmr, typeof(*scic), power_control.timer);
struct isci_host *ihost = scic_to_ihost(scic);
struct scic_sds_phy *sci_phy;
unsigned long flags;
u8 i;
spin_lock_irqsave(&ihost->scic_lock, flags);
if (tmr->cancel)
goto done;
scic->power_control.phys_granted_power = 0;
if (scic->power_control.phys_waiting == 0) {
scic->power_control.timer_started = false;
goto done;
}
for (i = 0; i < SCI_MAX_PHYS; i++) {
if (scic->power_control.phys_waiting == 0)
break;
sci_phy = scic->power_control.requesters[i];
if (sci_phy == NULL)
continue;
if (scic->power_control.phys_granted_power >=
scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up)
break;
scic->power_control.requesters[i] = NULL;
scic->power_control.phys_waiting--;
scic->power_control.phys_granted_power++;
scic_sds_phy_consume_power_handler(sci_phy);
}
/*
* It doesn't matter if the power list is empty, we need to start the
* timer in case another phy becomes ready.
*/
sci_mod_timer(tmr, SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
scic->power_control.timer_started = true;
done:
spin_unlock_irqrestore(&ihost->scic_lock, flags);
}
/**
* This method inserts the phy in the stagger spinup control queue.
* @scic:
*
*
*/
void scic_sds_controller_power_control_queue_insert(
struct scic_sds_controller *scic,
struct scic_sds_phy *sci_phy)
{
BUG_ON(sci_phy == NULL);
if (scic->power_control.phys_granted_power <
scic->oem_parameters.sds1.controller.max_concurrent_dev_spin_up) {
scic->power_control.phys_granted_power++;
scic_sds_phy_consume_power_handler(sci_phy);
/*
* stop and start the power_control timer. When the timer fires, the
* no_of_phys_granted_power will be set to 0
*/
if (scic->power_control.timer_started)
sci_del_timer(&scic->power_control.timer);
sci_mod_timer(&scic->power_control.timer,
SCIC_SDS_CONTROLLER_POWER_CONTROL_INTERVAL);
scic->power_control.timer_started = true;
} else {
/* Add the phy in the waiting list */
scic->power_control.requesters[sci_phy->phy_index] = sci_phy;
scic->power_control.phys_waiting++;
}
}
/**
* This method removes the phy from the stagger spinup control queue.
* @scic:
*
*
*/
void scic_sds_controller_power_control_queue_remove(
struct scic_sds_controller *scic,
struct scic_sds_phy *sci_phy)
{
BUG_ON(sci_phy == NULL);
if (scic->power_control.requesters[sci_phy->phy_index] != NULL) {
scic->power_control.phys_waiting--;
}
scic->power_control.requesters[sci_phy->phy_index] = NULL;
}
#define AFE_REGISTER_WRITE_DELAY 10
/* Initialize the AFE for this phy index. We need to read the AFE setup from
* the OEM parameters
*/
static void scic_sds_controller_afe_initialization(struct scic_sds_controller *scic)
{
const struct scic_sds_oem_params *oem = &scic->oem_parameters.sds1;
u32 afe_status;
u32 phy_id;
/* Clear DFX Status registers */
writel(0x0081000f, &scic->scu_registers->afe.afe_dfx_master_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
if (is_b0()) {
/* PM Rx Equalization Save, PM SPhy Rx Acknowledgement
* Timer, PM Stagger Timer */
writel(0x0007BFFF, &scic->scu_registers->afe.afe_pmsn_master_control2);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/* Configure bias currents to normal */
if (is_a0())
writel(0x00005500, &scic->scu_registers->afe.afe_bias_control);
else if (is_a2())
writel(0x00005A00, &scic->scu_registers->afe.afe_bias_control);
else if (is_b0() || is_c0())
writel(0x00005F00, &scic->scu_registers->afe.afe_bias_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable PLL */
if (is_b0() || is_c0())
writel(0x80040A08, &scic->scu_registers->afe.afe_pll_control0);
else
writel(0x80040908, &scic->scu_registers->afe.afe_pll_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Wait for the PLL to lock */
do {
afe_status = readl(&scic->scu_registers->afe.afe_common_block_status);
udelay(AFE_REGISTER_WRITE_DELAY);
} while ((afe_status & 0x00001000) == 0);
if (is_a0() || is_a2()) {
/* Shorten SAS SNW lock time (RxLock timer value from 76 us to 50 us) */
writel(0x7bcc96ad, &scic->scu_registers->afe.afe_pmsn_master_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
}
for (phy_id = 0; phy_id < SCI_MAX_PHYS; phy_id++) {
const struct sci_phy_oem_params *oem_phy = &oem->phys[phy_id];
if (is_b0()) {
/* Configure transmitter SSC parameters */
writel(0x00030000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
udelay(AFE_REGISTER_WRITE_DELAY);
} else if (is_c0()) {
/* Configure transmitter SSC parameters */
writel(0x0003000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_ssc_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/*
* All defaults, except the Receive Word Alignament/Comma Detect
* Enable....(0xe800) */
writel(0x00004500, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
} else {
/*
* All defaults, except the Receive Word Alignament/Comma Detect
* Enable....(0xe800) */
writel(0x00004512, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x0050100F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/*
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
* & increase TX int & ext bias 20%....(0xe85c) */
if (is_a0())
writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
else if (is_a2())
writel(0x000003F0, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
else if (is_b0()) {
/* Power down TX and RX (PWRDNTX and PWRDNRX) */
writel(0x000003D7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/*
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
* & increase TX int & ext bias 20%....(0xe85c) */
writel(0x000003D4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
} else {
writel(0x000001E7, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
udelay(AFE_REGISTER_WRITE_DELAY);
/*
* Power up TX and RX out from power down (PWRDNTX and PWRDNRX)
* & increase TX int & ext bias 20%....(0xe85c) */
writel(0x000001E4, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_channel_control);
}
udelay(AFE_REGISTER_WRITE_DELAY);
if (is_a0() || is_a2()) {
/* Enable TX equalization (0xe824) */
writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/*
* RDPI=0x0(RX Power On), RXOOBDETPDNC=0x0, TPD=0x0(TX Power On),
* RDD=0x0(RX Detect Enabled) ....(0xe800) */
writel(0x00004100, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_xcvr_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Leave DFE/FFE on */
if (is_a0())
writel(0x3F09983F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
else if (is_a2())
writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
else if (is_b0()) {
writel(0x3F11103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable TX equalization (0xe824) */
writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
} else {
writel(0x0140DF0F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(0x3F6F103F, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_rx_ssc_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
/* Enable TX equalization (0xe824) */
writel(0x00040000, &scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_control);
}
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control0,
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control1,
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control1);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control2,
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control2);
udelay(AFE_REGISTER_WRITE_DELAY);
writel(oem_phy->afe_tx_amp_control3,
&scic->scu_registers->afe.scu_afe_xcvr[phy_id].afe_tx_amp_control3);
udelay(AFE_REGISTER_WRITE_DELAY);
}
/* Transfer control to the PEs */
writel(0x00010f00, &scic->scu_registers->afe.afe_dfx_master_control0);
udelay(AFE_REGISTER_WRITE_DELAY);
}
static void scic_sds_controller_initialize_power_control(struct scic_sds_controller *scic)
{
sci_init_timer(&scic->power_control.timer, power_control_timeout);
memset(scic->power_control.requesters, 0,
sizeof(scic->power_control.requesters));
scic->power_control.phys_waiting = 0;
scic->power_control.phys_granted_power = 0;
}
static enum sci_status scic_controller_initialize(struct scic_sds_controller *scic)
{
struct sci_base_state_machine *sm = &scic->sm;
struct isci_host *ihost = scic_to_ihost(scic);
enum sci_status result = SCI_FAILURE;
unsigned long i, state, val;
if (scic->sm.current_state_id != SCIC_RESET) {
dev_warn(scic_to_dev(scic),
"SCIC Controller initialize operation requested "
"in invalid state\n");
return SCI_FAILURE_INVALID_STATE;
}
sci_change_state(sm, SCIC_INITIALIZING);
sci_init_timer(&scic->phy_timer, phy_startup_timeout);
scic->next_phy_to_start = 0;
scic->phy_startup_timer_pending = false;
scic_sds_controller_initialize_power_control(scic);
/*
* There is nothing to do here for B0 since we do not have to
* program the AFE registers.
* / @todo The AFE settings are supposed to be correct for the B0 but
* / presently they seem to be wrong. */
scic_sds_controller_afe_initialization(scic);
/* Take the hardware out of reset */
writel(0, &scic->smu_registers->soft_reset_control);
/*
* / @todo Provide meaningfull error code for hardware failure
* result = SCI_FAILURE_CONTROLLER_HARDWARE; */
for (i = 100; i >= 1; i--) {
u32 status;
/* Loop until the hardware reports success */
udelay(SCU_CONTEXT_RAM_INIT_STALL_TIME);
status = readl(&scic->smu_registers->control_status);
if ((status & SCU_RAM_INIT_COMPLETED) == SCU_RAM_INIT_COMPLETED)
break;
}
if (i == 0)
goto out;
/*
* Determine what are the actaul device capacities that the
* hardware will support */
val = readl(&scic->smu_registers->device_context_capacity);
/* Record the smaller of the two capacity values */
scic->logical_port_entries = min(smu_max_ports(val), SCI_MAX_PORTS);
scic->task_context_entries = min(smu_max_task_contexts(val), SCI_MAX_IO_REQUESTS);
scic->remote_node_entries = min(smu_max_rncs(val), SCI_MAX_REMOTE_DEVICES);
/*
* Make all PEs that are unassigned match up with the
* logical ports
*/
for (i = 0; i < scic->logical_port_entries; i++) {
struct scu_port_task_scheduler_group_registers __iomem
*ptsg = &scic->scu_registers->peg0.ptsg;
writel(i, &ptsg->protocol_engine[i]);
}
/* Initialize hardware PCI Relaxed ordering in DMA engines */
val = readl(&scic->scu_registers->sdma.pdma_configuration);
val |= SCU_PDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
writel(val, &scic->scu_registers->sdma.pdma_configuration);
val = readl(&scic->scu_registers->sdma.cdma_configuration);
val |= SCU_CDMACR_GEN_BIT(PCI_RELAXED_ORDERING_ENABLE);
writel(val, &scic->scu_registers->sdma.cdma_configuration);
/*
* Initialize the PHYs before the PORTs because the PHY registers
* are accessed during the port initialization.
*/
for (i = 0; i < SCI_MAX_PHYS; i++) {
result = scic_sds_phy_initialize(&ihost->phys[i].sci,
&scic->scu_registers->peg0.pe[i].tl,
&scic->scu_registers->peg0.pe[i].ll);
if (result != SCI_SUCCESS)
goto out;
}
for (i = 0; i < scic->logical_port_entries; i++) {
result = scic_sds_port_initialize(&ihost->ports[i].sci,
&scic->scu_registers->peg0.ptsg.port[i],
&scic->scu_registers->peg0.ptsg.protocol_engine,
&scic->scu_registers->peg0.viit[i]);
if (result != SCI_SUCCESS)
goto out;
}
result = scic_sds_port_configuration_agent_initialize(scic, &scic->port_agent);
out:
/* Advance the controller state machine */
if (result == SCI_SUCCESS)
state = SCIC_INITIALIZED;
else
state = SCIC_FAILED;
sci_change_state(sm, state);
return result;
}
static enum sci_status scic_user_parameters_set(
struct scic_sds_controller *scic,
union scic_user_parameters *scic_parms)
{
u32 state = scic->sm.current_state_id;
if (state == SCIC_RESET ||
state == SCIC_INITIALIZING ||
state == SCIC_INITIALIZED) {
u16 index;
/*
* Validate the user parameters. If they are not legal, then
* return a failure.
*/
for (index = 0; index < SCI_MAX_PHYS; index++) {
struct sci_phy_user_params *user_phy;
user_phy = &scic_parms->sds1.phys[index];
if (!((user_phy->max_speed_generation <=
SCIC_SDS_PARM_MAX_SPEED) &&
(user_phy->max_speed_generation >
SCIC_SDS_PARM_NO_SPEED)))
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
if (user_phy->in_connection_align_insertion_frequency <
3)
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
if ((user_phy->in_connection_align_insertion_frequency <
3) ||
(user_phy->align_insertion_frequency == 0) ||
(user_phy->
notify_enable_spin_up_insertion_frequency ==
0))
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
}
if ((scic_parms->sds1.stp_inactivity_timeout == 0) ||
(scic_parms->sds1.ssp_inactivity_timeout == 0) ||
(scic_parms->sds1.stp_max_occupancy_timeout == 0) ||
(scic_parms->sds1.ssp_max_occupancy_timeout == 0) ||
(scic_parms->sds1.no_outbound_task_timeout == 0))
return SCI_FAILURE_INVALID_PARAMETER_VALUE;
memcpy(&scic->user_parameters, scic_parms, sizeof(*scic_parms));
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_STATE;
}
static int scic_controller_mem_init(struct scic_sds_controller *scic)
{
struct device *dev = scic_to_dev(scic);
dma_addr_t dma;
size_t size;
int err;
size = SCU_MAX_COMPLETION_QUEUE_ENTRIES * sizeof(u32);
scic->completion_queue = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
if (!scic->completion_queue)
return -ENOMEM;
writel(lower_32_bits(dma), &scic->smu_registers->completion_queue_lower);
writel(upper_32_bits(dma), &scic->smu_registers->completion_queue_upper);
size = scic->remote_node_entries * sizeof(union scu_remote_node_context);
scic->remote_node_context_table = dmam_alloc_coherent(dev, size, &dma,
GFP_KERNEL);
if (!scic->remote_node_context_table)
return -ENOMEM;
writel(lower_32_bits(dma), &scic->smu_registers->remote_node_context_lower);
writel(upper_32_bits(dma), &scic->smu_registers->remote_node_context_upper);
size = scic->task_context_entries * sizeof(struct scu_task_context),
scic->task_context_table = dmam_alloc_coherent(dev, size, &dma, GFP_KERNEL);
if (!scic->task_context_table)
return -ENOMEM;
writel(lower_32_bits(dma), &scic->smu_registers->host_task_table_lower);
writel(upper_32_bits(dma), &scic->smu_registers->host_task_table_upper);
err = scic_sds_unsolicited_frame_control_construct(scic);
if (err)
return err;
/*
* Inform the silicon as to the location of the UF headers and
* address table.
*/
writel(lower_32_bits(scic->uf_control.headers.physical_address),
&scic->scu_registers->sdma.uf_header_base_address_lower);
writel(upper_32_bits(scic->uf_control.headers.physical_address),
&scic->scu_registers->sdma.uf_header_base_address_upper);
writel(lower_32_bits(scic->uf_control.address_table.physical_address),
&scic->scu_registers->sdma.uf_address_table_lower);
writel(upper_32_bits(scic->uf_control.address_table.physical_address),
&scic->scu_registers->sdma.uf_address_table_upper);
return 0;
}
int isci_host_init(struct isci_host *isci_host)
{
int err = 0, i;
enum sci_status status;
union scic_oem_parameters oem;
union scic_user_parameters scic_user_params;
struct isci_pci_info *pci_info = to_pci_info(isci_host->pdev);
spin_lock_init(&isci_host->state_lock);
spin_lock_init(&isci_host->scic_lock);
spin_lock_init(&isci_host->queue_lock);
init_waitqueue_head(&isci_host->eventq);
isci_host_change_state(isci_host, isci_starting);
isci_host->can_queue = ISCI_CAN_QUEUE_VAL;
status = scic_controller_construct(&isci_host->sci, scu_base(isci_host),
smu_base(isci_host));
if (status != SCI_SUCCESS) {
dev_err(&isci_host->pdev->dev,
"%s: scic_controller_construct failed - status = %x\n",
__func__,
status);
return -ENODEV;
}
isci_host->sas_ha.dev = &isci_host->pdev->dev;
isci_host->sas_ha.lldd_ha = isci_host;
/*
* grab initial values stored in the controller object for OEM and USER
* parameters
*/
isci_user_parameters_get(isci_host, &scic_user_params);
status = scic_user_parameters_set(&isci_host->sci,
&scic_user_params);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"%s: scic_user_parameters_set failed\n",
__func__);
return -ENODEV;
}
scic_oem_parameters_get(&isci_host->sci, &oem);
/* grab any OEM parameters specified in orom */
if (pci_info->orom) {
status = isci_parse_oem_parameters(&oem,
pci_info->orom,
isci_host->id);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"parsing firmware oem parameters failed\n");
return -EINVAL;
}
}
status = scic_oem_parameters_set(&isci_host->sci, &oem);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"%s: scic_oem_parameters_set failed\n",
__func__);
return -ENODEV;
}
tasklet_init(&isci_host->completion_tasklet,
isci_host_completion_routine, (unsigned long)isci_host);
INIT_LIST_HEAD(&isci_host->requests_to_complete);
INIT_LIST_HEAD(&isci_host->requests_to_errorback);
spin_lock_irq(&isci_host->scic_lock);
status = scic_controller_initialize(&isci_host->sci);
spin_unlock_irq(&isci_host->scic_lock);
if (status != SCI_SUCCESS) {
dev_warn(&isci_host->pdev->dev,
"%s: scic_controller_initialize failed -"
" status = 0x%x\n",
__func__, status);
return -ENODEV;
}
err = scic_controller_mem_init(&isci_host->sci);
if (err)
return err;
isci_host->dma_pool = dmam_pool_create(DRV_NAME, &isci_host->pdev->dev,
sizeof(struct isci_request),
SLAB_HWCACHE_ALIGN, 0);
if (!isci_host->dma_pool)
return -ENOMEM;
for (i = 0; i < SCI_MAX_PORTS; i++)
isci_port_init(&isci_host->ports[i], isci_host, i);
for (i = 0; i < SCI_MAX_PHYS; i++)
isci_phy_init(&isci_host->phys[i], isci_host, i);
for (i = 0; i < SCI_MAX_REMOTE_DEVICES; i++) {
struct isci_remote_device *idev = &isci_host->devices[i];
INIT_LIST_HEAD(&idev->reqs_in_process);
INIT_LIST_HEAD(&idev->node);
spin_lock_init(&idev->state_lock);
}
return 0;
}
void scic_sds_controller_link_up(struct scic_sds_controller *scic,
struct scic_sds_port *port, struct scic_sds_phy *phy)
{
switch (scic->sm.current_state_id) {
case SCIC_STARTING:
sci_del_timer(&scic->phy_timer);
scic->phy_startup_timer_pending = false;
scic->port_agent.link_up_handler(scic, &scic->port_agent,
port, phy);
scic_sds_controller_start_next_phy(scic);
break;
case SCIC_READY:
scic->port_agent.link_up_handler(scic, &scic->port_agent,
port, phy);
break;
default:
dev_dbg(scic_to_dev(scic),
"%s: SCIC Controller linkup event from phy %d in "
"unexpected state %d\n", __func__, phy->phy_index,
scic->sm.current_state_id);
}
}
void scic_sds_controller_link_down(struct scic_sds_controller *scic,
struct scic_sds_port *port, struct scic_sds_phy *phy)
{
switch (scic->sm.current_state_id) {
case SCIC_STARTING:
case SCIC_READY:
scic->port_agent.link_down_handler(scic, &scic->port_agent,
port, phy);
break;
default:
dev_dbg(scic_to_dev(scic),
"%s: SCIC Controller linkdown event from phy %d in "
"unexpected state %d\n",
__func__,
phy->phy_index,
scic->sm.current_state_id);
}
}
/**
* This is a helper method to determine if any remote devices on this
* controller are still in the stopping state.
*
*/
static bool scic_sds_controller_has_remote_devices_stopping(
struct scic_sds_controller *controller)
{
u32 index;
for (index = 0; index < controller->remote_node_entries; index++) {
if ((controller->device_table[index] != NULL) &&
(controller->device_table[index]->sm.current_state_id == SCI_DEV_STOPPING))
return true;
}
return false;
}
/**
* This method is called by the remote device to inform the controller
* object that the remote device has stopped.
*/
void scic_sds_controller_remote_device_stopped(struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev)
{
if (scic->sm.current_state_id != SCIC_STOPPING) {
dev_dbg(scic_to_dev(scic),
"SCIC Controller 0x%p remote device stopped event "
"from device 0x%p in unexpected state %d\n",
scic, sci_dev,
scic->sm.current_state_id);
return;
}
if (!scic_sds_controller_has_remote_devices_stopping(scic)) {
sci_change_state(&scic->sm, SCIC_STOPPED);
}
}
/**
* This method will write to the SCU PCP register the request value. The method
* is used to suspend/resume ports, devices, and phys.
* @scic:
*
*
*/
void scic_sds_controller_post_request(
struct scic_sds_controller *scic,
u32 request)
{
dev_dbg(scic_to_dev(scic),
"%s: SCIC Controller 0x%p post request 0x%08x\n",
__func__,
scic,
request);
writel(request, &scic->smu_registers->post_context_port);
}
/**
* This method will copy the soft copy of the task context into the physical
* memory accessible by the controller.
* @scic: This parameter specifies the controller for which to copy
* the task context.
* @sci_req: This parameter specifies the request for which the task
* context is being copied.
*
* After this call is made the SCIC_SDS_IO_REQUEST object will always point to
* the physical memory version of the task context. Thus, all subsequent
* updates to the task context are performed in the TC table (i.e. DMAable
* memory). none
*/
void scic_sds_controller_copy_task_context(
struct scic_sds_controller *scic,
struct scic_sds_request *sci_req)
{
struct scu_task_context *task_context_buffer;
task_context_buffer = scic_sds_controller_get_task_context_buffer(
scic, sci_req->io_tag);
memcpy(task_context_buffer,
sci_req->task_context_buffer,
offsetof(struct scu_task_context, sgl_snapshot_ac));
/*
* Now that the soft copy of the TC has been copied into the TC
* table accessible by the silicon. Thus, any further changes to
* the TC (e.g. TC termination) occur in the appropriate location. */
sci_req->task_context_buffer = task_context_buffer;
}
struct scu_task_context *scic_sds_controller_get_task_context_buffer(struct scic_sds_controller *scic,
u16 io_tag)
{
u16 tci = ISCI_TAG_TCI(io_tag);
if (tci < scic->task_context_entries) {
return &scic->task_context_table[tci];
}
return NULL;
}
struct scic_sds_request *scic_request_by_tag(struct scic_sds_controller *scic, u16 io_tag)
{
u16 task_index;
u16 task_sequence;
task_index = ISCI_TAG_TCI(io_tag);
if (task_index < scic->task_context_entries) {
if (scic->io_request_table[task_index] != NULL) {
task_sequence = ISCI_TAG_SEQ(io_tag);
if (task_sequence == scic->io_request_sequence[task_index]) {
return scic->io_request_table[task_index];
}
}
}
return NULL;
}
/**
* This method allocates remote node index and the reserves the remote node
* context space for use. This method can fail if there are no more remote
* node index available.
* @scic: This is the controller object which contains the set of
* free remote node ids
* @sci_dev: This is the device object which is requesting the a remote node
* id
* @node_id: This is the remote node id that is assinged to the device if one
* is available
*
* enum sci_status SCI_FAILURE_OUT_OF_RESOURCES if there are no available remote
* node index available.
*/
enum sci_status scic_sds_controller_allocate_remote_node_context(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 *node_id)
{
u16 node_index;
u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
node_index = scic_sds_remote_node_table_allocate_remote_node(
&scic->available_remote_nodes, remote_node_count
);
if (node_index != SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX) {
scic->device_table[node_index] = sci_dev;
*node_id = node_index;
return SCI_SUCCESS;
}
return SCI_FAILURE_INSUFFICIENT_RESOURCES;
}
/**
* This method frees the remote node index back to the available pool. Once
* this is done the remote node context buffer is no longer valid and can
* not be used.
* @scic:
* @sci_dev:
* @node_id:
*
*/
void scic_sds_controller_free_remote_node_context(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *sci_dev,
u16 node_id)
{
u32 remote_node_count = scic_sds_remote_device_node_count(sci_dev);
if (scic->device_table[node_id] == sci_dev) {
scic->device_table[node_id] = NULL;
scic_sds_remote_node_table_release_remote_node_index(
&scic->available_remote_nodes, remote_node_count, node_id
);
}
}
/**
* This method returns the union scu_remote_node_context for the specified remote
* node id.
* @scic:
* @node_id:
*
* union scu_remote_node_context*
*/
union scu_remote_node_context *scic_sds_controller_get_remote_node_context_buffer(
struct scic_sds_controller *scic,
u16 node_id
) {
if (
(node_id < scic->remote_node_entries)
&& (scic->device_table[node_id] != NULL)
) {
return &scic->remote_node_context_table[node_id];
}
return NULL;
}
/**
*
* @resposne_buffer: This is the buffer into which the D2H register FIS will be
* constructed.
* @frame_header: This is the frame header returned by the hardware.
* @frame_buffer: This is the frame buffer returned by the hardware.
*
* This method will combind the frame header and frame buffer to create a SATA
* D2H register FIS none
*/
void scic_sds_controller_copy_sata_response(
void *response_buffer,
void *frame_header,
void *frame_buffer)
{
memcpy(response_buffer, frame_header, sizeof(u32));
memcpy(response_buffer + sizeof(u32),
frame_buffer,
sizeof(struct dev_to_host_fis) - sizeof(u32));
}
/**
* This method releases the frame once this is done the frame is available for
* re-use by the hardware. The data contained in the frame header and frame
* buffer is no longer valid. The UF queue get pointer is only updated if UF
* control indicates this is appropriate.
* @scic:
* @frame_index:
*
*/
void scic_sds_controller_release_frame(
struct scic_sds_controller *scic,
u32 frame_index)
{
if (scic_sds_unsolicited_frame_control_release_frame(
&scic->uf_control, frame_index) == true)
writel(scic->uf_control.get,
&scic->scu_registers->sdma.unsolicited_frame_get_pointer);
}
/**
* scic_controller_start_io() - This method is called by the SCI user to
* send/start an IO request. If the method invocation is successful, then
* the IO request has been queued to the hardware for processing.
* @controller: the handle to the controller object for which to start an IO
* request.
* @remote_device: the handle to the remote device object for which to start an
* IO request.
* @io_request: the handle to the io request object to start.
* @io_tag: This parameter specifies a previously allocated IO tag that the
* user desires to be utilized for this request. This parameter is optional.
* The user is allowed to supply SCI_CONTROLLER_INVALID_IO_TAG as the value
* for this parameter.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - For SATA, the user is required to manage NCQ tags. As a
* result, it is expected the user will have set the NCQ tag field in the host
* to device register FIS prior to calling this method. There is also a
* requirement for the user to call scic_stp_io_set_ncq_tag() prior to invoking
* the scic_controller_start_io() method. scic_controller_allocate_tag() for
* more information on allocating a tag. Indicate if the controller
* successfully started the IO request. SCI_SUCCESS if the IO request was
* successfully started. Determine the failure situations and return values.
*/
enum sci_status scic_controller_start_io(struct scic_sds_controller *scic,
struct scic_sds_remote_device *rdev,
struct scic_sds_request *req,
u16 io_tag)
{
enum sci_status status;
if (scic->sm.current_state_id != SCIC_READY) {
dev_warn(scic_to_dev(scic), "invalid state to start I/O");
return SCI_FAILURE_INVALID_STATE;
}
status = scic_sds_remote_device_start_io(scic, rdev, req);
if (status != SCI_SUCCESS)
return status;
scic->io_request_table[ISCI_TAG_TCI(req->io_tag)] = req;
scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(req));
return SCI_SUCCESS;
}
/**
* scic_controller_terminate_request() - This method is called by the SCI Core
* user to terminate an ongoing (i.e. started) core IO request. This does
* not abort the IO request at the target, but rather removes the IO request
* from the host controller.
* @controller: the handle to the controller object for which to terminate a
* request.
* @remote_device: the handle to the remote device object for which to
* terminate a request.
* @request: the handle to the io or task management request object to
* terminate.
*
* Indicate if the controller successfully began the terminate process for the
* IO request. SCI_SUCCESS if the terminate process was successfully started
* for the request. Determine the failure situations and return values.
*/
enum sci_status scic_controller_terminate_request(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *rdev,
struct scic_sds_request *req)
{
enum sci_status status;
if (scic->sm.current_state_id != SCIC_READY) {
dev_warn(scic_to_dev(scic),
"invalid state to terminate request\n");
return SCI_FAILURE_INVALID_STATE;
}
status = scic_sds_io_request_terminate(req);
if (status != SCI_SUCCESS)
return status;
/*
* Utilize the original post context command and or in the POST_TC_ABORT
* request sub-type.
*/
scic_sds_controller_post_request(scic,
scic_sds_request_get_post_context(req) |
SCU_CONTEXT_COMMAND_REQUEST_POST_TC_ABORT);
return SCI_SUCCESS;
}
/**
* scic_controller_complete_io() - This method will perform core specific
* completion operations for an IO request. After this method is invoked,
* the user should consider the IO request as invalid until it is properly
* reused (i.e. re-constructed).
* @controller: The handle to the controller object for which to complete the
* IO request.
* @remote_device: The handle to the remote device object for which to complete
* the IO request.
* @io_request: the handle to the io request object to complete.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
* Core user, using the scic_controller_allocate_io_tag() method, then it is
* the responsibility of the caller to invoke the scic_controller_free_io_tag()
* method to free the tag (i.e. this method will not free the IO tag). Indicate
* if the controller successfully completed the IO request. SCI_SUCCESS if the
* completion process was successful.
*/
enum sci_status scic_controller_complete_io(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *rdev,
struct scic_sds_request *request)
{
enum sci_status status;
u16 index;
switch (scic->sm.current_state_id) {
case SCIC_STOPPING:
/* XXX: Implement this function */
return SCI_FAILURE;
case SCIC_READY:
status = scic_sds_remote_device_complete_io(scic, rdev, request);
if (status != SCI_SUCCESS)
return status;
index = ISCI_TAG_TCI(request->io_tag);
scic->io_request_table[index] = NULL;
return SCI_SUCCESS;
default:
dev_warn(scic_to_dev(scic), "invalid state to complete I/O");
return SCI_FAILURE_INVALID_STATE;
}
}
enum sci_status scic_controller_continue_io(struct scic_sds_request *sci_req)
{
struct scic_sds_controller *scic = sci_req->owning_controller;
if (scic->sm.current_state_id != SCIC_READY) {
dev_warn(scic_to_dev(scic), "invalid state to continue I/O");
return SCI_FAILURE_INVALID_STATE;
}
scic->io_request_table[ISCI_TAG_TCI(sci_req->io_tag)] = sci_req;
scic_sds_controller_post_request(scic, scic_sds_request_get_post_context(sci_req));
return SCI_SUCCESS;
}
/**
* scic_controller_start_task() - This method is called by the SCIC user to
* send/start a framework task management request.
* @controller: the handle to the controller object for which to start the task
* management request.
* @remote_device: the handle to the remote device object for which to start
* the task management request.
* @task_request: the handle to the task request object to start.
* @io_tag: This parameter specifies a previously allocated IO tag that the
* user desires to be utilized for this request. Note this not the io_tag
* of the request being managed. It is to be utilized for the task request
* itself. This parameter is optional. The user is allowed to supply
* SCI_CONTROLLER_INVALID_IO_TAG as the value for this parameter.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - The user must synchronize this task with completion
* queue processing. If they are not synchronized then it is possible for the
* io requests that are being managed by the task request can complete before
* starting the task request. scic_controller_allocate_tag() for more
* information on allocating a tag. Indicate if the controller successfully
* started the IO request. SCI_TASK_SUCCESS if the task request was
* successfully started. SCI_TASK_FAILURE_REQUIRES_SCSI_ABORT This value is
* returned if there is/are task(s) outstanding that require termination or
* completion before this request can succeed.
*/
enum sci_task_status scic_controller_start_task(
struct scic_sds_controller *scic,
struct scic_sds_remote_device *rdev,
struct scic_sds_request *req,
u16 task_tag)
{
enum sci_status status;
if (scic->sm.current_state_id != SCIC_READY) {
dev_warn(scic_to_dev(scic),
"%s: SCIC Controller starting task from invalid "
"state\n",
__func__);
return SCI_TASK_FAILURE_INVALID_STATE;
}
status = scic_sds_remote_device_start_task(scic, rdev, req);
switch (status) {
case SCI_FAILURE_RESET_DEVICE_PARTIAL_SUCCESS:
scic->io_request_table[ISCI_TAG_TCI(req->io_tag)] = req;
/*
* We will let framework know this task request started successfully,
* although core is still woring on starting the request (to post tc when
* RNC is resumed.)
*/
return SCI_SUCCESS;
case SCI_SUCCESS:
scic->io_request_table[ISCI_TAG_TCI(req->io_tag)] = req;
scic_sds_controller_post_request(scic,
scic_sds_request_get_post_context(req));
break;
default:
break;
}
return status;
}
/**
* scic_controller_allocate_io_tag() - This method will allocate a tag from the
* pool of free IO tags. Direct allocation of IO tags by the SCI Core user
* is optional. The scic_controller_start_io() method will allocate an IO
* tag if this method is not utilized and the tag is not supplied to the IO
* construct routine. Direct allocation of IO tags may provide additional
* performance improvements in environments capable of supporting this usage
* model. Additionally, direct allocation of IO tags also provides
* additional flexibility to the SCI Core user. Specifically, the user may
* retain IO tags across the lives of multiple IO requests.
* @controller: the handle to the controller object for which to allocate the
* tag.
*
* IO tags are a protected resource. It is incumbent upon the SCI Core user to
* ensure that each of the methods that may allocate or free available IO tags
* are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). An unsigned integer representing an available IO tag.
* SCI_CONTROLLER_INVALID_IO_TAG This value is returned if there are no
* currently available tags to be allocated. All return other values indicate a
* legitimate tag.
*/
u16 scic_controller_allocate_io_tag(struct scic_sds_controller *scic)
{
struct isci_host *ihost = scic_to_ihost(scic);
if (isci_tci_space(ihost)) {
u16 tci = isci_tci_alloc(ihost);
u8 seq = scic->io_request_sequence[tci];
return ISCI_TAG(seq, tci);
}
return SCI_CONTROLLER_INVALID_IO_TAG;
}
/**
* scic_controller_free_io_tag() - This method will free an IO tag to the pool
* of free IO tags. This method provides the SCI Core user more flexibility
* with regards to IO tags. The user may desire to keep an IO tag after an
* IO request has completed, because they plan on re-using the tag for a
* subsequent IO request. This method is only legal if the tag was
* allocated via scic_controller_allocate_io_tag().
* @controller: This parameter specifies the handle to the controller object
* for which to free/return the tag.
* @io_tag: This parameter represents the tag to be freed to the pool of
* available tags.
*
* - IO tags are a protected resource. It is incumbent upon the SCI Core user
* to ensure that each of the methods that may allocate or free available IO
* tags are handled in a mutually exclusive manner. This method is one of said
* methods requiring proper critical code section protection (e.g. semaphore,
* spin-lock, etc.). - If the IO tag for a request was allocated, by the SCI
* Core user, using the scic_controller_allocate_io_tag() method, then it is
* the responsibility of the caller to invoke this method to free the tag. This
* method returns an indication of whether the tag was successfully put back
* (freed) to the pool of available tags. SCI_SUCCESS This return value
* indicates the tag was successfully placed into the pool of available IO
* tags. SCI_FAILURE_INVALID_IO_TAG This value is returned if the supplied tag
* is not a valid IO tag value.
*/
enum sci_status scic_controller_free_io_tag(struct scic_sds_controller *scic,
u16 io_tag)
{
struct isci_host *ihost = scic_to_ihost(scic);
u16 tci = ISCI_TAG_TCI(io_tag);
u16 seq = ISCI_TAG_SEQ(io_tag);
/* prevent tail from passing head */
if (isci_tci_active(ihost) == 0)
return SCI_FAILURE_INVALID_IO_TAG;
if (seq == scic->io_request_sequence[tci]) {
scic->io_request_sequence[tci] = (seq+1) & (SCI_MAX_SEQ-1);
isci_tci_free(ihost, ISCI_TAG_TCI(io_tag));
return SCI_SUCCESS;
}
return SCI_FAILURE_INVALID_IO_TAG;
}