WSL2-Linux-Kernel/drivers/base/firmware_class.c

699 строки
17 KiB
C
Исходник Обычный вид История

/*
* firmware_class.c - Multi purpose firmware loading support
*
* Copyright (c) 2003 Manuel Estrada Sainz
*
* Please see Documentation/firmware_class/ for more information.
*
*/
#include <linux/capability.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/mutex.h>
#include <linux/kthread.h>
#include <linux/highmem.h>
#include <linux/firmware.h>
#include "base.h"
#define to_dev(obj) container_of(obj, struct device, kobj)
MODULE_AUTHOR("Manuel Estrada Sainz");
MODULE_DESCRIPTION("Multi purpose firmware loading support");
MODULE_LICENSE("GPL");
enum {
FW_STATUS_LOADING,
FW_STATUS_DONE,
FW_STATUS_ABORT,
};
static int loading_timeout = 60; /* In seconds */
/* fw_lock could be moved to 'struct firmware_priv' but since it is just
* guarding for corner cases a global lock should be OK */
static DEFINE_MUTEX(fw_lock);
struct firmware_priv {
char *fw_id;
struct completion completion;
struct bin_attribute attr_data;
struct firmware *fw;
unsigned long status;
struct page **pages;
int nr_pages;
int page_array_size;
const char *vdata;
struct timer_list timeout;
};
#ifdef CONFIG_FW_LOADER
extern struct builtin_fw __start_builtin_fw[];
extern struct builtin_fw __end_builtin_fw[];
#else /* Module case. Avoid ifdefs later; it'll all optimise out */
static struct builtin_fw *__start_builtin_fw;
static struct builtin_fw *__end_builtin_fw;
#endif
static void
fw_load_abort(struct firmware_priv *fw_priv)
{
set_bit(FW_STATUS_ABORT, &fw_priv->status);
wmb();
complete(&fw_priv->completion);
}
static ssize_t
firmware_timeout_show(struct class *class, char *buf)
{
return sprintf(buf, "%d\n", loading_timeout);
}
/**
* firmware_timeout_store - set number of seconds to wait for firmware
* @class: device class pointer
* @buf: buffer to scan for timeout value
* @count: number of bytes in @buf
*
* Sets the number of seconds to wait for the firmware. Once
* this expires an error will be returned to the driver and no
* firmware will be provided.
*
* Note: zero means 'wait forever'.
**/
static ssize_t
firmware_timeout_store(struct class *class, const char *buf, size_t count)
{
loading_timeout = simple_strtol(buf, NULL, 10);
if (loading_timeout < 0)
loading_timeout = 0;
return count;
}
static CLASS_ATTR(timeout, 0644, firmware_timeout_show, firmware_timeout_store);
static void fw_dev_release(struct device *dev);
static int firmware_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
if (add_uevent_var(env, "FIRMWARE=%s", fw_priv->fw_id))
return -ENOMEM;
if (add_uevent_var(env, "TIMEOUT=%i", loading_timeout))
return -ENOMEM;
return 0;
}
static struct class firmware_class = {
.name = "firmware",
.dev_uevent = firmware_uevent,
.dev_release = fw_dev_release,
};
static ssize_t firmware_loading_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
int loading = test_bit(FW_STATUS_LOADING, &fw_priv->status);
return sprintf(buf, "%d\n", loading);
}
/* Some architectures don't have PAGE_KERNEL_RO */
#ifndef PAGE_KERNEL_RO
#define PAGE_KERNEL_RO PAGE_KERNEL
#endif
/**
* firmware_loading_store - set value in the 'loading' control file
* @dev: device pointer
* @attr: device attribute pointer
* @buf: buffer to scan for loading control value
* @count: number of bytes in @buf
*
* The relevant values are:
*
* 1: Start a load, discarding any previous partial load.
* 0: Conclude the load and hand the data to the driver code.
* -1: Conclude the load with an error and discard any written data.
**/
static ssize_t firmware_loading_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
int loading = simple_strtol(buf, NULL, 10);
int i;
switch (loading) {
case 1:
mutex_lock(&fw_lock);
if (!fw_priv->fw) {
mutex_unlock(&fw_lock);
break;
}
vfree(fw_priv->fw->data);
fw_priv->fw->data = NULL;
for (i = 0; i < fw_priv->nr_pages; i++)
__free_page(fw_priv->pages[i]);
kfree(fw_priv->pages);
fw_priv->pages = NULL;
fw_priv->page_array_size = 0;
fw_priv->nr_pages = 0;
fw_priv->fw->size = 0;
set_bit(FW_STATUS_LOADING, &fw_priv->status);
mutex_unlock(&fw_lock);
break;
case 0:
if (test_bit(FW_STATUS_LOADING, &fw_priv->status)) {
vfree(fw_priv->fw->data);
fw_priv->fw->data = vmap(fw_priv->pages,
fw_priv->nr_pages,
0, PAGE_KERNEL_RO);
if (!fw_priv->fw->data) {
dev_err(dev, "%s: vmap() failed\n", __func__);
goto err;
}
/* Pages will be freed by vfree() */
fw_priv->page_array_size = 0;
fw_priv->nr_pages = 0;
complete(&fw_priv->completion);
clear_bit(FW_STATUS_LOADING, &fw_priv->status);
break;
}
/* fallthrough */
default:
dev_err(dev, "%s: unexpected value (%d)\n", __func__, loading);
/* fallthrough */
case -1:
err:
fw_load_abort(fw_priv);
break;
}
return count;
}
static DEVICE_ATTR(loading, 0644, firmware_loading_show, firmware_loading_store);
static ssize_t
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 09:57:22 +04:00
firmware_data_read(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buffer, loff_t offset, size_t count)
{
struct device *dev = to_dev(kobj);
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
struct firmware *fw;
ssize_t ret_count;
mutex_lock(&fw_lock);
fw = fw_priv->fw;
if (!fw || test_bit(FW_STATUS_DONE, &fw_priv->status)) {
ret_count = -ENODEV;
goto out;
}
if (offset > fw->size) {
ret_count = 0;
goto out;
}
if (count > fw->size - offset)
count = fw->size - offset;
ret_count = count;
while (count) {
void *page_data;
int page_nr = offset >> PAGE_SHIFT;
int page_ofs = offset & (PAGE_SIZE-1);
int page_cnt = min_t(size_t, PAGE_SIZE - page_ofs, count);
page_data = kmap(fw_priv->pages[page_nr]);
memcpy(buffer, page_data + page_ofs, page_cnt);
kunmap(fw_priv->pages[page_nr]);
buffer += page_cnt;
offset += page_cnt;
count -= page_cnt;
}
out:
mutex_unlock(&fw_lock);
return ret_count;
}
static int
fw_realloc_buffer(struct firmware_priv *fw_priv, int min_size)
{
int pages_needed = ALIGN(min_size, PAGE_SIZE) >> PAGE_SHIFT;
/* If the array of pages is too small, grow it... */
if (fw_priv->page_array_size < pages_needed) {
int new_array_size = max(pages_needed,
fw_priv->page_array_size * 2);
struct page **new_pages;
new_pages = kmalloc(new_array_size * sizeof(void *),
GFP_KERNEL);
if (!new_pages) {
fw_load_abort(fw_priv);
return -ENOMEM;
}
memcpy(new_pages, fw_priv->pages,
fw_priv->page_array_size * sizeof(void *));
memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
(new_array_size - fw_priv->page_array_size));
kfree(fw_priv->pages);
fw_priv->pages = new_pages;
fw_priv->page_array_size = new_array_size;
}
while (fw_priv->nr_pages < pages_needed) {
fw_priv->pages[fw_priv->nr_pages] =
alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
if (!fw_priv->pages[fw_priv->nr_pages]) {
fw_load_abort(fw_priv);
return -ENOMEM;
}
fw_priv->nr_pages++;
}
return 0;
}
/**
* firmware_data_write - write method for firmware
* @kobj: kobject for the device
* @bin_attr: bin_attr structure
* @buffer: buffer being written
* @offset: buffer offset for write in total data store area
* @count: buffer size
*
* Data written to the 'data' attribute will be later handed to
* the driver as a firmware image.
**/
static ssize_t
sysfs: add parameter "struct bin_attribute *" in .read/.write methods for sysfs binary attributes Well, first of all, I don't want to change so many files either. What I do: Adding a new parameter "struct bin_attribute *" in the .read/.write methods for the sysfs binary attributes. In fact, only the four lines change in fs/sysfs/bin.c and include/linux/sysfs.h do the real work. But I have to update all the files that use binary attributes to make them compatible with the new .read and .write methods. I'm not sure if I missed any. :( Why I do this: For a sysfs attribute, we can get a pointer pointing to the struct attribute in the .show/.store method, while we can't do this for the binary attributes. I don't know why this is different, but this does make it not so handy to use the binary attributes as the regular ones. So I think this patch is reasonable. :) Who benefits from it: The patch that exposes ACPI tables in sysfs requires such an improvement. All the table binary attributes share the same .read method. Parameter "struct bin_attribute *" is used to get the table signature and instance number which are used to distinguish different ACPI table binary attributes. Without this parameter, we need to offer different .read methods for different ACPI table binary attributes. This is impossible as there are various ACPI tables on different platforms, and we don't know what they are until they are loaded. Signed-off-by: Zhang Rui <rui.zhang@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2007-06-09 09:57:22 +04:00
firmware_data_write(struct kobject *kobj, struct bin_attribute *bin_attr,
char *buffer, loff_t offset, size_t count)
{
struct device *dev = to_dev(kobj);
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
struct firmware *fw;
ssize_t retval;
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
mutex_lock(&fw_lock);
fw = fw_priv->fw;
if (!fw || test_bit(FW_STATUS_DONE, &fw_priv->status)) {
retval = -ENODEV;
goto out;
}
retval = fw_realloc_buffer(fw_priv, offset + count);
if (retval)
goto out;
retval = count;
while (count) {
void *page_data;
int page_nr = offset >> PAGE_SHIFT;
int page_ofs = offset & (PAGE_SIZE - 1);
int page_cnt = min_t(size_t, PAGE_SIZE - page_ofs, count);
page_data = kmap(fw_priv->pages[page_nr]);
memcpy(page_data + page_ofs, buffer, page_cnt);
kunmap(fw_priv->pages[page_nr]);
buffer += page_cnt;
offset += page_cnt;
count -= page_cnt;
}
fw->size = max_t(size_t, offset, fw->size);
out:
mutex_unlock(&fw_lock);
return retval;
}
static struct bin_attribute firmware_attr_data_tmpl = {
.attr = {.name = "data", .mode = 0644},
.size = 0,
.read = firmware_data_read,
.write = firmware_data_write,
};
static void fw_dev_release(struct device *dev)
{
struct firmware_priv *fw_priv = dev_get_drvdata(dev);
int i;
for (i = 0; i < fw_priv->nr_pages; i++)
__free_page(fw_priv->pages[i]);
kfree(fw_priv->pages);
kfree(fw_priv->fw_id);
kfree(fw_priv);
kfree(dev);
module_put(THIS_MODULE);
}
static void
firmware_class_timeout(u_long data)
{
struct firmware_priv *fw_priv = (struct firmware_priv *) data;
fw_load_abort(fw_priv);
}
static int fw_register_device(struct device **dev_p, const char *fw_name,
struct device *device)
{
int retval;
struct firmware_priv *fw_priv = kzalloc(sizeof(*fw_priv),
GFP_KERNEL);
struct device *f_dev = kzalloc(sizeof(*f_dev), GFP_KERNEL);
*dev_p = NULL;
if (!fw_priv || !f_dev) {
dev_err(device, "%s: kmalloc failed\n", __func__);
retval = -ENOMEM;
goto error_kfree;
}
init_completion(&fw_priv->completion);
fw_priv->attr_data = firmware_attr_data_tmpl;
fw_priv->fw_id = kstrdup(fw_name, GFP_KERNEL);
if (!fw_priv->fw_id) {
dev_err(device, "%s: Firmware name allocation failed\n",
__func__);
retval = -ENOMEM;
goto error_kfree;
}
fw_priv->timeout.function = firmware_class_timeout;
fw_priv->timeout.data = (u_long) fw_priv;
init_timer(&fw_priv->timeout);
dev_set_name(f_dev, "%s", dev_name(device));
f_dev->parent = device;
f_dev->class = &firmware_class;
dev_set_drvdata(f_dev, fw_priv);
dev_set_uevent_suppress(f_dev, 1);
retval = device_register(f_dev);
if (retval) {
dev_err(device, "%s: device_register failed\n", __func__);
put_device(f_dev);
return retval;
}
*dev_p = f_dev;
return 0;
error_kfree:
kfree(f_dev);
kfree(fw_priv);
return retval;
}
static int fw_setup_device(struct firmware *fw, struct device **dev_p,
const char *fw_name, struct device *device,
int uevent)
{
struct device *f_dev;
struct firmware_priv *fw_priv;
int retval;
*dev_p = NULL;
retval = fw_register_device(&f_dev, fw_name, device);
if (retval)
goto out;
/* Need to pin this module until class device is destroyed */
__module_get(THIS_MODULE);
fw_priv = dev_get_drvdata(f_dev);
fw_priv->fw = fw;
retval = sysfs_create_bin_file(&f_dev->kobj, &fw_priv->attr_data);
if (retval) {
dev_err(device, "%s: sysfs_create_bin_file failed\n", __func__);
goto error_unreg;
}
retval = device_create_file(f_dev, &dev_attr_loading);
if (retval) {
dev_err(device, "%s: device_create_file failed\n", __func__);
goto error_unreg;
}
if (uevent)
dev_set_uevent_suppress(f_dev, 0);
*dev_p = f_dev;
goto out;
error_unreg:
device_unregister(f_dev);
out:
return retval;
}
static int
_request_firmware(const struct firmware **firmware_p, const char *name,
struct device *device, int uevent)
{
struct device *f_dev;
struct firmware_priv *fw_priv;
struct firmware *firmware;
struct builtin_fw *builtin;
int retval;
if (!firmware_p)
return -EINVAL;
*firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
if (!firmware) {
dev_err(device, "%s: kmalloc(struct firmware) failed\n",
__func__);
retval = -ENOMEM;
goto out;
}
for (builtin = __start_builtin_fw; builtin != __end_builtin_fw;
builtin++) {
if (strcmp(name, builtin->name))
continue;
dev_info(device, "firmware: using built-in firmware %s\n",
name);
firmware->size = builtin->size;
firmware->data = builtin->data;
return 0;
}
if (uevent)
dev_info(device, "firmware: requesting %s\n", name);
retval = fw_setup_device(firmware, &f_dev, name, device, uevent);
if (retval)
goto error_kfree_fw;
fw_priv = dev_get_drvdata(f_dev);
if (uevent) {
if (loading_timeout > 0) {
fw_priv->timeout.expires = jiffies + loading_timeout * HZ;
add_timer(&fw_priv->timeout);
}
kobject_uevent(&f_dev->kobj, KOBJ_ADD);
wait_for_completion(&fw_priv->completion);
set_bit(FW_STATUS_DONE, &fw_priv->status);
del_timer_sync(&fw_priv->timeout);
} else
wait_for_completion(&fw_priv->completion);
mutex_lock(&fw_lock);
if (!fw_priv->fw->size || test_bit(FW_STATUS_ABORT, &fw_priv->status)) {
retval = -ENOENT;
release_firmware(fw_priv->fw);
*firmware_p = NULL;
}
fw_priv->fw = NULL;
mutex_unlock(&fw_lock);
device_unregister(f_dev);
goto out;
error_kfree_fw:
kfree(firmware);
*firmware_p = NULL;
out:
return retval;
}
/**
* request_firmware: - send firmware request and wait for it
* @firmware_p: pointer to firmware image
* @name: name of firmware file
* @device: device for which firmware is being loaded
*
* @firmware_p will be used to return a firmware image by the name
* of @name for device @device.
*
* Should be called from user context where sleeping is allowed.
*
* @name will be used as $FIRMWARE in the uevent environment and
* should be distinctive enough not to be confused with any other
* firmware image for this or any other device.
**/
int
request_firmware(const struct firmware **firmware_p, const char *name,
struct device *device)
{
int uevent = 1;
return _request_firmware(firmware_p, name, device, uevent);
}
/**
* release_firmware: - release the resource associated with a firmware image
* @fw: firmware resource to release
**/
void
release_firmware(const struct firmware *fw)
{
struct builtin_fw *builtin;
if (fw) {
for (builtin = __start_builtin_fw; builtin != __end_builtin_fw;
builtin++) {
if (fw->data == builtin->data)
goto free_fw;
}
vfree(fw->data);
free_fw:
kfree(fw);
}
}
/* Async support */
struct firmware_work {
struct work_struct work;
struct module *module;
const char *name;
struct device *device;
void *context;
void (*cont)(const struct firmware *fw, void *context);
int uevent;
};
static int
request_firmware_work_func(void *arg)
{
struct firmware_work *fw_work = arg;
const struct firmware *fw;
int ret;
if (!arg) {
WARN_ON(1);
return 0;
}
ret = _request_firmware(&fw, fw_work->name, fw_work->device,
fw_work->uevent);
if (ret < 0)
fw_work->cont(NULL, fw_work->context);
else {
fw_work->cont(fw, fw_work->context);
release_firmware(fw);
}
module_put(fw_work->module);
kfree(fw_work);
return ret;
}
/**
* request_firmware_nowait: asynchronous version of request_firmware
* @module: module requesting the firmware
* @uevent: sends uevent to copy the firmware image if this flag
* is non-zero else the firmware copy must be done manually.
* @name: name of firmware file
* @device: device for which firmware is being loaded
* @context: will be passed over to @cont, and
* @fw may be %NULL if firmware request fails.
* @cont: function will be called asynchronously when the firmware
* request is over.
*
* Asynchronous variant of request_firmware() for user contexts where
* it is not possible to sleep for long time. It can't be called
* in atomic contexts.
**/
int
request_firmware_nowait(
struct module *module, int uevent,
const char *name, struct device *device, void *context,
void (*cont)(const struct firmware *fw, void *context))
{
struct task_struct *task;
struct firmware_work *fw_work = kmalloc(sizeof (struct firmware_work),
GFP_ATOMIC);
if (!fw_work)
return -ENOMEM;
if (!try_module_get(module)) {
kfree(fw_work);
return -EFAULT;
}
*fw_work = (struct firmware_work) {
.module = module,
.name = name,
.device = device,
.context = context,
.cont = cont,
.uevent = uevent,
};
task = kthread_run(request_firmware_work_func, fw_work,
"firmware/%s", name);
if (IS_ERR(task)) {
fw_work->cont(NULL, fw_work->context);
module_put(fw_work->module);
kfree(fw_work);
return PTR_ERR(task);
}
return 0;
}
static int __init
firmware_class_init(void)
{
int error;
error = class_register(&firmware_class);
if (error) {
printk(KERN_ERR "%s: class_register failed\n", __func__);
return error;
}
error = class_create_file(&firmware_class, &class_attr_timeout);
if (error) {
printk(KERN_ERR "%s: class_create_file failed\n",
__func__);
class_unregister(&firmware_class);
}
return error;
}
static void __exit
firmware_class_exit(void)
{
class_unregister(&firmware_class);
}
fs_initcall(firmware_class_init);
module_exit(firmware_class_exit);
EXPORT_SYMBOL(release_firmware);
EXPORT_SYMBOL(request_firmware);
EXPORT_SYMBOL(request_firmware_nowait);