WSL2-Linux-Kernel/net/core/rtnetlink.c

2069 строки
49 KiB
C
Исходник Обычный вид История

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Routing netlink socket interface: protocol independent part.
*
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Fixes:
* Vitaly E. Lavrov RTA_OK arithmetics was wrong.
*/
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/capability.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/security.h>
#include <linux/mutex.h>
#include <linux/if_addr.h>
#include <linux/pci.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <net/arp.h>
#include <net/route.h>
#include <net/udp.h>
#include <net/sock.h>
#include <net/pkt_sched.h>
#include <net/fib_rules.h>
#include <net/rtnetlink.h>
#include <net/net_namespace.h>
struct rtnl_link {
rtnl_doit_func doit;
rtnl_dumpit_func dumpit;
rtnl_calcit_func calcit;
};
static DEFINE_MUTEX(rtnl_mutex);
static u16 min_ifinfo_dump_size;
void rtnl_lock(void)
{
mutex_lock(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_lock);
void __rtnl_unlock(void)
{
mutex_unlock(&rtnl_mutex);
}
void rtnl_unlock(void)
{
/* This fellow will unlock it for us. */
netdev_run_todo();
}
EXPORT_SYMBOL(rtnl_unlock);
int rtnl_trylock(void)
{
return mutex_trylock(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_trylock);
int rtnl_is_locked(void)
{
return mutex_is_locked(&rtnl_mutex);
}
EXPORT_SYMBOL(rtnl_is_locked);
#ifdef CONFIG_PROVE_LOCKING
int lockdep_rtnl_is_held(void)
{
return lockdep_is_held(&rtnl_mutex);
}
EXPORT_SYMBOL(lockdep_rtnl_is_held);
#endif /* #ifdef CONFIG_PROVE_LOCKING */
static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
static inline int rtm_msgindex(int msgtype)
{
int msgindex = msgtype - RTM_BASE;
/*
* msgindex < 0 implies someone tried to register a netlink
* control code. msgindex >= RTM_NR_MSGTYPES may indicate that
* the message type has not been added to linux/rtnetlink.h
*/
BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
return msgindex;
}
static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
{
struct rtnl_link *tab;
if (protocol <= RTNL_FAMILY_MAX)
tab = rtnl_msg_handlers[protocol];
else
tab = NULL;
if (tab == NULL || tab[msgindex].doit == NULL)
tab = rtnl_msg_handlers[PF_UNSPEC];
return tab ? tab[msgindex].doit : NULL;
}
static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
{
struct rtnl_link *tab;
if (protocol <= RTNL_FAMILY_MAX)
tab = rtnl_msg_handlers[protocol];
else
tab = NULL;
if (tab == NULL || tab[msgindex].dumpit == NULL)
tab = rtnl_msg_handlers[PF_UNSPEC];
return tab ? tab[msgindex].dumpit : NULL;
}
static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
{
struct rtnl_link *tab;
if (protocol <= RTNL_FAMILY_MAX)
tab = rtnl_msg_handlers[protocol];
else
tab = NULL;
if (tab == NULL || tab[msgindex].calcit == NULL)
tab = rtnl_msg_handlers[PF_UNSPEC];
return tab ? tab[msgindex].calcit : NULL;
}
/**
* __rtnl_register - Register a rtnetlink message type
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
* @doit: Function pointer called for each request message
* @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
* @calcit: Function pointer to calc size of dump message
*
* Registers the specified function pointers (at least one of them has
* to be non-NULL) to be called whenever a request message for the
* specified protocol family and message type is received.
*
* The special protocol family PF_UNSPEC may be used to define fallback
* function pointers for the case when no entry for the specific protocol
* family exists.
*
* Returns 0 on success or a negative error code.
*/
int __rtnl_register(int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
rtnl_calcit_func calcit)
{
struct rtnl_link *tab;
int msgindex;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
msgindex = rtm_msgindex(msgtype);
tab = rtnl_msg_handlers[protocol];
if (tab == NULL) {
tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
if (tab == NULL)
return -ENOBUFS;
rtnl_msg_handlers[protocol] = tab;
}
if (doit)
tab[msgindex].doit = doit;
if (dumpit)
tab[msgindex].dumpit = dumpit;
if (calcit)
tab[msgindex].calcit = calcit;
return 0;
}
EXPORT_SYMBOL_GPL(__rtnl_register);
/**
* rtnl_register - Register a rtnetlink message type
*
* Identical to __rtnl_register() but panics on failure. This is useful
* as failure of this function is very unlikely, it can only happen due
* to lack of memory when allocating the chain to store all message
* handlers for a protocol. Meant for use in init functions where lack
* of memory implies no sense in continuing.
*/
void rtnl_register(int protocol, int msgtype,
rtnl_doit_func doit, rtnl_dumpit_func dumpit,
rtnl_calcit_func calcit)
{
if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
panic("Unable to register rtnetlink message handler, "
"protocol = %d, message type = %d\n",
protocol, msgtype);
}
EXPORT_SYMBOL_GPL(rtnl_register);
/**
* rtnl_unregister - Unregister a rtnetlink message type
* @protocol: Protocol family or PF_UNSPEC
* @msgtype: rtnetlink message type
*
* Returns 0 on success or a negative error code.
*/
int rtnl_unregister(int protocol, int msgtype)
{
int msgindex;
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
msgindex = rtm_msgindex(msgtype);
if (rtnl_msg_handlers[protocol] == NULL)
return -ENOENT;
rtnl_msg_handlers[protocol][msgindex].doit = NULL;
rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
return 0;
}
EXPORT_SYMBOL_GPL(rtnl_unregister);
/**
* rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
* @protocol : Protocol family or PF_UNSPEC
*
* Identical to calling rtnl_unregster() for all registered message types
* of a certain protocol family.
*/
void rtnl_unregister_all(int protocol)
{
BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
kfree(rtnl_msg_handlers[protocol]);
rtnl_msg_handlers[protocol] = NULL;
}
EXPORT_SYMBOL_GPL(rtnl_unregister_all);
static LIST_HEAD(link_ops);
/**
* __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
* @ops: struct rtnl_link_ops * to register
*
* The caller must hold the rtnl_mutex. This function should be used
* by drivers that create devices during module initialization. It
* must be called before registering the devices.
*
* Returns 0 on success or a negative error code.
*/
int __rtnl_link_register(struct rtnl_link_ops *ops)
{
if (!ops->dellink)
ops->dellink = unregister_netdevice_queue;
list_add_tail(&ops->list, &link_ops);
return 0;
}
EXPORT_SYMBOL_GPL(__rtnl_link_register);
/**
* rtnl_link_register - Register rtnl_link_ops with rtnetlink.
* @ops: struct rtnl_link_ops * to register
*
* Returns 0 on success or a negative error code.
*/
int rtnl_link_register(struct rtnl_link_ops *ops)
{
int err;
rtnl_lock();
err = __rtnl_link_register(ops);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL_GPL(rtnl_link_register);
static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
{
struct net_device *dev;
LIST_HEAD(list_kill);
for_each_netdev(net, dev) {
if (dev->rtnl_link_ops == ops)
ops->dellink(dev, &list_kill);
}
unregister_netdevice_many(&list_kill);
}
/**
* __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
* @ops: struct rtnl_link_ops * to unregister
*
* The caller must hold the rtnl_mutex.
*/
void __rtnl_link_unregister(struct rtnl_link_ops *ops)
{
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
struct net *net;
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
for_each_net(net) {
__rtnl_kill_links(net, ops);
}
list_del(&ops->list);
}
EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
/**
* rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
* @ops: struct rtnl_link_ops * to unregister
*/
void rtnl_link_unregister(struct rtnl_link_ops *ops)
{
rtnl_lock();
__rtnl_link_unregister(ops);
rtnl_unlock();
}
EXPORT_SYMBOL_GPL(rtnl_link_unregister);
static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
{
const struct rtnl_link_ops *ops;
list_for_each_entry(ops, &link_ops, list) {
if (!strcmp(ops->kind, kind))
return ops;
}
return NULL;
}
static size_t rtnl_link_get_size(const struct net_device *dev)
{
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
size_t size;
if (!ops)
return 0;
size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
if (ops->get_size)
/* IFLA_INFO_DATA + nested data */
size += nla_total_size(sizeof(struct nlattr)) +
ops->get_size(dev);
if (ops->get_xstats_size)
/* IFLA_INFO_XSTATS */
size += nla_total_size(ops->get_xstats_size(dev));
return size;
}
static LIST_HEAD(rtnl_af_ops);
static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
{
const struct rtnl_af_ops *ops;
list_for_each_entry(ops, &rtnl_af_ops, list) {
if (ops->family == family)
return ops;
}
return NULL;
}
/**
* __rtnl_af_register - Register rtnl_af_ops with rtnetlink.
* @ops: struct rtnl_af_ops * to register
*
* The caller must hold the rtnl_mutex.
*
* Returns 0 on success or a negative error code.
*/
int __rtnl_af_register(struct rtnl_af_ops *ops)
{
list_add_tail(&ops->list, &rtnl_af_ops);
return 0;
}
EXPORT_SYMBOL_GPL(__rtnl_af_register);
/**
* rtnl_af_register - Register rtnl_af_ops with rtnetlink.
* @ops: struct rtnl_af_ops * to register
*
* Returns 0 on success or a negative error code.
*/
int rtnl_af_register(struct rtnl_af_ops *ops)
{
int err;
rtnl_lock();
err = __rtnl_af_register(ops);
rtnl_unlock();
return err;
}
EXPORT_SYMBOL_GPL(rtnl_af_register);
/**
* __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
* @ops: struct rtnl_af_ops * to unregister
*
* The caller must hold the rtnl_mutex.
*/
void __rtnl_af_unregister(struct rtnl_af_ops *ops)
{
list_del(&ops->list);
}
EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
/**
* rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
* @ops: struct rtnl_af_ops * to unregister
*/
void rtnl_af_unregister(struct rtnl_af_ops *ops)
{
rtnl_lock();
__rtnl_af_unregister(ops);
rtnl_unlock();
}
EXPORT_SYMBOL_GPL(rtnl_af_unregister);
static size_t rtnl_link_get_af_size(const struct net_device *dev)
{
struct rtnl_af_ops *af_ops;
size_t size;
/* IFLA_AF_SPEC */
size = nla_total_size(sizeof(struct nlattr));
list_for_each_entry(af_ops, &rtnl_af_ops, list) {
if (af_ops->get_link_af_size) {
/* AF_* + nested data */
size += nla_total_size(sizeof(struct nlattr)) +
af_ops->get_link_af_size(dev);
}
}
return size;
}
static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
{
const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
struct nlattr *linkinfo, *data;
int err = -EMSGSIZE;
linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
if (linkinfo == NULL)
goto out;
if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
goto err_cancel_link;
if (ops->fill_xstats) {
err = ops->fill_xstats(skb, dev);
if (err < 0)
goto err_cancel_link;
}
if (ops->fill_info) {
data = nla_nest_start(skb, IFLA_INFO_DATA);
if (data == NULL)
goto err_cancel_link;
err = ops->fill_info(skb, dev);
if (err < 0)
goto err_cancel_data;
nla_nest_end(skb, data);
}
nla_nest_end(skb, linkinfo);
return 0;
err_cancel_data:
nla_nest_cancel(skb, data);
err_cancel_link:
nla_nest_cancel(skb, linkinfo);
out:
return err;
}
static const int rtm_min[RTM_NR_FAMILIES] =
{
[RTM_FAM(RTM_NEWLINK)] = NLMSG_LENGTH(sizeof(struct ifinfomsg)),
[RTM_FAM(RTM_NEWADDR)] = NLMSG_LENGTH(sizeof(struct ifaddrmsg)),
[RTM_FAM(RTM_NEWROUTE)] = NLMSG_LENGTH(sizeof(struct rtmsg)),
[RTM_FAM(RTM_NEWRULE)] = NLMSG_LENGTH(sizeof(struct fib_rule_hdr)),
[RTM_FAM(RTM_NEWQDISC)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
[RTM_FAM(RTM_NEWTCLASS)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
[RTM_FAM(RTM_NEWTFILTER)] = NLMSG_LENGTH(sizeof(struct tcmsg)),
[RTM_FAM(RTM_NEWACTION)] = NLMSG_LENGTH(sizeof(struct tcamsg)),
[RTM_FAM(RTM_GETMULTICAST)] = NLMSG_LENGTH(sizeof(struct rtgenmsg)),
[RTM_FAM(RTM_GETANYCAST)] = NLMSG_LENGTH(sizeof(struct rtgenmsg)),
};
static const int rta_max[RTM_NR_FAMILIES] =
{
[RTM_FAM(RTM_NEWLINK)] = IFLA_MAX,
[RTM_FAM(RTM_NEWADDR)] = IFA_MAX,
[RTM_FAM(RTM_NEWROUTE)] = RTA_MAX,
[RTM_FAM(RTM_NEWRULE)] = FRA_MAX,
[RTM_FAM(RTM_NEWQDISC)] = TCA_MAX,
[RTM_FAM(RTM_NEWTCLASS)] = TCA_MAX,
[RTM_FAM(RTM_NEWTFILTER)] = TCA_MAX,
[RTM_FAM(RTM_NEWACTION)] = TCAA_MAX,
};
void __rta_fill(struct sk_buff *skb, int attrtype, int attrlen, const void *data)
{
struct rtattr *rta;
int size = RTA_LENGTH(attrlen);
rta = (struct rtattr *)skb_put(skb, RTA_ALIGN(size));
rta->rta_type = attrtype;
rta->rta_len = size;
memcpy(RTA_DATA(rta), data, attrlen);
memset(RTA_DATA(rta) + attrlen, 0, RTA_ALIGN(size) - size);
}
EXPORT_SYMBOL(__rta_fill);
int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned group, int echo)
{
struct sock *rtnl = net->rtnl;
int err = 0;
NETLINK_CB(skb).dst_group = group;
if (echo)
atomic_inc(&skb->users);
netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
if (echo)
err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
return err;
}
int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
{
struct sock *rtnl = net->rtnl;
return nlmsg_unicast(rtnl, skb, pid);
}
EXPORT_SYMBOL(rtnl_unicast);
2009-02-25 10:18:28 +03:00
void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
struct nlmsghdr *nlh, gfp_t flags)
{
struct sock *rtnl = net->rtnl;
int report = 0;
if (nlh)
report = nlmsg_report(nlh);
2009-02-25 10:18:28 +03:00
nlmsg_notify(rtnl, skb, pid, group, report, flags);
}
EXPORT_SYMBOL(rtnl_notify);
void rtnl_set_sk_err(struct net *net, u32 group, int error)
{
struct sock *rtnl = net->rtnl;
netlink_set_err(rtnl, 0, group, error);
}
EXPORT_SYMBOL(rtnl_set_sk_err);
int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
{
struct nlattr *mx;
int i, valid = 0;
mx = nla_nest_start(skb, RTA_METRICS);
if (mx == NULL)
return -ENOBUFS;
for (i = 0; i < RTAX_MAX; i++) {
if (metrics[i]) {
valid++;
NLA_PUT_U32(skb, i+1, metrics[i]);
}
}
if (!valid) {
nla_nest_cancel(skb, mx);
return 0;
}
return nla_nest_end(skb, mx);
nla_put_failure:
nla_nest_cancel(skb, mx);
return -EMSGSIZE;
}
EXPORT_SYMBOL(rtnetlink_put_metrics);
int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
u32 ts, u32 tsage, long expires, u32 error)
{
struct rta_cacheinfo ci = {
.rta_lastuse = jiffies_to_clock_t(jiffies - dst->lastuse),
.rta_used = dst->__use,
.rta_clntref = atomic_read(&(dst->__refcnt)),
.rta_error = error,
.rta_id = id,
.rta_ts = ts,
.rta_tsage = tsage,
};
if (expires)
ci.rta_expires = jiffies_to_clock_t(expires);
return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
}
EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
static void set_operstate(struct net_device *dev, unsigned char transition)
{
unsigned char operstate = dev->operstate;
switch (transition) {
case IF_OPER_UP:
if ((operstate == IF_OPER_DORMANT ||
operstate == IF_OPER_UNKNOWN) &&
!netif_dormant(dev))
operstate = IF_OPER_UP;
break;
case IF_OPER_DORMANT:
if (operstate == IF_OPER_UP ||
operstate == IF_OPER_UNKNOWN)
operstate = IF_OPER_DORMANT;
break;
}
if (dev->operstate != operstate) {
write_lock_bh(&dev_base_lock);
dev->operstate = operstate;
write_unlock_bh(&dev_base_lock);
netdev_state_change(dev);
}
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
const struct ifinfomsg *ifm)
{
unsigned int flags = ifm->ifi_flags;
/* bugwards compatibility: ifi_change == 0 is treated as ~0 */
if (ifm->ifi_change)
flags = (flags & ifm->ifi_change) |
(dev->flags & ~ifm->ifi_change);
return flags;
}
static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
const struct rtnl_link_stats64 *b)
{
a->rx_packets = b->rx_packets;
a->tx_packets = b->tx_packets;
a->rx_bytes = b->rx_bytes;
a->tx_bytes = b->tx_bytes;
a->rx_errors = b->rx_errors;
a->tx_errors = b->tx_errors;
a->rx_dropped = b->rx_dropped;
a->tx_dropped = b->tx_dropped;
a->multicast = b->multicast;
a->collisions = b->collisions;
a->rx_length_errors = b->rx_length_errors;
a->rx_over_errors = b->rx_over_errors;
a->rx_crc_errors = b->rx_crc_errors;
a->rx_frame_errors = b->rx_frame_errors;
a->rx_fifo_errors = b->rx_fifo_errors;
a->rx_missed_errors = b->rx_missed_errors;
a->tx_aborted_errors = b->tx_aborted_errors;
a->tx_carrier_errors = b->tx_carrier_errors;
a->tx_fifo_errors = b->tx_fifo_errors;
a->tx_heartbeat_errors = b->tx_heartbeat_errors;
a->tx_window_errors = b->tx_window_errors;
a->rx_compressed = b->rx_compressed;
a->tx_compressed = b->tx_compressed;
}
static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
{
memcpy(v, b, sizeof(*b));
}
/* All VF info */
static inline int rtnl_vfinfo_size(const struct net_device *dev)
{
if (dev->dev.parent && dev_is_pci(dev->dev.parent)) {
int num_vfs = dev_num_vf(dev->dev.parent);
size_t size = nla_total_size(sizeof(struct nlattr));
size += nla_total_size(num_vfs * sizeof(struct nlattr));
size += num_vfs *
(nla_total_size(sizeof(struct ifla_vf_mac)) +
nla_total_size(sizeof(struct ifla_vf_vlan)) +
nla_total_size(sizeof(struct ifla_vf_tx_rate)));
return size;
} else
return 0;
}
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
static size_t rtnl_port_size(const struct net_device *dev)
{
size_t port_size = nla_total_size(4) /* PORT_VF */
+ nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
+ nla_total_size(sizeof(struct ifla_port_vsi))
/* PORT_VSI_TYPE */
+ nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
+ nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
+ nla_total_size(1) /* PROT_VDP_REQUEST */
+ nla_total_size(2); /* PORT_VDP_RESPONSE */
size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
+ port_size;
size_t port_self_size = nla_total_size(sizeof(struct nlattr))
+ port_size;
if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
return 0;
if (dev_num_vf(dev->dev.parent))
return port_self_size + vf_ports_size +
vf_port_size * dev_num_vf(dev->dev.parent);
else
return port_self_size;
}
static noinline size_t if_nlmsg_size(const struct net_device *dev)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
+ nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
+ nla_total_size(sizeof(struct rtnl_link_ifmap))
+ nla_total_size(sizeof(struct rtnl_link_stats))
+ nla_total_size(sizeof(struct rtnl_link_stats64))
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
+ nla_total_size(4) /* IFLA_TXQLEN */
+ nla_total_size(4) /* IFLA_WEIGHT */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(4) /* IFLA_MASTER */
+ nla_total_size(1) /* IFLA_OPERSTATE */
+ nla_total_size(1) /* IFLA_LINKMODE */
+ nla_total_size(4) /* IFLA_NUM_VF */
+ rtnl_vfinfo_size(dev) /* IFLA_VFINFO_LIST */
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
+ rtnl_port_size(dev) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
+ rtnl_link_get_size(dev) /* IFLA_LINKINFO */
+ rtnl_link_get_af_size(dev); /* IFLA_AF_SPEC */
}
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *vf_ports;
struct nlattr *vf_port;
int vf;
int err;
vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
if (!vf_ports)
return -EMSGSIZE;
for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
vf_port = nla_nest_start(skb, IFLA_VF_PORT);
if (!vf_port)
goto nla_put_failure;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
NLA_PUT_U32(skb, IFLA_PORT_VF, vf);
err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
if (err == -EMSGSIZE)
goto nla_put_failure;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
if (err) {
nla_nest_cancel(skb, vf_port);
continue;
}
nla_nest_end(skb, vf_port);
}
nla_nest_end(skb, vf_ports);
return 0;
nla_put_failure:
nla_nest_cancel(skb, vf_ports);
return -EMSGSIZE;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
}
static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
{
struct nlattr *port_self;
int err;
port_self = nla_nest_start(skb, IFLA_PORT_SELF);
if (!port_self)
return -EMSGSIZE;
err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
if (err) {
nla_nest_cancel(skb, port_self);
return (err == -EMSGSIZE) ? err : 0;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
}
nla_nest_end(skb, port_self);
return 0;
}
static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev)
{
int err;
if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent)
return 0;
err = rtnl_port_self_fill(skb, dev);
if (err)
return err;
if (dev_num_vf(dev->dev.parent)) {
err = rtnl_vf_ports_fill(skb, dev);
if (err)
return err;
}
return 0;
}
static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
int type, u32 pid, u32 seq, u32 change,
unsigned int flags)
{
struct ifinfomsg *ifm;
struct nlmsghdr *nlh;
struct rtnl_link_stats64 temp;
const struct rtnl_link_stats64 *stats;
struct nlattr *attr, *af_spec;
struct rtnl_af_ops *af_ops;
ASSERT_RTNL();
nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
if (nlh == NULL)
return -EMSGSIZE;
ifm = nlmsg_data(nlh);
ifm->ifi_family = AF_UNSPEC;
ifm->__ifi_pad = 0;
ifm->ifi_type = dev->type;
ifm->ifi_index = dev->ifindex;
ifm->ifi_flags = dev_get_flags(dev);
ifm->ifi_change = change;
NLA_PUT_STRING(skb, IFLA_IFNAME, dev->name);
NLA_PUT_U32(skb, IFLA_TXQLEN, dev->tx_queue_len);
NLA_PUT_U8(skb, IFLA_OPERSTATE,
netif_running(dev) ? dev->operstate : IF_OPER_DOWN);
NLA_PUT_U8(skb, IFLA_LINKMODE, dev->link_mode);
NLA_PUT_U32(skb, IFLA_MTU, dev->mtu);
NLA_PUT_U32(skb, IFLA_GROUP, dev->group);
if (dev->ifindex != dev->iflink)
NLA_PUT_U32(skb, IFLA_LINK, dev->iflink);
if (dev->master)
NLA_PUT_U32(skb, IFLA_MASTER, dev->master->ifindex);
if (dev->qdisc)
NLA_PUT_STRING(skb, IFLA_QDISC, dev->qdisc->ops->id);
if (dev->ifalias)
NLA_PUT_STRING(skb, IFLA_IFALIAS, dev->ifalias);
if (1) {
struct rtnl_link_ifmap map = {
.mem_start = dev->mem_start,
.mem_end = dev->mem_end,
.base_addr = dev->base_addr,
.irq = dev->irq,
.dma = dev->dma,
.port = dev->if_port,
};
NLA_PUT(skb, IFLA_MAP, sizeof(map), &map);
}
if (dev->addr_len) {
NLA_PUT(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr);
NLA_PUT(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast);
}
attr = nla_reserve(skb, IFLA_STATS,
sizeof(struct rtnl_link_stats));
if (attr == NULL)
goto nla_put_failure;
stats = dev_get_stats(dev, &temp);
copy_rtnl_link_stats(nla_data(attr), stats);
attr = nla_reserve(skb, IFLA_STATS64,
sizeof(struct rtnl_link_stats64));
if (attr == NULL)
goto nla_put_failure;
copy_rtnl_link_stats64(nla_data(attr), stats);
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
if (dev->dev.parent)
NLA_PUT_U32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent));
if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent) {
int i;
struct nlattr *vfinfo, *vf;
int num_vfs = dev_num_vf(dev->dev.parent);
vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
if (!vfinfo)
goto nla_put_failure;
for (i = 0; i < num_vfs; i++) {
struct ifla_vf_info ivi;
struct ifla_vf_mac vf_mac;
struct ifla_vf_vlan vf_vlan;
struct ifla_vf_tx_rate vf_tx_rate;
if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
break;
vf_mac.vf = vf_vlan.vf = vf_tx_rate.vf = ivi.vf;
memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
vf_vlan.vlan = ivi.vlan;
vf_vlan.qos = ivi.qos;
vf_tx_rate.rate = ivi.tx_rate;
vf = nla_nest_start(skb, IFLA_VF_INFO);
if (!vf) {
nla_nest_cancel(skb, vfinfo);
goto nla_put_failure;
}
NLA_PUT(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac);
NLA_PUT(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan);
NLA_PUT(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate), &vf_tx_rate);
nla_nest_end(skb, vf);
}
nla_nest_end(skb, vfinfo);
}
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
if (rtnl_port_fill(skb, dev))
goto nla_put_failure;
if (dev->rtnl_link_ops) {
if (rtnl_link_fill(skb, dev) < 0)
goto nla_put_failure;
}
if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
goto nla_put_failure;
list_for_each_entry(af_ops, &rtnl_af_ops, list) {
if (af_ops->fill_link_af) {
struct nlattr *af;
int err;
if (!(af = nla_nest_start(skb, af_ops->family)))
goto nla_put_failure;
err = af_ops->fill_link_af(skb, dev);
/*
* Caller may return ENODATA to indicate that there
* was no data to be dumped. This is not an error, it
* means we should trim the attribute header and
* continue.
*/
if (err == -ENODATA)
nla_nest_cancel(skb, af);
else if (err < 0)
goto nla_put_failure;
nla_nest_end(skb, af);
}
}
nla_nest_end(skb, af_spec);
return nlmsg_end(skb, nlh);
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx = 0, s_idx;
struct net_device *dev;
struct hlist_head *head;
struct hlist_node *node;
s_h = cb->args[0];
s_idx = cb->args[1];
rcu_read_lock();
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist_for_each_entry_rcu(dev, node, head, index_hlist) {
if (idx < s_idx)
goto cont;
if (rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
NETLINK_CB(cb->skb).pid,
cb->nlh->nlmsg_seq, 0,
NLM_F_MULTI) <= 0)
goto out;
cont:
idx++;
}
}
out:
rcu_read_unlock();
cb->args[1] = idx;
cb->args[0] = h;
return skb->len;
}
const struct nla_policy ifla_policy[IFLA_MAX+1] = {
[IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
[IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
[IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
[IFLA_MTU] = { .type = NLA_U32 },
[IFLA_LINK] = { .type = NLA_U32 },
[IFLA_MASTER] = { .type = NLA_U32 },
[IFLA_TXQLEN] = { .type = NLA_U32 },
[IFLA_WEIGHT] = { .type = NLA_U32 },
[IFLA_OPERSTATE] = { .type = NLA_U8 },
[IFLA_LINKMODE] = { .type = NLA_U8 },
[IFLA_LINKINFO] = { .type = NLA_NESTED },
[IFLA_NET_NS_PID] = { .type = NLA_U32 },
[IFLA_NET_NS_FD] = { .type = NLA_U32 },
[IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
[IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
[IFLA_VF_PORTS] = { .type = NLA_NESTED },
[IFLA_PORT_SELF] = { .type = NLA_NESTED },
[IFLA_AF_SPEC] = { .type = NLA_NESTED },
};
EXPORT_SYMBOL(ifla_policy);
static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
[IFLA_INFO_KIND] = { .type = NLA_STRING },
[IFLA_INFO_DATA] = { .type = NLA_NESTED },
};
static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
[IFLA_VF_INFO] = { .type = NLA_NESTED },
};
static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
[IFLA_VF_MAC] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_mac) },
[IFLA_VF_VLAN] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_vlan) },
[IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_vf_tx_rate) },
};
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
[IFLA_PORT_VF] = { .type = NLA_U32 },
[IFLA_PORT_PROFILE] = { .type = NLA_STRING,
.len = PORT_PROFILE_MAX },
[IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
.len = sizeof(struct ifla_port_vsi)},
[IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
.len = PORT_UUID_MAX },
[IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
.len = PORT_UUID_MAX },
[IFLA_PORT_REQUEST] = { .type = NLA_U8, },
[IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
};
struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
{
struct net *net;
/* Examine the link attributes and figure out which
* network namespace we are talking about.
*/
if (tb[IFLA_NET_NS_PID])
net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
else if (tb[IFLA_NET_NS_FD])
net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
else
net = get_net(src_net);
return net;
}
EXPORT_SYMBOL(rtnl_link_get_net);
static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
{
if (dev) {
if (tb[IFLA_ADDRESS] &&
nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
return -EINVAL;
if (tb[IFLA_BROADCAST] &&
nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
return -EINVAL;
}
if (tb[IFLA_AF_SPEC]) {
struct nlattr *af;
int rem, err;
nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
const struct rtnl_af_ops *af_ops;
if (!(af_ops = rtnl_af_lookup(nla_type(af))))
return -EAFNOSUPPORT;
if (!af_ops->set_link_af)
return -EOPNOTSUPP;
if (af_ops->validate_link_af) {
err = af_ops->validate_link_af(dev, af);
if (err < 0)
return err;
}
}
}
return 0;
}
static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
{
int rem, err = -EINVAL;
struct nlattr *vf;
const struct net_device_ops *ops = dev->netdev_ops;
nla_for_each_nested(vf, attr, rem) {
switch (nla_type(vf)) {
case IFLA_VF_MAC: {
struct ifla_vf_mac *ivm;
ivm = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_mac)
err = ops->ndo_set_vf_mac(dev, ivm->vf,
ivm->mac);
break;
}
case IFLA_VF_VLAN: {
struct ifla_vf_vlan *ivv;
ivv = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_vlan)
err = ops->ndo_set_vf_vlan(dev, ivv->vf,
ivv->vlan,
ivv->qos);
break;
}
case IFLA_VF_TX_RATE: {
struct ifla_vf_tx_rate *ivt;
ivt = nla_data(vf);
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_tx_rate)
err = ops->ndo_set_vf_tx_rate(dev, ivt->vf,
ivt->rate);
break;
}
default:
err = -EINVAL;
break;
}
if (err)
break;
}
return err;
}
static int do_set_master(struct net_device *dev, int ifindex)
{
struct net_device *master_dev;
const struct net_device_ops *ops;
int err;
if (dev->master) {
if (dev->master->ifindex == ifindex)
return 0;
ops = dev->master->netdev_ops;
if (ops->ndo_del_slave) {
err = ops->ndo_del_slave(dev->master, dev);
if (err)
return err;
} else {
return -EOPNOTSUPP;
}
}
if (ifindex) {
master_dev = __dev_get_by_index(dev_net(dev), ifindex);
if (!master_dev)
return -EINVAL;
ops = master_dev->netdev_ops;
if (ops->ndo_add_slave) {
err = ops->ndo_add_slave(master_dev, dev);
if (err)
return err;
} else {
return -EOPNOTSUPP;
}
}
return 0;
}
static int do_setlink(struct net_device *dev, struct ifinfomsg *ifm,
struct nlattr **tb, char *ifname, int modified)
{
const struct net_device_ops *ops = dev->netdev_ops;
int send_addr_notify = 0;
int err;
if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
struct net *net = rtnl_link_get_net(dev_net(dev), tb);
if (IS_ERR(net)) {
err = PTR_ERR(net);
goto errout;
}
err = dev_change_net_namespace(dev, net, ifname);
put_net(net);
if (err)
goto errout;
modified = 1;
}
if (tb[IFLA_MAP]) {
struct rtnl_link_ifmap *u_map;
struct ifmap k_map;
if (!ops->ndo_set_config) {
err = -EOPNOTSUPP;
goto errout;
}
if (!netif_device_present(dev)) {
err = -ENODEV;
goto errout;
}
u_map = nla_data(tb[IFLA_MAP]);
k_map.mem_start = (unsigned long) u_map->mem_start;
k_map.mem_end = (unsigned long) u_map->mem_end;
k_map.base_addr = (unsigned short) u_map->base_addr;
k_map.irq = (unsigned char) u_map->irq;
k_map.dma = (unsigned char) u_map->dma;
k_map.port = (unsigned char) u_map->port;
err = ops->ndo_set_config(dev, &k_map);
if (err < 0)
goto errout;
modified = 1;
}
if (tb[IFLA_ADDRESS]) {
struct sockaddr *sa;
int len;
if (!ops->ndo_set_mac_address) {
err = -EOPNOTSUPP;
goto errout;
}
if (!netif_device_present(dev)) {
err = -ENODEV;
goto errout;
}
len = sizeof(sa_family_t) + dev->addr_len;
sa = kmalloc(len, GFP_KERNEL);
if (!sa) {
err = -ENOMEM;
goto errout;
}
sa->sa_family = dev->type;
memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
dev->addr_len);
err = ops->ndo_set_mac_address(dev, sa);
kfree(sa);
if (err)
goto errout;
send_addr_notify = 1;
modified = 1;
}
if (tb[IFLA_MTU]) {
err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
if (err < 0)
goto errout;
modified = 1;
}
if (tb[IFLA_GROUP]) {
dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
modified = 1;
}
/*
* Interface selected by interface index but interface
* name provided implies that a name change has been
* requested.
*/
if (ifm->ifi_index > 0 && ifname[0]) {
err = dev_change_name(dev, ifname);
if (err < 0)
goto errout;
modified = 1;
}
if (tb[IFLA_IFALIAS]) {
err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
nla_len(tb[IFLA_IFALIAS]));
if (err < 0)
goto errout;
modified = 1;
}
if (tb[IFLA_BROADCAST]) {
nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
send_addr_notify = 1;
}
if (ifm->ifi_flags || ifm->ifi_change) {
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
if (err < 0)
goto errout;
}
if (tb[IFLA_MASTER]) {
err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
if (err)
goto errout;
modified = 1;
}
if (tb[IFLA_TXQLEN])
dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
if (tb[IFLA_OPERSTATE])
set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
if (tb[IFLA_LINKMODE]) {
write_lock_bh(&dev_base_lock);
dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
write_unlock_bh(&dev_base_lock);
}
if (tb[IFLA_VFINFO_LIST]) {
struct nlattr *attr;
int rem;
nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
if (nla_type(attr) != IFLA_VF_INFO) {
err = -EINVAL;
goto errout;
}
err = do_setvfinfo(dev, attr);
if (err < 0)
goto errout;
modified = 1;
}
}
err = 0;
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
if (tb[IFLA_VF_PORTS]) {
struct nlattr *port[IFLA_PORT_MAX+1];
struct nlattr *attr;
int vf;
int rem;
err = -EOPNOTSUPP;
if (!ops->ndo_set_vf_port)
goto errout;
nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
if (nla_type(attr) != IFLA_VF_PORT)
continue;
err = nla_parse_nested(port, IFLA_PORT_MAX,
attr, ifla_port_policy);
if (err < 0)
goto errout;
if (!port[IFLA_PORT_VF]) {
err = -EOPNOTSUPP;
goto errout;
}
vf = nla_get_u32(port[IFLA_PORT_VF]);
err = ops->ndo_set_vf_port(dev, vf, port);
if (err < 0)
goto errout;
modified = 1;
}
}
err = 0;
if (tb[IFLA_PORT_SELF]) {
struct nlattr *port[IFLA_PORT_MAX+1];
err = nla_parse_nested(port, IFLA_PORT_MAX,
tb[IFLA_PORT_SELF], ifla_port_policy);
if (err < 0)
goto errout;
err = -EOPNOTSUPP;
if (ops->ndo_set_vf_port)
err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
if (err < 0)
goto errout;
modified = 1;
}
if (tb[IFLA_AF_SPEC]) {
struct nlattr *af;
int rem;
nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
const struct rtnl_af_ops *af_ops;
if (!(af_ops = rtnl_af_lookup(nla_type(af))))
BUG();
err = af_ops->set_link_af(dev, af);
if (err < 0)
goto errout;
modified = 1;
}
}
net: Add netlink support for virtual port management (was iovnl) Add new netdev ops ndo_{set|get}_vf_port to allow setting of port-profile on a netdev interface. Extends netlink socket RTM_SETLINK/ RTM_GETLINK with two new sub msgs called IFLA_VF_PORTS and IFLA_PORT_SELF (added to end of IFLA_cmd list). These are both nested atrtibutes using this layout: [IFLA_NUM_VF] [IFLA_VF_PORTS] [IFLA_VF_PORT] [IFLA_PORT_*], ... [IFLA_VF_PORT] [IFLA_PORT_*], ... ... [IFLA_PORT_SELF] [IFLA_PORT_*], ... These attributes are design to be set and get symmetrically. VF_PORTS is a list of VF_PORTs, one for each VF, when dealing with an SR-IOV device. PORT_SELF is for the PF of the SR-IOV device, in case it wants to also have a port-profile, or for the case where the VF==PF, like in enic patch 2/2 of this patch set. A port-profile is used to configure/enable the external switch virtual port backing the netdev interface, not to configure the host-facing side of the netdev. A port-profile is an identifier known to the switch. How port- profiles are installed on the switch or how available port-profiles are made know to the host is outside the scope of this patch. There are two types of port-profiles specs in the netlink msg. The first spec is for 802.1Qbg (pre-)standard, VDP protocol. The second spec is for devices that run a similar protocol as VDP but in firmware, thus hiding the protocol details. In either case, the specs have much in common and makes sense to define the netlink msg as the union of the two specs. For example, both specs have a notition of associating/deassociating a port-profile. And both specs require some information from the hypervisor manager, such as client port instance ID. The general flow is the port-profile is applied to a host netdev interface using RTM_SETLINK, the receiver of the RTM_SETLINK msg communicates with the switch, and the switch virtual port backing the host netdev interface is configured/enabled based on the settings defined by the port-profile. What those settings comprise, and how those settings are managed is again outside the scope of this patch, since this patch only deals with the first step in the flow. Signed-off-by: Scott Feldman <scofeldm@cisco.com> Signed-off-by: Roopa Prabhu <roprabhu@cisco.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-05-18 09:49:55 +04:00
err = 0;
errout:
if (err < 0 && modified && net_ratelimit())
printk(KERN_WARNING "A link change request failed with "
"some changes committed already. Interface %s may "
"have been left with an inconsistent configuration, "
"please check.\n", dev->name);
if (send_addr_notify)
call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
return err;
}
static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
struct net_device *dev;
int err;
struct nlattr *tb[IFLA_MAX+1];
char ifname[IFNAMSIZ];
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
goto errout;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
else
ifname[0] = '\0';
err = -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(net, ifname);
else
goto errout;
if (dev == NULL) {
err = -ENODEV;
goto errout;
}
err = validate_linkmsg(dev, tb);
if (err < 0)
goto errout;
err = do_setlink(dev, ifm, tb, ifname, 0);
errout:
return err;
}
static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct net *net = sock_net(skb->sk);
const struct rtnl_link_ops *ops;
struct net_device *dev;
struct ifinfomsg *ifm;
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
int err;
LIST_HEAD(list_kill);
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
dev = __dev_get_by_name(net, ifname);
else
return -EINVAL;
if (!dev)
return -ENODEV;
ops = dev->rtnl_link_ops;
if (!ops)
return -EOPNOTSUPP;
ops->dellink(dev, &list_kill);
unregister_netdevice_many(&list_kill);
list_del(&list_kill);
return 0;
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
{
unsigned int old_flags;
int err;
old_flags = dev->flags;
if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
if (err < 0)
return err;
}
dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
__dev_notify_flags(dev, old_flags);
return 0;
}
EXPORT_SYMBOL(rtnl_configure_link);
struct net_device *rtnl_create_link(struct net *src_net, struct net *net,
char *ifname, const struct rtnl_link_ops *ops, struct nlattr *tb[])
{
int err;
struct net_device *dev;
unsigned int num_queues = 1;
unsigned int real_num_queues = 1;
if (ops->get_tx_queues) {
err = ops->get_tx_queues(src_net, tb, &num_queues,
&real_num_queues);
if (err)
goto err;
}
err = -ENOMEM;
dev = alloc_netdev_mq(ops->priv_size, ifname, ops->setup, num_queues);
if (!dev)
goto err;
dev_net_set(dev, net);
dev->rtnl_link_ops = ops;
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
dev->real_num_tx_queues = real_num_queues;
if (tb[IFLA_MTU])
dev->mtu = nla_get_u32(tb[IFLA_MTU]);
if (tb[IFLA_ADDRESS])
memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
nla_len(tb[IFLA_ADDRESS]));
if (tb[IFLA_BROADCAST])
memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
nla_len(tb[IFLA_BROADCAST]));
if (tb[IFLA_TXQLEN])
dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
if (tb[IFLA_OPERSTATE])
set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
if (tb[IFLA_LINKMODE])
dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
if (tb[IFLA_GROUP])
dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
return dev;
err:
return ERR_PTR(err);
}
EXPORT_SYMBOL(rtnl_create_link);
static int rtnl_group_changelink(struct net *net, int group,
struct ifinfomsg *ifm,
struct nlattr **tb)
{
struct net_device *dev;
int err;
for_each_netdev(net, dev) {
if (dev->group == group) {
err = do_setlink(dev, ifm, tb, NULL, 0);
if (err < 0)
return err;
}
}
return 0;
}
static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
{
struct net *net = sock_net(skb->sk);
const struct rtnl_link_ops *ops;
struct net_device *dev;
struct ifinfomsg *ifm;
char kind[MODULE_NAME_LEN];
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
struct nlattr *linkinfo[IFLA_INFO_MAX+1];
int err;
#ifdef CONFIG_MODULES
replay:
#endif
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
else
ifname[0] = '\0';
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
[NET]: Make the device list and device lookups per namespace. This patch makes most of the generic device layer network namespace safe. This patch makes dev_base_head a network namespace variable, and then it picks up a few associated variables. The functions: dev_getbyhwaddr dev_getfirsthwbytype dev_get_by_flags dev_get_by_name __dev_get_by_name dev_get_by_index __dev_get_by_index dev_ioctl dev_ethtool dev_load wireless_process_ioctl were modified to take a network namespace argument, and deal with it. vlan_ioctl_set and brioctl_set were modified so their hooks will receive a network namespace argument. So basically anthing in the core of the network stack that was affected to by the change of dev_base was modified to handle multiple network namespaces. The rest of the network stack was simply modified to explicitly use &init_net the initial network namespace. This can be fixed when those components of the network stack are modified to handle multiple network namespaces. For now the ifindex generator is left global. Fundametally ifindex numbers are per namespace, or else we will have corner case problems with migration when we get that far. At the same time there are assumptions in the network stack that the ifindex of a network device won't change. Making the ifindex number global seems a good compromise until the network stack can cope with ifindex changes when you change namespaces, and the like. Signed-off-by: Eric W. Biederman <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-17 22:56:21 +04:00
dev = __dev_get_by_index(net, ifm->ifi_index);
else {
if (ifname[0])
dev = __dev_get_by_name(net, ifname);
else
dev = NULL;
}
err = validate_linkmsg(dev, tb);
if (err < 0)
return err;
if (tb[IFLA_LINKINFO]) {
err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
tb[IFLA_LINKINFO], ifla_info_policy);
if (err < 0)
return err;
} else
memset(linkinfo, 0, sizeof(linkinfo));
if (linkinfo[IFLA_INFO_KIND]) {
nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
ops = rtnl_link_ops_get(kind);
} else {
kind[0] = '\0';
ops = NULL;
}
if (1) {
struct nlattr *attr[ops ? ops->maxtype + 1 : 0], **data = NULL;
struct net *dest_net;
if (ops) {
if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
err = nla_parse_nested(attr, ops->maxtype,
linkinfo[IFLA_INFO_DATA],
ops->policy);
if (err < 0)
return err;
data = attr;
}
if (ops->validate) {
err = ops->validate(tb, data);
if (err < 0)
return err;
}
}
if (dev) {
int modified = 0;
if (nlh->nlmsg_flags & NLM_F_EXCL)
return -EEXIST;
if (nlh->nlmsg_flags & NLM_F_REPLACE)
return -EOPNOTSUPP;
if (linkinfo[IFLA_INFO_DATA]) {
if (!ops || ops != dev->rtnl_link_ops ||
!ops->changelink)
return -EOPNOTSUPP;
err = ops->changelink(dev, tb, data);
if (err < 0)
return err;
modified = 1;
}
return do_setlink(dev, ifm, tb, ifname, modified);
}
if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
return rtnl_group_changelink(net,
nla_get_u32(tb[IFLA_GROUP]),
ifm, tb);
return -ENODEV;
}
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
if (ifm->ifi_index)
return -EOPNOTSUPP;
if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
return -EOPNOTSUPP;
if (!ops) {
#ifdef CONFIG_MODULES
if (kind[0]) {
__rtnl_unlock();
request_module("rtnl-link-%s", kind);
rtnl_lock();
ops = rtnl_link_ops_get(kind);
if (ops)
goto replay;
}
#endif
return -EOPNOTSUPP;
}
if (!ifname[0])
snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
dest_net = rtnl_link_get_net(net, tb);
net: Fix ip link add netns oops Ed Swierk <eswierk@bigswitch.com> writes: > On 2.6.35.7 > ip link add link eth0 netns 9999 type macvlan > where 9999 is a nonexistent PID triggers an oops and causes all network functions to hang: > [10663.821898] BUG: unable to handle kernel NULL pointer dereference at 000000000000006d > [10663.821917] IP: [<ffffffff8149c2fa>] __dev_alloc_name+0x9a/0x170 > [10663.821933] PGD 1d3927067 PUD 22f5c5067 PMD 0 > [10663.821944] Oops: 0000 [#1] SMP > [10663.821953] last sysfs file: /sys/devices/system/cpu/cpu0/cpufreq/scaling_cur_freq > [10663.821959] CPU 3 > [10663.821963] Modules linked in: macvlan ip6table_filter ip6_tables rfcomm ipt_MASQUERADE binfmt_misc iptable_nat nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_state nf_conntrack sco ipt_REJECT bnep l2cap xt_tcpudp iptable_filter ip_tables x_tables bridge stp vboxnetadp vboxnetflt vboxdrv kvm_intel kvm parport_pc ppdev snd_hda_codec_intelhdmi snd_hda_codec_conexant arc4 iwlagn iwlcore mac80211 snd_hda_intel snd_hda_codec snd_hwdep snd_pcm snd_seq_midi snd_rawmidi i915 snd_seq_midi_event snd_seq thinkpad_acpi drm_kms_helper btusb tpm_tis nvram uvcvideo snd_timer snd_seq_device bluetooth videodev v4l1_compat v4l2_compat_ioctl32 tpm drm tpm_bios snd cfg80211 psmouse serio_raw intel_ips soundcore snd_page_alloc intel_agp i2c_algo_bit video output netconsole configfs lp parport usbhid hid e1000e sdhci_pci ahci libahci sdhci led_class > [10663.822155] > [10663.822161] Pid: 6000, comm: ip Not tainted 2.6.35-23-generic #41-Ubuntu 2901CTO/2901CTO > [10663.822167] RIP: 0010:[<ffffffff8149c2fa>] [<ffffffff8149c2fa>] __dev_alloc_name+0x9a/0x170 > [10663.822177] RSP: 0018:ffff88014aebf7b8 EFLAGS: 00010286 > [10663.822182] RAX: 00000000fffffff4 RBX: ffff8801ad900800 RCX: 0000000000000000 > [10663.822187] RDX: ffff880000000000 RSI: 0000000000000000 RDI: ffff88014ad63000 > [10663.822191] RBP: ffff88014aebf808 R08: 0000000000000041 R09: 0000000000000041 > [10663.822196] R10: 0000000000000000 R11: dead000000200200 R12: ffff88014aebf818 > [10663.822201] R13: fffffffffffffffd R14: ffff88014aebf918 R15: ffff88014ad62000 > [10663.822207] FS: 00007f00c487f700(0000) GS:ffff880001f80000(0000) knlGS:0000000000000000 > [10663.822212] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > [10663.822216] CR2: 000000000000006d CR3: 0000000231f19000 CR4: 00000000000026e0 > [10663.822221] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > [10663.822226] DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400 > [10663.822231] Process ip (pid: 6000, threadinfo ffff88014aebe000, task ffff88014afb16e0) > [10663.822236] Stack: > [10663.822240] ffff88014aebf808 ffffffff814a2bb5 ffff88014aebf7e8 00000000a00ee8d6 > [10663.822251] <0> 0000000000000000 ffffffffa00ef940 ffff8801ad900800 ffff88014aebf818 > [10663.822265] <0> ffff88014aebf918 ffff8801ad900800 ffff88014aebf858 ffffffff8149c413 > [10663.822281] Call Trace: > [10663.822290] [<ffffffff814a2bb5>] ? dev_addr_init+0x75/0xb0 > [10663.822298] [<ffffffff8149c413>] dev_alloc_name+0x43/0x90 > [10663.822307] [<ffffffff814a85ee>] rtnl_create_link+0xbe/0x1b0 > [10663.822314] [<ffffffff814ab2aa>] rtnl_newlink+0x48a/0x570 > [10663.822321] [<ffffffff814aafcc>] ? rtnl_newlink+0x1ac/0x570 > [10663.822332] [<ffffffff81030064>] ? native_x2apic_icr_read+0x4/0x20 > [10663.822339] [<ffffffff814a8c17>] rtnetlink_rcv_msg+0x177/0x290 > [10663.822346] [<ffffffff814a8aa0>] ? rtnetlink_rcv_msg+0x0/0x290 > [10663.822354] [<ffffffff814c25d9>] netlink_rcv_skb+0xa9/0xd0 > [10663.822360] [<ffffffff814a8a85>] rtnetlink_rcv+0x25/0x40 > [10663.822367] [<ffffffff814c223e>] netlink_unicast+0x2de/0x2f0 > [10663.822374] [<ffffffff814c303e>] netlink_sendmsg+0x1fe/0x2e0 > [10663.822383] [<ffffffff81488533>] sock_sendmsg+0xf3/0x120 > [10663.822391] [<ffffffff815899fe>] ? _raw_spin_lock+0xe/0x20 > [10663.822400] [<ffffffff81168656>] ? __d_lookup+0x136/0x150 > [10663.822406] [<ffffffff815899fe>] ? _raw_spin_lock+0xe/0x20 > [10663.822414] [<ffffffff812b7a0d>] ? _atomic_dec_and_lock+0x4d/0x80 > [10663.822422] [<ffffffff8116ea90>] ? mntput_no_expire+0x30/0x110 > [10663.822429] [<ffffffff81486ff5>] ? move_addr_to_kernel+0x65/0x70 > [10663.822435] [<ffffffff81493308>] ? verify_iovec+0x88/0xe0 > [10663.822442] [<ffffffff81489020>] sys_sendmsg+0x240/0x3a0 > [10663.822450] [<ffffffff8111e2a9>] ? __do_fault+0x479/0x560 > [10663.822457] [<ffffffff815899fe>] ? _raw_spin_lock+0xe/0x20 > [10663.822465] [<ffffffff8116cf4a>] ? alloc_fd+0x10a/0x150 > [10663.822473] [<ffffffff8158d76e>] ? do_page_fault+0x15e/0x350 > [10663.822482] [<ffffffff8100a0f2>] system_call_fastpath+0x16/0x1b > [10663.822487] Code: 90 48 8d 78 02 be 25 00 00 00 e8 92 1d e2 ff 48 85 c0 75 cf bf 20 00 00 00 e8 c3 b1 c6 ff 49 89 c7 b8 f4 ff ff ff 4d 85 ff 74 bd <4d> 8b 75 70 49 8d 45 70 48 89 45 b8 49 83 ee 58 eb 28 48 8d 55 > [10663.822618] RIP [<ffffffff8149c2fa>] __dev_alloc_name+0x9a/0x170 > [10663.822627] RSP <ffff88014aebf7b8> > [10663.822631] CR2: 000000000000006d > [10663.822636] ---[ end trace 3dfd6c3ad5327ca7 ]--- This bug was introduced in: commit 81adee47dfb608df3ad0b91d230fb3cef75f0060 Author: Eric W. Biederman <ebiederm@aristanetworks.com> Date: Sun Nov 8 00:53:51 2009 -0800 net: Support specifying the network namespace upon device creation. There is no good reason to not support userspace specifying the network namespace during device creation, and it makes it easier to create a network device and pass it to a child network namespace with a well known name. We have to be careful to ensure that the target network namespace for the new device exists through the life of the call. To keep that logic clear I have factored out the network namespace grabbing logic into rtnl_link_get_net. In addtion we need to continue to pass the source network namespace to the rtnl_link_ops.newlink method so that we can find the base device source network namespace. Signed-off-by: Eric W. Biederman <ebiederm@aristanetworks.com> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Where apparently I forgot to add error handling to the path where we create a new network device in a new network namespace, and pass in an invalid pid. Cc: stable@kernel.org Reported-by: Ed Swierk <eswierk@bigswitch.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2011-01-29 17:57:22 +03:00
if (IS_ERR(dest_net))
return PTR_ERR(dest_net);
dev = rtnl_create_link(net, dest_net, ifname, ops, tb);
if (IS_ERR(dev))
err = PTR_ERR(dev);
else if (ops->newlink)
err = ops->newlink(net, dev, tb, data);
else
err = register_netdevice(dev);
if (err < 0 && !IS_ERR(dev))
free_netdev(dev);
if (err < 0)
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
goto out;
rtnetlink: support specifying device flags on device creation commit e8469ed959c373c2ff9e6f488aa5a14971aebe1f Author: Patrick McHardy <kaber@trash.net> Date: Tue Feb 23 20:41:30 2010 +0100 Support specifying the initial device flags when creating a device though rtnl_link. Devices allocated by rtnl_create_link() are marked as INITIALIZING in order to surpress netlink registration notifications. To complete setup, rtnl_configure_link() must be called, which performs the device flag changes and invokes the deferred notifiers if everything went well. Two examples: # add macvlan to eth0 # $ ip link add link eth0 up allmulticast on type macvlan [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN link/ether 26:f8:84:02:f9:2a brd ff:ff:ff:ff:ff:ff [ROUTE]ff00::/8 dev macvlan0 table local metric 256 mtu 1500 advmss 1440 hoplimit 0 [ROUTE]fe80::/64 dev macvlan0 proto kernel metric 256 mtu 1500 advmss 1440 hoplimit 0 [LINK]11: macvlan0@eth0: <BROADCAST,MULTICAST,ALLMULTI,UP,LOWER_UP> mtu 1500 link/ether 26:f8:84:02:f9:2a [ADDR]11: macvlan0 inet6 fe80::24f8:84ff:fe02:f92a/64 scope link valid_lft forever preferred_lft forever [ROUTE]local fe80::24f8:84ff:fe02:f92a via :: dev lo table local proto none metric 0 mtu 16436 advmss 16376 hoplimit 0 [ROUTE]default via fe80::215:e9ff:fef0:10f8 dev macvlan0 proto kernel metric 1024 mtu 1500 advmss 1440 hoplimit 0 [NEIGH]fe80::215:e9ff:fef0:10f8 dev macvlan0 lladdr 00:15:e9:f0:10:f8 router STALE [ROUTE]2001:6f8:974::/64 dev macvlan0 proto kernel metric 256 expires 0sec mtu 1500 advmss 1440 hoplimit 0 [PREFIX]prefix 2001:6f8:974::/64 dev macvlan0 onlink autoconf valid 14400 preferred 131084 [ADDR]11: macvlan0 inet6 2001:6f8:974:0:24f8:84ff:fe02:f92a/64 scope global dynamic valid_lft 86399sec preferred_lft 14399sec # add VLAN to eth1, eth1 is down # $ ip link add link eth1 up type vlan id 1000 RTNETLINK answers: Network is down <no events> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-26 09:34:54 +03:00
err = rtnl_configure_link(dev, ifm);
if (err < 0)
unregister_netdevice(dev);
out:
put_net(dest_net);
return err;
}
}
static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh, void *arg)
{
struct net *net = sock_net(skb->sk);
struct ifinfomsg *ifm;
char ifname[IFNAMSIZ];
struct nlattr *tb[IFLA_MAX+1];
struct net_device *dev = NULL;
struct sk_buff *nskb;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
if (err < 0)
return err;
if (tb[IFLA_IFNAME])
nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
ifm = nlmsg_data(nlh);
if (ifm->ifi_index > 0)
dev = __dev_get_by_index(net, ifm->ifi_index);
else if (tb[IFLA_IFNAME])
dev = __dev_get_by_name(net, ifname);
else
return -EINVAL;
if (dev == NULL)
return -ENODEV;
nskb = nlmsg_new(if_nlmsg_size(dev), GFP_KERNEL);
if (nskb == NULL)
return -ENOBUFS;
err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).pid,
nlh->nlmsg_seq, 0, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_size */
WARN_ON(err == -EMSGSIZE);
kfree_skb(nskb);
} else
err = rtnl_unicast(nskb, net, NETLINK_CB(skb).pid);
return err;
}
static u16 rtnl_calcit(struct sk_buff *skb)
{
return min_ifinfo_dump_size;
}
static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
{
int idx;
int s_idx = cb->family;
if (s_idx == 0)
s_idx = 1;
for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
int type = cb->nlh->nlmsg_type-RTM_BASE;
if (idx < s_idx || idx == PF_PACKET)
continue;
if (rtnl_msg_handlers[idx] == NULL ||
rtnl_msg_handlers[idx][type].dumpit == NULL)
continue;
if (idx > s_idx)
memset(&cb->args[0], 0, sizeof(cb->args));
if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
break;
}
cb->family = idx;
return skb->len;
}
void rtmsg_ifinfo(int type, struct net_device *dev, unsigned change)
{
struct net *net = dev_net(dev);
struct sk_buff *skb;
int err = -ENOBUFS;
size_t if_info_size;
skb = nlmsg_new((if_info_size = if_nlmsg_size(dev)), GFP_KERNEL);
if (skb == NULL)
goto errout;
min_ifinfo_dump_size = max_t(u16, if_info_size, min_ifinfo_dump_size);
err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
2009-02-25 10:18:28 +03:00
rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_KERNEL);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_LINK, err);
}
/* Protected by RTNL sempahore. */
static struct rtattr **rta_buf;
static int rtattr_max;
/* Process one rtnetlink message. */
static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
{
struct net *net = sock_net(skb->sk);
rtnl_doit_func doit;
int sz_idx, kind;
int min_len;
int family;
int type;
int err;
type = nlh->nlmsg_type;
if (type > RTM_MAX)
return -EOPNOTSUPP;
type -= RTM_BASE;
/* All the messages must have at least 1 byte length */
if (nlh->nlmsg_len < NLMSG_LENGTH(sizeof(struct rtgenmsg)))
return 0;
family = ((struct rtgenmsg *)NLMSG_DATA(nlh))->rtgen_family;
sz_idx = type>>2;
kind = type&3;
if (kind != 2 && security_netlink_recv(skb, CAP_NET_ADMIN))
return -EPERM;
if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
struct sock *rtnl;
rtnl_dumpit_func dumpit;
rtnl_calcit_func calcit;
u16 min_dump_alloc = 0;
dumpit = rtnl_get_dumpit(family, type);
if (dumpit == NULL)
return -EOPNOTSUPP;
calcit = rtnl_get_calcit(family, type);
if (calcit)
min_dump_alloc = calcit(skb);
__rtnl_unlock();
rtnl = net->rtnl;
err = netlink_dump_start(rtnl, skb, nlh, dumpit,
NULL, min_dump_alloc);
rtnl_lock();
return err;
}
memset(rta_buf, 0, (rtattr_max * sizeof(struct rtattr *)));
min_len = rtm_min[sz_idx];
if (nlh->nlmsg_len < min_len)
return -EINVAL;
if (nlh->nlmsg_len > min_len) {
int attrlen = nlh->nlmsg_len - NLMSG_ALIGN(min_len);
struct rtattr *attr = (void *)nlh + NLMSG_ALIGN(min_len);
while (RTA_OK(attr, attrlen)) {
unsigned flavor = attr->rta_type;
if (flavor) {
if (flavor > rta_max[sz_idx])
return -EINVAL;
rta_buf[flavor-1] = attr;
}
attr = RTA_NEXT(attr, attrlen);
}
}
doit = rtnl_get_doit(family, type);
if (doit == NULL)
return -EOPNOTSUPP;
return doit(skb, nlh, (void *)&rta_buf[0]);
}
static void rtnetlink_rcv(struct sk_buff *skb)
{
rtnl_lock();
netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
rtnl_unlock();
}
static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
switch (event) {
case NETDEV_UP:
case NETDEV_DOWN:
case NETDEV_PRE_UP:
case NETDEV_POST_INIT:
case NETDEV_REGISTER:
case NETDEV_CHANGE:
case NETDEV_PRE_TYPE_CHANGE:
case NETDEV_GOING_DOWN:
case NETDEV_UNREGISTER:
case NETDEV_UNREGISTER_BATCH:
case NETDEV_RELEASE:
case NETDEV_JOIN:
break;
default:
rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
break;
}
return NOTIFY_DONE;
}
static struct notifier_block rtnetlink_dev_notifier = {
.notifier_call = rtnetlink_event,
};
static int __net_init rtnetlink_net_init(struct net *net)
{
struct sock *sk;
sk = netlink_kernel_create(net, NETLINK_ROUTE, RTNLGRP_MAX,
rtnetlink_rcv, &rtnl_mutex, THIS_MODULE);
if (!sk)
return -ENOMEM;
net->rtnl = sk;
return 0;
}
static void __net_exit rtnetlink_net_exit(struct net *net)
{
netlink_kernel_release(net->rtnl);
net->rtnl = NULL;
}
static struct pernet_operations rtnetlink_net_ops = {
.init = rtnetlink_net_init,
.exit = rtnetlink_net_exit,
};
void __init rtnetlink_init(void)
{
int i;
rtattr_max = 0;
for (i = 0; i < ARRAY_SIZE(rta_max); i++)
if (rta_max[i] > rtattr_max)
rtattr_max = rta_max[i];
rta_buf = kmalloc(rtattr_max * sizeof(struct rtattr *), GFP_KERNEL);
if (!rta_buf)
panic("rtnetlink_init: cannot allocate rta_buf\n");
if (register_pernet_subsys(&rtnetlink_net_ops))
panic("rtnetlink_init: cannot initialize rtnetlink\n");
netlink_set_nonroot(NETLINK_ROUTE, NL_NONROOT_RECV);
register_netdevice_notifier(&rtnetlink_dev_notifier);
rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
rtnl_dump_ifinfo, rtnl_calcit);
rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
}