WSL2-Linux-Kernel/drivers/ps3/ps3-lpm.c

1254 строки
31 KiB
C
Исходник Обычный вид История

/*
* PS3 Logical Performance Monitor.
*
* Copyright (C) 2007 Sony Computer Entertainment Inc.
* Copyright 2007 Sony Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/uaccess.h>
#include <asm/smp.h>
#include <asm/time.h>
#include <asm/ps3.h>
#include <asm/lv1call.h>
#include <asm/cell-pmu.h>
/* BOOKMARK tag macros */
#define PS3_PM_BOOKMARK_START 0x8000000000000000ULL
#define PS3_PM_BOOKMARK_STOP 0x4000000000000000ULL
#define PS3_PM_BOOKMARK_TAG_KERNEL 0x1000000000000000ULL
#define PS3_PM_BOOKMARK_TAG_USER 0x3000000000000000ULL
#define PS3_PM_BOOKMARK_TAG_MASK_HI 0xF000000000000000ULL
#define PS3_PM_BOOKMARK_TAG_MASK_LO 0x0F00000000000000ULL
/* CBE PM CONTROL register macros */
#define PS3_PM_CONTROL_PPU_TH0_BOOKMARK 0x00001000
#define PS3_PM_CONTROL_PPU_TH1_BOOKMARK 0x00000800
#define PS3_PM_CONTROL_PPU_COUNT_MODE_MASK 0x000C0000
#define PS3_PM_CONTROL_PPU_COUNT_MODE_PROBLEM 0x00080000
#define PS3_WRITE_PM_MASK 0xFFFFFFFFFFFFFFFFULL
/* CBE PM START STOP register macros */
#define PS3_PM_START_STOP_PPU_TH0_BOOKMARK_START 0x02000000
#define PS3_PM_START_STOP_PPU_TH1_BOOKMARK_START 0x01000000
#define PS3_PM_START_STOP_PPU_TH0_BOOKMARK_STOP 0x00020000
#define PS3_PM_START_STOP_PPU_TH1_BOOKMARK_STOP 0x00010000
#define PS3_PM_START_STOP_START_MASK 0xFF000000
#define PS3_PM_START_STOP_STOP_MASK 0x00FF0000
/* CBE PM COUNTER register macres */
#define PS3_PM_COUNTER_MASK_HI 0xFFFFFFFF00000000ULL
#define PS3_PM_COUNTER_MASK_LO 0x00000000FFFFFFFFULL
/* BASE SIGNAL GROUP NUMBER macros */
#define PM_ISLAND2_BASE_SIGNAL_GROUP_NUMBER 0
#define PM_ISLAND2_SIGNAL_GROUP_NUMBER1 6
#define PM_ISLAND2_SIGNAL_GROUP_NUMBER2 7
#define PM_ISLAND3_BASE_SIGNAL_GROUP_NUMBER 7
#define PM_ISLAND4_BASE_SIGNAL_GROUP_NUMBER 15
#define PM_SPU_TRIGGER_SIGNAL_GROUP_NUMBER 17
#define PM_SPU_EVENT_SIGNAL_GROUP_NUMBER 18
#define PM_ISLAND5_BASE_SIGNAL_GROUP_NUMBER 18
#define PM_ISLAND6_BASE_SIGNAL_GROUP_NUMBER 24
#define PM_ISLAND7_BASE_SIGNAL_GROUP_NUMBER 49
#define PM_ISLAND8_BASE_SIGNAL_GROUP_NUMBER 52
#define PM_SIG_GROUP_SPU 41
#define PM_SIG_GROUP_SPU_TRIGGER 42
#define PM_SIG_GROUP_SPU_EVENT 43
#define PM_SIG_GROUP_MFC_MAX 60
/**
* struct ps3_lpm_shadow_regs - Performance monitor shadow registers.
*
* @pm_control: Shadow of the processor's pm_control register.
* @pm_start_stop: Shadow of the processor's pm_start_stop register.
* @group_control: Shadow of the processor's group_control register.
* @debug_bus_control: Shadow of the processor's debug_bus_control register.
*
* The logical performance monitor provides a write-only interface to
* these processor registers. These shadow variables cache the processor
* register values for reading.
*
* The initial value of the shadow registers at lpm creation is
* PS3_LPM_SHADOW_REG_INIT.
*/
struct ps3_lpm_shadow_regs {
u64 pm_control;
u64 pm_start_stop;
u64 group_control;
u64 debug_bus_control;
};
#define PS3_LPM_SHADOW_REG_INIT 0xFFFFFFFF00000000ULL
/**
* struct ps3_lpm_priv - Private lpm device data.
*
* @open: An atomic variable indicating the lpm driver has been opened.
* @rights: The lpm rigths granted by the system policy module. A logical
* OR of enum ps3_lpm_rights.
* @node_id: The node id of a BE prosessor whose performance monitor this
* lpar has the right to use.
* @pu_id: The lv1 id of the logical PU.
* @lpm_id: The lv1 id of this lpm instance.
* @outlet_id: The outlet created by lv1 for this lpm instance.
* @tb_count: The number of bytes of data held in the lv1 trace buffer.
* @tb_cache: Kernel buffer to receive the data from the lv1 trace buffer.
* Must be 128 byte aligned.
* @tb_cache_size: Size of the kernel @tb_cache buffer. Must be 128 byte
* aligned.
* @tb_cache_internal: An unaligned buffer allocated by this driver to be
* used for the trace buffer cache when ps3_lpm_open() is called with a
* NULL tb_cache argument. Otherwise unused.
* @shadow: Processor register shadow of type struct ps3_lpm_shadow_regs.
* @sbd: The struct ps3_system_bus_device attached to this driver.
*
* The trace buffer is a buffer allocated and used internally to the lv1
* hypervisor to collect trace data. The trace buffer cache is a guest
* buffer that accepts the trace data from the trace buffer.
*/
struct ps3_lpm_priv {
atomic_t open;
u64 rights;
u64 node_id;
u64 pu_id;
u64 lpm_id;
u64 outlet_id;
u64 tb_count;
void *tb_cache;
u64 tb_cache_size;
void *tb_cache_internal;
struct ps3_lpm_shadow_regs shadow;
struct ps3_system_bus_device *sbd;
};
enum {
PS3_LPM_DEFAULT_TB_CACHE_SIZE = 0x4000,
};
/**
* lpm_priv - Static instance of the lpm data.
*
* Since the exported routines don't support the notion of a device
* instance we need to hold the instance in this static variable
* and then only allow at most one instance at a time to be created.
*/
static struct ps3_lpm_priv *lpm_priv;
static struct device *sbd_core(void)
{
BUG_ON(!lpm_priv || !lpm_priv->sbd);
return &lpm_priv->sbd->core;
}
/**
* use_start_stop_bookmark - Enable the PPU bookmark trace.
*
* And it enables PPU bookmark triggers ONLY if the other triggers are not set.
* The start/stop bookmarks are inserted at ps3_enable_pm() and ps3_disable_pm()
* to start/stop LPM.
*
* Used to get good quality of the performance counter.
*/
enum {use_start_stop_bookmark = 1,};
void ps3_set_bookmark(u64 bookmark)
{
/*
* As per the PPE book IV, to avoid bookmark loss there must
* not be a traced branch within 10 cycles of setting the
* SPRN_BKMK register. The actual text is unclear if 'within'
* includes cycles before the call.
*/
asm volatile("nop;nop;nop;nop;nop;nop;nop;nop;nop;");
mtspr(SPRN_BKMK, bookmark);
asm volatile("nop;nop;nop;nop;nop;nop;nop;nop;nop;");
}
EXPORT_SYMBOL_GPL(ps3_set_bookmark);
void ps3_set_pm_bookmark(u64 tag, u64 incident, u64 th_id)
{
u64 bookmark;
bookmark = (get_tb() & 0x00000000FFFFFFFFULL) |
PS3_PM_BOOKMARK_TAG_KERNEL;
bookmark = ((tag << 56) & PS3_PM_BOOKMARK_TAG_MASK_LO) |
(incident << 48) | (th_id << 32) | bookmark;
ps3_set_bookmark(bookmark);
}
EXPORT_SYMBOL_GPL(ps3_set_pm_bookmark);
/**
* ps3_read_phys_ctr - Read physical counter registers.
*
* Each physical counter can act as one 32 bit counter or as two 16 bit
* counters.
*/
u32 ps3_read_phys_ctr(u32 cpu, u32 phys_ctr)
{
int result;
u64 counter0415;
u64 counter2637;
if (phys_ctr >= NR_PHYS_CTRS) {
dev_dbg(sbd_core(), "%s:%u: phys_ctr too big: %u\n", __func__,
__LINE__, phys_ctr);
return 0;
}
result = lv1_set_lpm_counter(lpm_priv->lpm_id, 0, 0, 0, 0, &counter0415,
&counter2637);
if (result) {
dev_err(sbd_core(), "%s:%u: lv1_set_lpm_counter failed: "
"phys_ctr %u, %s\n", __func__, __LINE__, phys_ctr,
ps3_result(result));
return 0;
}
switch (phys_ctr) {
case 0:
return counter0415 >> 32;
case 1:
return counter0415 & PS3_PM_COUNTER_MASK_LO;
case 2:
return counter2637 >> 32;
case 3:
return counter2637 & PS3_PM_COUNTER_MASK_LO;
default:
BUG();
}
return 0;
}
EXPORT_SYMBOL_GPL(ps3_read_phys_ctr);
/**
* ps3_write_phys_ctr - Write physical counter registers.
*
* Each physical counter can act as one 32 bit counter or as two 16 bit
* counters.
*/
void ps3_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
{
u64 counter0415;
u64 counter0415_mask;
u64 counter2637;
u64 counter2637_mask;
int result;
if (phys_ctr >= NR_PHYS_CTRS) {
dev_dbg(sbd_core(), "%s:%u: phys_ctr too big: %u\n", __func__,
__LINE__, phys_ctr);
return;
}
switch (phys_ctr) {
case 0:
counter0415 = (u64)val << 32;
counter0415_mask = PS3_PM_COUNTER_MASK_HI;
counter2637 = 0x0;
counter2637_mask = 0x0;
break;
case 1:
counter0415 = (u64)val;
counter0415_mask = PS3_PM_COUNTER_MASK_LO;
counter2637 = 0x0;
counter2637_mask = 0x0;
break;
case 2:
counter0415 = 0x0;
counter0415_mask = 0x0;
counter2637 = (u64)val << 32;
counter2637_mask = PS3_PM_COUNTER_MASK_HI;
break;
case 3:
counter0415 = 0x0;
counter0415_mask = 0x0;
counter2637 = (u64)val;
counter2637_mask = PS3_PM_COUNTER_MASK_LO;
break;
default:
BUG();
}
result = lv1_set_lpm_counter(lpm_priv->lpm_id,
counter0415, counter0415_mask,
counter2637, counter2637_mask,
&counter0415, &counter2637);
if (result)
dev_err(sbd_core(), "%s:%u: lv1_set_lpm_counter failed: "
"phys_ctr %u, val %u, %s\n", __func__, __LINE__,
phys_ctr, val, ps3_result(result));
}
EXPORT_SYMBOL_GPL(ps3_write_phys_ctr);
/**
* ps3_read_ctr - Read counter.
*
* Read 16 or 32 bits depending on the current size of the counter.
* Counters 4, 5, 6 & 7 are always 16 bit.
*/
u32 ps3_read_ctr(u32 cpu, u32 ctr)
{
u32 val;
u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
val = ps3_read_phys_ctr(cpu, phys_ctr);
if (ps3_get_ctr_size(cpu, phys_ctr) == 16)
val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
return val;
}
EXPORT_SYMBOL_GPL(ps3_read_ctr);
/**
* ps3_write_ctr - Write counter.
*
* Write 16 or 32 bits depending on the current size of the counter.
* Counters 4, 5, 6 & 7 are always 16 bit.
*/
void ps3_write_ctr(u32 cpu, u32 ctr, u32 val)
{
u32 phys_ctr;
u32 phys_val;
phys_ctr = ctr & (NR_PHYS_CTRS - 1);
if (ps3_get_ctr_size(cpu, phys_ctr) == 16) {
phys_val = ps3_read_phys_ctr(cpu, phys_ctr);
if (ctr < NR_PHYS_CTRS)
val = (val << 16) | (phys_val & 0xffff);
else
val = (val & 0xffff) | (phys_val & 0xffff0000);
}
ps3_write_phys_ctr(cpu, phys_ctr, val);
}
EXPORT_SYMBOL_GPL(ps3_write_ctr);
/**
* ps3_read_pm07_control - Read counter control registers.
*
* Each logical counter has a corresponding control register.
*/
u32 ps3_read_pm07_control(u32 cpu, u32 ctr)
{
return 0;
}
EXPORT_SYMBOL_GPL(ps3_read_pm07_control);
/**
* ps3_write_pm07_control - Write counter control registers.
*
* Each logical counter has a corresponding control register.
*/
void ps3_write_pm07_control(u32 cpu, u32 ctr, u32 val)
{
int result;
static const u64 mask = 0xFFFFFFFFFFFFFFFFULL;
u64 old_value;
if (ctr >= NR_CTRS) {
dev_dbg(sbd_core(), "%s:%u: ctr too big: %u\n", __func__,
__LINE__, ctr);
return;
}
result = lv1_set_lpm_counter_control(lpm_priv->lpm_id, ctr, val, mask,
&old_value);
if (result)
dev_err(sbd_core(), "%s:%u: lv1_set_lpm_counter_control "
"failed: ctr %u, %s\n", __func__, __LINE__, ctr,
ps3_result(result));
}
EXPORT_SYMBOL_GPL(ps3_write_pm07_control);
/**
* ps3_read_pm - Read Other LPM control registers.
*/
u32 ps3_read_pm(u32 cpu, enum pm_reg_name reg)
{
int result = 0;
u64 val = 0;
switch (reg) {
case pm_control:
return lpm_priv->shadow.pm_control;
case trace_address:
return CBE_PM_TRACE_BUF_EMPTY;
case pm_start_stop:
return lpm_priv->shadow.pm_start_stop;
case pm_interval:
result = lv1_set_lpm_interval(lpm_priv->lpm_id, 0, 0, &val);
if (result) {
val = 0;
dev_dbg(sbd_core(), "%s:%u: lv1 set_inteval failed: "
"reg %u, %s\n", __func__, __LINE__, reg,
ps3_result(result));
}
return (u32)val;
case group_control:
return lpm_priv->shadow.group_control;
case debug_bus_control:
return lpm_priv->shadow.debug_bus_control;
case pm_status:
result = lv1_get_lpm_interrupt_status(lpm_priv->lpm_id,
&val);
if (result) {
val = 0;
dev_dbg(sbd_core(), "%s:%u: lv1 get_lpm_status failed: "
"reg %u, %s\n", __func__, __LINE__, reg,
ps3_result(result));
}
return (u32)val;
case ext_tr_timer:
return 0;
default:
dev_dbg(sbd_core(), "%s:%u: unknown reg: %d\n", __func__,
__LINE__, reg);
BUG();
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(ps3_read_pm);
/**
* ps3_write_pm - Write Other LPM control registers.
*/
void ps3_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
{
int result = 0;
u64 dummy;
switch (reg) {
case group_control:
if (val != lpm_priv->shadow.group_control)
result = lv1_set_lpm_group_control(lpm_priv->lpm_id,
val,
PS3_WRITE_PM_MASK,
&dummy);
lpm_priv->shadow.group_control = val;
break;
case debug_bus_control:
if (val != lpm_priv->shadow.debug_bus_control)
result = lv1_set_lpm_debug_bus_control(lpm_priv->lpm_id,
val,
PS3_WRITE_PM_MASK,
&dummy);
lpm_priv->shadow.debug_bus_control = val;
break;
case pm_control:
if (use_start_stop_bookmark)
val |= (PS3_PM_CONTROL_PPU_TH0_BOOKMARK |
PS3_PM_CONTROL_PPU_TH1_BOOKMARK);
if (val != lpm_priv->shadow.pm_control)
result = lv1_set_lpm_general_control(lpm_priv->lpm_id,
val,
PS3_WRITE_PM_MASK,
0, 0, &dummy,
&dummy);
lpm_priv->shadow.pm_control = val;
break;
case pm_interval:
result = lv1_set_lpm_interval(lpm_priv->lpm_id, val,
PS3_WRITE_PM_MASK, &dummy);
break;
case pm_start_stop:
if (val != lpm_priv->shadow.pm_start_stop)
result = lv1_set_lpm_trigger_control(lpm_priv->lpm_id,
val,
PS3_WRITE_PM_MASK,
&dummy);
lpm_priv->shadow.pm_start_stop = val;
break;
case trace_address:
case ext_tr_timer:
case pm_status:
break;
default:
dev_dbg(sbd_core(), "%s:%u: unknown reg: %d\n", __func__,
__LINE__, reg);
BUG();
break;
}
if (result)
dev_err(sbd_core(), "%s:%u: lv1 set_control failed: "
"reg %u, %s\n", __func__, __LINE__, reg,
ps3_result(result));
}
EXPORT_SYMBOL_GPL(ps3_write_pm);
/**
* ps3_get_ctr_size - Get the size of a physical counter.
*
* Returns either 16 or 32.
*/
u32 ps3_get_ctr_size(u32 cpu, u32 phys_ctr)
{
u32 pm_ctrl;
if (phys_ctr >= NR_PHYS_CTRS) {
dev_dbg(sbd_core(), "%s:%u: phys_ctr too big: %u\n", __func__,
__LINE__, phys_ctr);
return 0;
}
pm_ctrl = ps3_read_pm(cpu, pm_control);
return (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
}
EXPORT_SYMBOL_GPL(ps3_get_ctr_size);
/**
* ps3_set_ctr_size - Set the size of a physical counter to 16 or 32 bits.
*/
void ps3_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
{
u32 pm_ctrl;
if (phys_ctr >= NR_PHYS_CTRS) {
dev_dbg(sbd_core(), "%s:%u: phys_ctr too big: %u\n", __func__,
__LINE__, phys_ctr);
return;
}
pm_ctrl = ps3_read_pm(cpu, pm_control);
switch (ctr_size) {
case 16:
pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
ps3_write_pm(cpu, pm_control, pm_ctrl);
break;
case 32:
pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
ps3_write_pm(cpu, pm_control, pm_ctrl);
break;
default:
BUG();
}
}
EXPORT_SYMBOL_GPL(ps3_set_ctr_size);
static u64 pm_translate_signal_group_number_on_island2(u64 subgroup)
{
if (subgroup == 2)
subgroup = 3;
if (subgroup <= 6)
return PM_ISLAND2_BASE_SIGNAL_GROUP_NUMBER + subgroup;
else if (subgroup == 7)
return PM_ISLAND2_SIGNAL_GROUP_NUMBER1;
else
return PM_ISLAND2_SIGNAL_GROUP_NUMBER2;
}
static u64 pm_translate_signal_group_number_on_island3(u64 subgroup)
{
switch (subgroup) {
case 2:
case 3:
case 4:
subgroup += 2;
break;
case 5:
subgroup = 8;
break;
default:
break;
}
return PM_ISLAND3_BASE_SIGNAL_GROUP_NUMBER + subgroup;
}
static u64 pm_translate_signal_group_number_on_island4(u64 subgroup)
{
return PM_ISLAND4_BASE_SIGNAL_GROUP_NUMBER + subgroup;
}
static u64 pm_translate_signal_group_number_on_island5(u64 subgroup)
{
switch (subgroup) {
case 3:
subgroup = 4;
break;
case 4:
subgroup = 6;
break;
default:
break;
}
return PM_ISLAND5_BASE_SIGNAL_GROUP_NUMBER + subgroup;
}
static u64 pm_translate_signal_group_number_on_island6(u64 subgroup,
u64 subsubgroup)
{
switch (subgroup) {
case 3:
case 4:
case 5:
subgroup += 1;
break;
default:
break;
}
switch (subsubgroup) {
case 4:
case 5:
case 6:
subsubgroup += 2;
break;
case 7:
case 8:
case 9:
case 10:
subsubgroup += 4;
break;
case 11:
case 12:
case 13:
subsubgroup += 5;
break;
default:
break;
}
if (subgroup <= 5)
return (PM_ISLAND6_BASE_SIGNAL_GROUP_NUMBER + subgroup);
else
return (PM_ISLAND6_BASE_SIGNAL_GROUP_NUMBER + subgroup
+ subsubgroup - 1);
}
static u64 pm_translate_signal_group_number_on_island7(u64 subgroup)
{
return PM_ISLAND7_BASE_SIGNAL_GROUP_NUMBER + subgroup;
}
static u64 pm_translate_signal_group_number_on_island8(u64 subgroup)
{
return PM_ISLAND8_BASE_SIGNAL_GROUP_NUMBER + subgroup;
}
static u64 pm_signal_group_to_ps3_lv1_signal_group(u64 group)
{
u64 island;
u64 subgroup;
u64 subsubgroup;
subgroup = 0;
subsubgroup = 0;
island = 0;
if (group < 1000) {
if (group < 100) {
if (20 <= group && group < 30) {
island = 2;
subgroup = group - 20;
} else if (30 <= group && group < 40) {
island = 3;
subgroup = group - 30;
} else if (40 <= group && group < 50) {
island = 4;
subgroup = group - 40;
} else if (50 <= group && group < 60) {
island = 5;
subgroup = group - 50;
} else if (60 <= group && group < 70) {
island = 6;
subgroup = group - 60;
} else if (70 <= group && group < 80) {
island = 7;
subgroup = group - 70;
} else if (80 <= group && group < 90) {
island = 8;
subgroup = group - 80;
}
} else if (200 <= group && group < 300) {
island = 2;
subgroup = group - 200;
} else if (600 <= group && group < 700) {
island = 6;
subgroup = 5;
subsubgroup = group - 650;
}
} else if (6000 <= group && group < 7000) {
island = 6;
subgroup = 5;
subsubgroup = group - 6500;
}
switch (island) {
case 2:
return pm_translate_signal_group_number_on_island2(subgroup);
case 3:
return pm_translate_signal_group_number_on_island3(subgroup);
case 4:
return pm_translate_signal_group_number_on_island4(subgroup);
case 5:
return pm_translate_signal_group_number_on_island5(subgroup);
case 6:
return pm_translate_signal_group_number_on_island6(subgroup,
subsubgroup);
case 7:
return pm_translate_signal_group_number_on_island7(subgroup);
case 8:
return pm_translate_signal_group_number_on_island8(subgroup);
default:
dev_dbg(sbd_core(), "%s:%u: island not found: %llu\n", __func__,
__LINE__, group);
BUG();
break;
}
return 0;
}
static u64 pm_bus_word_to_ps3_lv1_bus_word(u8 word)
{
switch (word) {
case 1:
return 0xF000;
case 2:
return 0x0F00;
case 4:
return 0x00F0;
case 8:
default:
return 0x000F;
}
}
static int __ps3_set_signal(u64 lv1_signal_group, u64 bus_select,
u64 signal_select, u64 attr1, u64 attr2, u64 attr3)
{
int ret;
ret = lv1_set_lpm_signal(lpm_priv->lpm_id, lv1_signal_group, bus_select,
signal_select, attr1, attr2, attr3);
if (ret)
dev_err(sbd_core(),
"%s:%u: error:%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
__func__, __LINE__, ret, lv1_signal_group, bus_select,
signal_select, attr1, attr2, attr3);
return ret;
}
int ps3_set_signal(u64 signal_group, u8 signal_bit, u16 sub_unit,
u8 bus_word)
{
int ret;
u64 lv1_signal_group;
u64 bus_select;
u64 signal_select;
u64 attr1, attr2, attr3;
if (signal_group == 0)
return __ps3_set_signal(0, 0, 0, 0, 0, 0);
lv1_signal_group =
pm_signal_group_to_ps3_lv1_signal_group(signal_group);
bus_select = pm_bus_word_to_ps3_lv1_bus_word(bus_word);
switch (signal_group) {
case PM_SIG_GROUP_SPU_TRIGGER:
signal_select = 1;
signal_select = signal_select << (63 - signal_bit);
break;
case PM_SIG_GROUP_SPU_EVENT:
signal_select = 1;
signal_select = (signal_select << (63 - signal_bit)) | 0x3;
break;
default:
signal_select = 0;
break;
}
/*
* 0: physical object.
* 1: logical object.
* This parameter is only used for the PPE and SPE signals.
*/
attr1 = 1;
/*
* This parameter is used to specify the target physical/logical
* PPE/SPE object.
*/
if (PM_SIG_GROUP_SPU <= signal_group &&
signal_group < PM_SIG_GROUP_MFC_MAX)
attr2 = sub_unit;
else
attr2 = lpm_priv->pu_id;
/*
* This parameter is only used for setting the SPE signal.
*/
attr3 = 0;
ret = __ps3_set_signal(lv1_signal_group, bus_select, signal_select,
attr1, attr2, attr3);
if (ret)
dev_err(sbd_core(), "%s:%u: __ps3_set_signal failed: %d\n",
__func__, __LINE__, ret);
return ret;
}
EXPORT_SYMBOL_GPL(ps3_set_signal);
u32 ps3_get_hw_thread_id(int cpu)
{
return get_hard_smp_processor_id(cpu);
}
EXPORT_SYMBOL_GPL(ps3_get_hw_thread_id);
/**
* ps3_enable_pm - Enable the entire performance monitoring unit.
*
* When we enable the LPM, all pending writes to counters get committed.
*/
void ps3_enable_pm(u32 cpu)
{
int result;
u64 tmp;
int insert_bookmark = 0;
lpm_priv->tb_count = 0;
if (use_start_stop_bookmark) {
if (!(lpm_priv->shadow.pm_start_stop &
(PS3_PM_START_STOP_START_MASK
| PS3_PM_START_STOP_STOP_MASK))) {
result = lv1_set_lpm_trigger_control(lpm_priv->lpm_id,
(PS3_PM_START_STOP_PPU_TH0_BOOKMARK_START |
PS3_PM_START_STOP_PPU_TH1_BOOKMARK_START |
PS3_PM_START_STOP_PPU_TH0_BOOKMARK_STOP |
PS3_PM_START_STOP_PPU_TH1_BOOKMARK_STOP),
0xFFFFFFFFFFFFFFFFULL, &tmp);
if (result)
dev_err(sbd_core(), "%s:%u: "
"lv1_set_lpm_trigger_control failed: "
"%s\n", __func__, __LINE__,
ps3_result(result));
insert_bookmark = !result;
}
}
result = lv1_start_lpm(lpm_priv->lpm_id);
if (result)
dev_err(sbd_core(), "%s:%u: lv1_start_lpm failed: %s\n",
__func__, __LINE__, ps3_result(result));
if (use_start_stop_bookmark && !result && insert_bookmark)
ps3_set_bookmark(get_tb() | PS3_PM_BOOKMARK_START);
}
EXPORT_SYMBOL_GPL(ps3_enable_pm);
/**
* ps3_disable_pm - Disable the entire performance monitoring unit.
*/
void ps3_disable_pm(u32 cpu)
{
int result;
u64 tmp;
ps3_set_bookmark(get_tb() | PS3_PM_BOOKMARK_STOP);
result = lv1_stop_lpm(lpm_priv->lpm_id, &tmp);
if (result) {
if(result != LV1_WRONG_STATE)
dev_err(sbd_core(), "%s:%u: lv1_stop_lpm failed: %s\n",
__func__, __LINE__, ps3_result(result));
return;
}
lpm_priv->tb_count = tmp;
dev_dbg(sbd_core(), "%s:%u: tb_count %llu (%llxh)\n", __func__, __LINE__,
lpm_priv->tb_count, lpm_priv->tb_count);
}
EXPORT_SYMBOL_GPL(ps3_disable_pm);
/**
* ps3_lpm_copy_tb - Copy data from the trace buffer to a kernel buffer.
* @offset: Offset in bytes from the start of the trace buffer.
* @buf: Copy destination.
* @count: Maximum count of bytes to copy.
* @bytes_copied: Pointer to a variable that will receive the number of
* bytes copied to @buf.
*
* On error @buf will contain any successfully copied trace buffer data
* and bytes_copied will be set to the number of bytes successfully copied.
*/
int ps3_lpm_copy_tb(unsigned long offset, void *buf, unsigned long count,
unsigned long *bytes_copied)
{
int result;
*bytes_copied = 0;
if (!lpm_priv->tb_cache)
return -EPERM;
if (offset >= lpm_priv->tb_count)
return 0;
count = min_t(u64, count, lpm_priv->tb_count - offset);
while (*bytes_copied < count) {
const unsigned long request = count - *bytes_copied;
u64 tmp;
result = lv1_copy_lpm_trace_buffer(lpm_priv->lpm_id, offset,
request, &tmp);
if (result) {
dev_dbg(sbd_core(), "%s:%u: 0x%lx bytes at 0x%lx\n",
__func__, __LINE__, request, offset);
dev_err(sbd_core(), "%s:%u: lv1_copy_lpm_trace_buffer "
"failed: %s\n", __func__, __LINE__,
ps3_result(result));
return result == LV1_WRONG_STATE ? -EBUSY : -EINVAL;
}
memcpy(buf, lpm_priv->tb_cache, tmp);
buf += tmp;
*bytes_copied += tmp;
offset += tmp;
}
dev_dbg(sbd_core(), "%s:%u: copied %lxh bytes\n", __func__, __LINE__,
*bytes_copied);
return 0;
}
EXPORT_SYMBOL_GPL(ps3_lpm_copy_tb);
/**
* ps3_lpm_copy_tb_to_user - Copy data from the trace buffer to a user buffer.
* @offset: Offset in bytes from the start of the trace buffer.
* @buf: A __user copy destination.
* @count: Maximum count of bytes to copy.
* @bytes_copied: Pointer to a variable that will receive the number of
* bytes copied to @buf.
*
* On error @buf will contain any successfully copied trace buffer data
* and bytes_copied will be set to the number of bytes successfully copied.
*/
int ps3_lpm_copy_tb_to_user(unsigned long offset, void __user *buf,
unsigned long count, unsigned long *bytes_copied)
{
int result;
*bytes_copied = 0;
if (!lpm_priv->tb_cache)
return -EPERM;
if (offset >= lpm_priv->tb_count)
return 0;
count = min_t(u64, count, lpm_priv->tb_count - offset);
while (*bytes_copied < count) {
const unsigned long request = count - *bytes_copied;
u64 tmp;
result = lv1_copy_lpm_trace_buffer(lpm_priv->lpm_id, offset,
request, &tmp);
if (result) {
dev_dbg(sbd_core(), "%s:%u: 0x%lx bytes at 0x%lx\n",
__func__, __LINE__, request, offset);
dev_err(sbd_core(), "%s:%u: lv1_copy_lpm_trace_buffer "
"failed: %s\n", __func__, __LINE__,
ps3_result(result));
return result == LV1_WRONG_STATE ? -EBUSY : -EINVAL;
}
result = copy_to_user(buf, lpm_priv->tb_cache, tmp);
if (result) {
dev_dbg(sbd_core(), "%s:%u: 0x%llx bytes at 0x%p\n",
__func__, __LINE__, tmp, buf);
dev_err(sbd_core(), "%s:%u: copy_to_user failed: %d\n",
__func__, __LINE__, result);
return -EFAULT;
}
buf += tmp;
*bytes_copied += tmp;
offset += tmp;
}
dev_dbg(sbd_core(), "%s:%u: copied %lxh bytes\n", __func__, __LINE__,
*bytes_copied);
return 0;
}
EXPORT_SYMBOL_GPL(ps3_lpm_copy_tb_to_user);
/**
* ps3_get_and_clear_pm_interrupts -
*
* Clearing interrupts for the entire performance monitoring unit.
* Reading pm_status clears the interrupt bits.
*/
u32 ps3_get_and_clear_pm_interrupts(u32 cpu)
{
return ps3_read_pm(cpu, pm_status);
}
EXPORT_SYMBOL_GPL(ps3_get_and_clear_pm_interrupts);
/**
* ps3_enable_pm_interrupts -
*
* Enabling interrupts for the entire performance monitoring unit.
* Enables the interrupt bits in the pm_status register.
*/
void ps3_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
{
if (mask)
ps3_write_pm(cpu, pm_status, mask);
}
EXPORT_SYMBOL_GPL(ps3_enable_pm_interrupts);
/**
* ps3_enable_pm_interrupts -
*
* Disabling interrupts for the entire performance monitoring unit.
*/
void ps3_disable_pm_interrupts(u32 cpu)
{
ps3_get_and_clear_pm_interrupts(cpu);
ps3_write_pm(cpu, pm_status, 0);
}
EXPORT_SYMBOL_GPL(ps3_disable_pm_interrupts);
/**
* ps3_lpm_open - Open the logical performance monitor device.
* @tb_type: Specifies the type of trace buffer lv1 should use for this lpm
* instance, specified by one of enum ps3_lpm_tb_type.
* @tb_cache: Optional user supplied buffer to use as the trace buffer cache.
* If NULL, the driver will allocate and manage an internal buffer.
* Unused when when @tb_type is PS3_LPM_TB_TYPE_NONE.
* @tb_cache_size: The size in bytes of the user supplied @tb_cache buffer.
* Unused when @tb_cache is NULL or @tb_type is PS3_LPM_TB_TYPE_NONE.
*/
int ps3_lpm_open(enum ps3_lpm_tb_type tb_type, void *tb_cache,
u64 tb_cache_size)
{
int result;
u64 tb_size;
BUG_ON(!lpm_priv);
BUG_ON(tb_type != PS3_LPM_TB_TYPE_NONE
&& tb_type != PS3_LPM_TB_TYPE_INTERNAL);
if (tb_type == PS3_LPM_TB_TYPE_NONE && tb_cache)
dev_dbg(sbd_core(), "%s:%u: bad in vals\n", __func__, __LINE__);
if (!atomic_add_unless(&lpm_priv->open, 1, 1)) {
dev_dbg(sbd_core(), "%s:%u: busy\n", __func__, __LINE__);
return -EBUSY;
}
/* Note tb_cache needs 128 byte alignment. */
if (tb_type == PS3_LPM_TB_TYPE_NONE) {
lpm_priv->tb_cache_size = 0;
lpm_priv->tb_cache_internal = NULL;
lpm_priv->tb_cache = NULL;
} else if (tb_cache) {
if (tb_cache != (void *)_ALIGN_UP((unsigned long)tb_cache, 128)
|| tb_cache_size != _ALIGN_UP(tb_cache_size, 128)) {
dev_err(sbd_core(), "%s:%u: unaligned tb_cache\n",
__func__, __LINE__);
result = -EINVAL;
goto fail_align;
}
lpm_priv->tb_cache_size = tb_cache_size;
lpm_priv->tb_cache_internal = NULL;
lpm_priv->tb_cache = tb_cache;
} else {
lpm_priv->tb_cache_size = PS3_LPM_DEFAULT_TB_CACHE_SIZE;
lpm_priv->tb_cache_internal = kzalloc(
lpm_priv->tb_cache_size + 127, GFP_KERNEL);
if (!lpm_priv->tb_cache_internal) {
dev_err(sbd_core(), "%s:%u: alloc internal tb_cache "
"failed\n", __func__, __LINE__);
result = -ENOMEM;
goto fail_malloc;
}
lpm_priv->tb_cache = (void *)_ALIGN_UP(
(unsigned long)lpm_priv->tb_cache_internal, 128);
}
result = lv1_construct_lpm(lpm_priv->node_id, tb_type, 0, 0,
ps3_mm_phys_to_lpar(__pa(lpm_priv->tb_cache)),
lpm_priv->tb_cache_size, &lpm_priv->lpm_id,
&lpm_priv->outlet_id, &tb_size);
if (result) {
dev_err(sbd_core(), "%s:%u: lv1_construct_lpm failed: %s\n",
__func__, __LINE__, ps3_result(result));
result = -EINVAL;
goto fail_construct;
}
lpm_priv->shadow.pm_control = PS3_LPM_SHADOW_REG_INIT;
lpm_priv->shadow.pm_start_stop = PS3_LPM_SHADOW_REG_INIT;
lpm_priv->shadow.group_control = PS3_LPM_SHADOW_REG_INIT;
lpm_priv->shadow.debug_bus_control = PS3_LPM_SHADOW_REG_INIT;
dev_dbg(sbd_core(), "%s:%u: lpm_id 0x%llx, outlet_id 0x%llx, "
"tb_size 0x%llx\n", __func__, __LINE__, lpm_priv->lpm_id,
lpm_priv->outlet_id, tb_size);
return 0;
fail_construct:
kfree(lpm_priv->tb_cache_internal);
lpm_priv->tb_cache_internal = NULL;
fail_malloc:
fail_align:
atomic_dec(&lpm_priv->open);
return result;
}
EXPORT_SYMBOL_GPL(ps3_lpm_open);
/**
* ps3_lpm_close - Close the lpm device.
*
*/
int ps3_lpm_close(void)
{
dev_dbg(sbd_core(), "%s:%u\n", __func__, __LINE__);
lv1_destruct_lpm(lpm_priv->lpm_id);
lpm_priv->lpm_id = 0;
kfree(lpm_priv->tb_cache_internal);
lpm_priv->tb_cache_internal = NULL;
atomic_dec(&lpm_priv->open);
return 0;
}
EXPORT_SYMBOL_GPL(ps3_lpm_close);
static int ps3_lpm_probe(struct ps3_system_bus_device *dev)
{
dev_dbg(&dev->core, " -> %s:%u\n", __func__, __LINE__);
if (lpm_priv) {
dev_info(&dev->core, "%s:%u: called twice\n",
__func__, __LINE__);
return -EBUSY;
}
lpm_priv = kzalloc(sizeof(*lpm_priv), GFP_KERNEL);
if (!lpm_priv)
return -ENOMEM;
lpm_priv->sbd = dev;
lpm_priv->node_id = dev->lpm.node_id;
lpm_priv->pu_id = dev->lpm.pu_id;
lpm_priv->rights = dev->lpm.rights;
dev_info(&dev->core, " <- %s:%u:\n", __func__, __LINE__);
return 0;
}
static int ps3_lpm_remove(struct ps3_system_bus_device *dev)
{
dev_dbg(&dev->core, " -> %s:%u:\n", __func__, __LINE__);
ps3_lpm_close();
kfree(lpm_priv);
lpm_priv = NULL;
dev_info(&dev->core, " <- %s:%u:\n", __func__, __LINE__);
return 0;
}
static struct ps3_system_bus_driver ps3_lpm_driver = {
.match_id = PS3_MATCH_ID_LPM,
.core.name = "ps3-lpm",
.core.owner = THIS_MODULE,
.probe = ps3_lpm_probe,
.remove = ps3_lpm_remove,
.shutdown = ps3_lpm_remove,
};
static int __init ps3_lpm_init(void)
{
pr_debug("%s:%d:\n", __func__, __LINE__);
return ps3_system_bus_driver_register(&ps3_lpm_driver);
}
static void __exit ps3_lpm_exit(void)
{
pr_debug("%s:%d:\n", __func__, __LINE__);
ps3_system_bus_driver_unregister(&ps3_lpm_driver);
}
module_init(ps3_lpm_init);
module_exit(ps3_lpm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PS3 Logical Performance Monitor Driver");
MODULE_AUTHOR("Sony Corporation");
MODULE_ALIAS(PS3_MODULE_ALIAS_LPM);