WSL2-Linux-Kernel/drivers/video/nvidia/nv_setup.c

676 строки
18 KiB
C
Исходник Обычный вид История

/***************************************************************************\
|* *|
|* Copyright 2003 NVIDIA, Corporation. All rights reserved. *|
|* *|
|* NOTICE TO USER: The source code is copyrighted under U.S. and *|
|* international laws. Users and possessors of this source code are *|
|* hereby granted a nonexclusive, royalty-free copyright license to *|
|* use this code in individual and commercial software. *|
|* *|
|* Any use of this source code must include, in the user documenta- *|
|* tion and internal comments to the code, notices to the end user *|
|* as follows: *|
|* *|
|* Copyright 2003 NVIDIA, Corporation. All rights reserved. *|
|* *|
|* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *|
|* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *|
|* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *|
|* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *|
|* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *|
|* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *|
|* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *|
|* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *|
|* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *|
|* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *|
|* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *|
|* *|
|* U.S. Government End Users. This source code is a "commercial *|
|* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *|
|* consisting of "commercial computer software" and "commercial *|
|* computer software documentation," as such terms are used in *|
|* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *|
|* ment only as a commercial end item. Consistent with 48 C.F.R. *|
|* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *|
|* all U.S. Government End Users acquire the source code with only *|
|* those rights set forth herein. *|
|* *|
\***************************************************************************/
/*
* GPL Licensing Note - According to Mark Vojkovich, author of the Xorg/
* XFree86 'nv' driver, this source code is provided under MIT-style licensing
* where the source code is provided "as is" without warranty of any kind.
* The only usage restriction is for the copyright notices to be retained
* whenever code is used.
*
* Antonino Daplas <adaplas@pol.net> 2005-03-11
*/
#include <video/vga.h>
#include <linux/delay.h>
#include <linux/pci.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include "nv_type.h"
#include "nv_local.h"
#include "nv_proto.h"
/*
* Override VGA I/O routines.
*/
void NVWriteCrtc(struct nvidia_par *par, u8 index, u8 value)
{
VGA_WR08(par->PCIO, par->IOBase + 0x04, index);
VGA_WR08(par->PCIO, par->IOBase + 0x05, value);
}
u8 NVReadCrtc(struct nvidia_par *par, u8 index)
{
VGA_WR08(par->PCIO, par->IOBase + 0x04, index);
return (VGA_RD08(par->PCIO, par->IOBase + 0x05));
}
void NVWriteGr(struct nvidia_par *par, u8 index, u8 value)
{
VGA_WR08(par->PVIO, VGA_GFX_I, index);
VGA_WR08(par->PVIO, VGA_GFX_D, value);
}
u8 NVReadGr(struct nvidia_par *par, u8 index)
{
VGA_WR08(par->PVIO, VGA_GFX_I, index);
return (VGA_RD08(par->PVIO, VGA_GFX_D));
}
void NVWriteSeq(struct nvidia_par *par, u8 index, u8 value)
{
VGA_WR08(par->PVIO, VGA_SEQ_I, index);
VGA_WR08(par->PVIO, VGA_SEQ_D, value);
}
u8 NVReadSeq(struct nvidia_par *par, u8 index)
{
VGA_WR08(par->PVIO, VGA_SEQ_I, index);
return (VGA_RD08(par->PVIO, VGA_SEQ_D));
}
void NVWriteAttr(struct nvidia_par *par, u8 index, u8 value)
{
volatile u8 tmp;
tmp = VGA_RD08(par->PCIO, par->IOBase + 0x0a);
if (par->paletteEnabled)
index &= ~0x20;
else
index |= 0x20;
VGA_WR08(par->PCIO, VGA_ATT_IW, index);
VGA_WR08(par->PCIO, VGA_ATT_W, value);
}
u8 NVReadAttr(struct nvidia_par *par, u8 index)
{
volatile u8 tmp;
tmp = VGA_RD08(par->PCIO, par->IOBase + 0x0a);
if (par->paletteEnabled)
index &= ~0x20;
else
index |= 0x20;
VGA_WR08(par->PCIO, VGA_ATT_IW, index);
return (VGA_RD08(par->PCIO, VGA_ATT_R));
}
void NVWriteMiscOut(struct nvidia_par *par, u8 value)
{
VGA_WR08(par->PVIO, VGA_MIS_W, value);
}
u8 NVReadMiscOut(struct nvidia_par *par)
{
return (VGA_RD08(par->PVIO, VGA_MIS_R));
}
#if 0
void NVEnablePalette(struct nvidia_par *par)
{
volatile u8 tmp;
tmp = VGA_RD08(par->PCIO, par->IOBase + 0x0a);
VGA_WR08(par->PCIO, VGA_ATT_IW, 0x00);
par->paletteEnabled = 1;
}
void NVDisablePalette(struct nvidia_par *par)
{
volatile u8 tmp;
tmp = VGA_RD08(par->PCIO, par->IOBase + 0x0a);
VGA_WR08(par->PCIO, VGA_ATT_IW, 0x20);
par->paletteEnabled = 0;
}
#endif /* 0 */
void NVWriteDacMask(struct nvidia_par *par, u8 value)
{
VGA_WR08(par->PDIO, VGA_PEL_MSK, value);
}
#if 0
u8 NVReadDacMask(struct nvidia_par *par)
{
return (VGA_RD08(par->PDIO, VGA_PEL_MSK));
}
#endif /* 0 */
void NVWriteDacReadAddr(struct nvidia_par *par, u8 value)
{
VGA_WR08(par->PDIO, VGA_PEL_IR, value);
}
void NVWriteDacWriteAddr(struct nvidia_par *par, u8 value)
{
VGA_WR08(par->PDIO, VGA_PEL_IW, value);
}
void NVWriteDacData(struct nvidia_par *par, u8 value)
{
VGA_WR08(par->PDIO, VGA_PEL_D, value);
}
u8 NVReadDacData(struct nvidia_par *par)
{
return (VGA_RD08(par->PDIO, VGA_PEL_D));
}
static int NVIsConnected(struct nvidia_par *par, int output)
{
volatile u32 __iomem *PRAMDAC = par->PRAMDAC0;
u32 reg52C, reg608, dac0_reg608 = 0;
int present;
if (output) {
dac0_reg608 = NV_RD32(PRAMDAC, 0x0608);
PRAMDAC += 0x800;
}
reg52C = NV_RD32(PRAMDAC, 0x052C);
reg608 = NV_RD32(PRAMDAC, 0x0608);
NV_WR32(PRAMDAC, 0x0608, reg608 & ~0x00010000);
NV_WR32(PRAMDAC, 0x052C, reg52C & 0x0000FEEE);
msleep(1);
NV_WR32(PRAMDAC, 0x052C, NV_RD32(PRAMDAC, 0x052C) | 1);
NV_WR32(par->PRAMDAC0, 0x0610, 0x94050140);
NV_WR32(par->PRAMDAC0, 0x0608, NV_RD32(par->PRAMDAC0, 0x0608) |
0x00001000);
msleep(1);
present = (NV_RD32(PRAMDAC, 0x0608) & (1 << 28)) ? 1 : 0;
if (present)
printk("nvidiafb: CRTC%i analog found\n", output);
else
printk("nvidiafb: CRTC%i analog not found\n", output);
if (output)
NV_WR32(par->PRAMDAC0, 0x0608, dac0_reg608);
NV_WR32(PRAMDAC, 0x052C, reg52C);
NV_WR32(PRAMDAC, 0x0608, reg608);
return present;
}
static void NVSelectHeadRegisters(struct nvidia_par *par, int head)
{
if (head) {
par->PCIO = par->PCIO0 + 0x2000;
par->PCRTC = par->PCRTC0 + 0x800;
par->PRAMDAC = par->PRAMDAC0 + 0x800;
par->PDIO = par->PDIO0 + 0x2000;
} else {
par->PCIO = par->PCIO0;
par->PCRTC = par->PCRTC0;
par->PRAMDAC = par->PRAMDAC0;
par->PDIO = par->PDIO0;
}
}
static void nv4GetConfig(struct nvidia_par *par)
{
if (NV_RD32(par->PFB, 0x0000) & 0x00000100) {
par->RamAmountKBytes =
((NV_RD32(par->PFB, 0x0000) >> 12) & 0x0F) * 1024 * 2 +
1024 * 2;
} else {
switch (NV_RD32(par->PFB, 0x0000) & 0x00000003) {
case 0:
par->RamAmountKBytes = 1024 * 32;
break;
case 1:
par->RamAmountKBytes = 1024 * 4;
break;
case 2:
par->RamAmountKBytes = 1024 * 8;
break;
case 3:
default:
par->RamAmountKBytes = 1024 * 16;
break;
}
}
par->CrystalFreqKHz = (NV_RD32(par->PEXTDEV, 0x0000) & 0x00000040) ?
14318 : 13500;
par->CURSOR = &par->PRAMIN[0x1E00];
par->MinVClockFreqKHz = 12000;
par->MaxVClockFreqKHz = 350000;
}
static void nv10GetConfig(struct nvidia_par *par)
{
struct pci_dev *dev;
u32 implementation = par->Chipset & 0x0ff0;
#ifdef __BIG_ENDIAN
/* turn on big endian register access */
if (!(NV_RD32(par->PMC, 0x0004) & 0x01000001)) {
NV_WR32(par->PMC, 0x0004, 0x01000001);
mb();
}
#endif
dev = pci_get_bus_and_slot(0, 1);
if ((par->Chipset & 0xffff) == 0x01a0) {
u32 amt;
pci_read_config_dword(dev, 0x7c, &amt);
par->RamAmountKBytes = (((amt >> 6) & 31) + 1) * 1024;
} else if ((par->Chipset & 0xffff) == 0x01f0) {
u32 amt;
pci_read_config_dword(dev, 0x84, &amt);
par->RamAmountKBytes = (((amt >> 4) & 127) + 1) * 1024;
} else {
par->RamAmountKBytes =
(NV_RD32(par->PFB, 0x020C) & 0xFFF00000) >> 10;
}
pci_dev_put(dev);
par->CrystalFreqKHz = (NV_RD32(par->PEXTDEV, 0x0000) & (1 << 6)) ?
14318 : 13500;
if (par->twoHeads && (implementation != 0x0110)) {
if (NV_RD32(par->PEXTDEV, 0x0000) & (1 << 22))
par->CrystalFreqKHz = 27000;
}
par->CURSOR = NULL; /* can't set this here */
par->MinVClockFreqKHz = 12000;
par->MaxVClockFreqKHz = par->twoStagePLL ? 400000 : 350000;
}
int NVCommonSetup(struct fb_info *info)
{
struct nvidia_par *par = info->par;
struct fb_var_screeninfo *var;
u16 implementation = par->Chipset & 0x0ff0;
u8 *edidA = NULL, *edidB = NULL;
struct fb_monspecs *monitorA, *monitorB;
struct fb_monspecs *monA = NULL, *monB = NULL;
int mobile = 0;
int tvA = 0;
int tvB = 0;
int FlatPanel = -1; /* really means the CRTC is slaved */
int Television = 0;
int err = 0;
var = kzalloc(sizeof(struct fb_var_screeninfo), GFP_KERNEL);
monitorA = kzalloc(sizeof(struct fb_monspecs), GFP_KERNEL);
monitorB = kzalloc(sizeof(struct fb_monspecs), GFP_KERNEL);
if (!var || !monitorA || !monitorB) {
err = -ENOMEM;
goto done;
}
par->PRAMIN = par->REGS + (0x00710000 / 4);
par->PCRTC0 = par->REGS + (0x00600000 / 4);
par->PRAMDAC0 = par->REGS + (0x00680000 / 4);
par->PFB = par->REGS + (0x00100000 / 4);
par->PFIFO = par->REGS + (0x00002000 / 4);
par->PGRAPH = par->REGS + (0x00400000 / 4);
par->PEXTDEV = par->REGS + (0x00101000 / 4);
par->PTIMER = par->REGS + (0x00009000 / 4);
par->PMC = par->REGS + (0x00000000 / 4);
par->FIFO = par->REGS + (0x00800000 / 4);
/* 8 bit registers */
par->PCIO0 = (u8 __iomem *) par->REGS + 0x00601000;
par->PDIO0 = (u8 __iomem *) par->REGS + 0x00681000;
par->PVIO = (u8 __iomem *) par->REGS + 0x000C0000;
par->twoHeads = (par->Architecture >= NV_ARCH_10) &&
(implementation != 0x0100) &&
(implementation != 0x0150) &&
(implementation != 0x01A0) && (implementation != 0x0200);
par->fpScaler = (par->FpScale && par->twoHeads &&
(implementation != 0x0110));
par->twoStagePLL = (implementation == 0x0310) ||
(implementation == 0x0340) || (par->Architecture >= NV_ARCH_40);
par->WaitVSyncPossible = (par->Architecture >= NV_ARCH_10) &&
(implementation != 0x0100);
par->BlendingPossible = ((par->Chipset & 0xffff) != 0x0020);
/* look for known laptop chips */
switch (par->Chipset & 0xffff) {
case 0x0112:
case 0x0174:
case 0x0175:
case 0x0176:
case 0x0177:
case 0x0179:
case 0x017C:
case 0x017D:
case 0x0186:
case 0x0187:
case 0x018D:
case 0x01D7:
case 0x0228:
case 0x0286:
case 0x028C:
case 0x0316:
case 0x0317:
case 0x031A:
case 0x031B:
case 0x031C:
case 0x031D:
case 0x031E:
case 0x031F:
case 0x0324:
case 0x0325:
case 0x0328:
case 0x0329:
case 0x032C:
case 0x032D:
case 0x0347:
case 0x0348:
case 0x0349:
case 0x034B:
case 0x034C:
case 0x0160:
case 0x0166:
case 0x0169:
case 0x016B:
case 0x016C:
case 0x016D:
case 0x00C8:
case 0x00CC:
case 0x0144:
case 0x0146:
case 0x0147:
case 0x0148:
case 0x0098:
case 0x0099:
mobile = 1;
break;
default:
break;
}
if (par->Architecture == NV_ARCH_04)
nv4GetConfig(par);
else
nv10GetConfig(par);
NVSelectHeadRegisters(par, 0);
NVLockUnlock(par, 0);
par->IOBase = (NVReadMiscOut(par) & 0x01) ? 0x3d0 : 0x3b0;
par->Television = 0;
nvidia_create_i2c_busses(par);
if (!par->twoHeads) {
par->CRTCnumber = 0;
if (nvidia_probe_i2c_connector(info, 1, &edidA))
nvidia_probe_of_connector(info, 1, &edidA);
if (edidA && !fb_parse_edid(edidA, var)) {
printk("nvidiafb: EDID found from BUS1\n");
monA = monitorA;
fb_edid_to_monspecs(edidA, monA);
FlatPanel = (monA->input & FB_DISP_DDI) ? 1 : 0;
/* NV4 doesn't support FlatPanels */
if ((par->Chipset & 0x0fff) <= 0x0020)
FlatPanel = 0;
} else {
VGA_WR08(par->PCIO, 0x03D4, 0x28);
if (VGA_RD08(par->PCIO, 0x03D5) & 0x80) {
VGA_WR08(par->PCIO, 0x03D4, 0x33);
if (!(VGA_RD08(par->PCIO, 0x03D5) & 0x01))
Television = 1;
FlatPanel = 1;
} else {
FlatPanel = 0;
}
printk("nvidiafb: HW is currently programmed for %s\n",
FlatPanel ? (Television ? "TV" : "DFP") :
"CRT");
}
if (par->FlatPanel == -1) {
par->FlatPanel = FlatPanel;
par->Television = Television;
} else {
printk("nvidiafb: Forcing display type to %s as "
"specified\n", par->FlatPanel ? "DFP" : "CRT");
}
} else {
u8 outputAfromCRTC, outputBfromCRTC;
int CRTCnumber = -1;
u8 slaved_on_A, slaved_on_B;
int analog_on_A, analog_on_B;
u32 oldhead;
u8 cr44;
if (implementation != 0x0110) {
if (NV_RD32(par->PRAMDAC0, 0x0000052C) & 0x100)
outputAfromCRTC = 1;
else
outputAfromCRTC = 0;
if (NV_RD32(par->PRAMDAC0, 0x0000252C) & 0x100)
outputBfromCRTC = 1;
else
outputBfromCRTC = 0;
analog_on_A = NVIsConnected(par, 0);
analog_on_B = NVIsConnected(par, 1);
} else {
outputAfromCRTC = 0;
outputBfromCRTC = 1;
analog_on_A = 0;
analog_on_B = 0;
}
VGA_WR08(par->PCIO, 0x03D4, 0x44);
cr44 = VGA_RD08(par->PCIO, 0x03D5);
VGA_WR08(par->PCIO, 0x03D5, 3);
NVSelectHeadRegisters(par, 1);
NVLockUnlock(par, 0);
VGA_WR08(par->PCIO, 0x03D4, 0x28);
slaved_on_B = VGA_RD08(par->PCIO, 0x03D5) & 0x80;
if (slaved_on_B) {
VGA_WR08(par->PCIO, 0x03D4, 0x33);
tvB = !(VGA_RD08(par->PCIO, 0x03D5) & 0x01);
}
VGA_WR08(par->PCIO, 0x03D4, 0x44);
VGA_WR08(par->PCIO, 0x03D5, 0);
NVSelectHeadRegisters(par, 0);
NVLockUnlock(par, 0);
VGA_WR08(par->PCIO, 0x03D4, 0x28);
slaved_on_A = VGA_RD08(par->PCIO, 0x03D5) & 0x80;
if (slaved_on_A) {
VGA_WR08(par->PCIO, 0x03D4, 0x33);
tvA = !(VGA_RD08(par->PCIO, 0x03D5) & 0x01);
}
oldhead = NV_RD32(par->PCRTC0, 0x00000860);
NV_WR32(par->PCRTC0, 0x00000860, oldhead | 0x00000010);
if (nvidia_probe_i2c_connector(info, 1, &edidA))
nvidia_probe_of_connector(info, 1, &edidA);
if (edidA && !fb_parse_edid(edidA, var)) {
printk("nvidiafb: EDID found from BUS1\n");
monA = monitorA;
fb_edid_to_monspecs(edidA, monA);
}
if (nvidia_probe_i2c_connector(info, 2, &edidB))
nvidia_probe_of_connector(info, 2, &edidB);
if (edidB && !fb_parse_edid(edidB, var)) {
printk("nvidiafb: EDID found from BUS2\n");
monB = monitorB;
fb_edid_to_monspecs(edidB, monB);
}
if (slaved_on_A && !tvA) {
CRTCnumber = 0;
FlatPanel = 1;
printk("nvidiafb: CRTC 0 is currently programmed for "
"DFP\n");
} else if (slaved_on_B && !tvB) {
CRTCnumber = 1;
FlatPanel = 1;
printk("nvidiafb: CRTC 1 is currently programmed "
"for DFP\n");
} else if (analog_on_A) {
CRTCnumber = outputAfromCRTC;
FlatPanel = 0;
printk("nvidiafb: CRTC %i appears to have a "
"CRT attached\n", CRTCnumber);
} else if (analog_on_B) {
CRTCnumber = outputBfromCRTC;
FlatPanel = 0;
printk("nvidiafb: CRTC %i appears to have a "
"CRT attached\n", CRTCnumber);
} else if (slaved_on_A) {
CRTCnumber = 0;
FlatPanel = 1;
Television = 1;
printk("nvidiafb: CRTC 0 is currently programmed "
"for TV\n");
} else if (slaved_on_B) {
CRTCnumber = 1;
FlatPanel = 1;
Television = 1;
printk("nvidiafb: CRTC 1 is currently programmed for "
"TV\n");
} else if (monA) {
FlatPanel = (monA->input & FB_DISP_DDI) ? 1 : 0;
} else if (monB) {
FlatPanel = (monB->input & FB_DISP_DDI) ? 1 : 0;
}
if (par->FlatPanel == -1) {
if (FlatPanel != -1) {
par->FlatPanel = FlatPanel;
par->Television = Television;
} else {
printk("nvidiafb: Unable to detect display "
"type...\n");
if (mobile) {
printk("...On a laptop, assuming "
"DFP\n");
par->FlatPanel = 1;
} else {
printk("...Using default of CRT\n");
par->FlatPanel = 0;
}
}
} else {
printk("nvidiafb: Forcing display type to %s as "
"specified\n", par->FlatPanel ? "DFP" : "CRT");
}
if (par->CRTCnumber == -1) {
if (CRTCnumber != -1)
par->CRTCnumber = CRTCnumber;
else {
printk("nvidiafb: Unable to detect which "
"CRTCNumber...\n");
if (par->FlatPanel)
par->CRTCnumber = 1;
else
par->CRTCnumber = 0;
printk("...Defaulting to CRTCNumber %i\n",
par->CRTCnumber);
}
} else {
printk("nvidiafb: Forcing CRTCNumber %i as "
"specified\n", par->CRTCnumber);
}
if (monA) {
if (((monA->input & FB_DISP_DDI) &&
par->FlatPanel) ||
((!(monA->input & FB_DISP_DDI)) &&
!par->FlatPanel)) {
if (monB) {
fb_destroy_modedb(monB->modedb);
monB = NULL;
}
} else {
fb_destroy_modedb(monA->modedb);
monA = NULL;
}
}
if (monB) {
if (((monB->input & FB_DISP_DDI) &&
!par->FlatPanel) ||
((!(monB->input & FB_DISP_DDI)) &&
par->FlatPanel)) {
fb_destroy_modedb(monB->modedb);
monB = NULL;
} else
monA = monB;
}
if (implementation == 0x0110)
cr44 = par->CRTCnumber * 0x3;
NV_WR32(par->PCRTC0, 0x00000860, oldhead);
VGA_WR08(par->PCIO, 0x03D4, 0x44);
VGA_WR08(par->PCIO, 0x03D5, cr44);
NVSelectHeadRegisters(par, par->CRTCnumber);
}
printk("nvidiafb: Using %s on CRTC %i\n",
par->FlatPanel ? (par->Television ? "TV" : "DFP") : "CRT",
par->CRTCnumber);
if (par->FlatPanel && !par->Television) {
par->fpWidth = NV_RD32(par->PRAMDAC, 0x0820) + 1;
par->fpHeight = NV_RD32(par->PRAMDAC, 0x0800) + 1;
par->fpSyncs = NV_RD32(par->PRAMDAC, 0x0848) & 0x30000033;
printk("nvidiafb: Panel size is %i x %i\n", par->fpWidth, par->fpHeight);
}
if (monA)
info->monspecs = *monA;
if (!par->FlatPanel || !par->twoHeads)
par->FPDither = 0;
par->LVDS = 0;
if (par->FlatPanel && par->twoHeads) {
NV_WR32(par->PRAMDAC0, 0x08B0, 0x00010004);
if (NV_RD32(par->PRAMDAC0, 0x08b4) & 1)
par->LVDS = 1;
printk("nvidiafb: Panel is %s\n", par->LVDS ? "LVDS" : "TMDS");
}
kfree(edidA);
kfree(edidB);
done:
kfree(var);
kfree(monitorA);
kfree(monitorB);
return err;
}