[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
/*
|
|
|
|
* Sleepable Read-Copy Update mechanism for mutual exclusion
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, write to the Free Software
|
|
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
|
|
*
|
|
|
|
* Copyright (C) IBM Corporation, 2006
|
|
|
|
*
|
|
|
|
* Author: Paul McKenney <paulmck@us.ibm.com>
|
|
|
|
*
|
|
|
|
* For detailed explanation of Read-Copy Update mechanism see -
|
|
|
|
* Documentation/RCU/ *.txt
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2006-10-04 13:17:04 +04:00
|
|
|
#ifndef _LINUX_SRCU_H
|
|
|
|
#define _LINUX_SRCU_H
|
|
|
|
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
struct srcu_struct_array {
|
|
|
|
int c[2];
|
|
|
|
};
|
|
|
|
|
|
|
|
struct srcu_struct {
|
|
|
|
int completed;
|
2010-02-02 08:38:57 +03:00
|
|
|
struct srcu_struct_array __percpu *per_cpu_ref;
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
struct mutex mutex;
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
struct lockdep_map dep_map;
|
|
|
|
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
#ifndef CONFIG_PREEMPT
|
|
|
|
#define srcu_barrier() barrier()
|
|
|
|
#else /* #ifndef CONFIG_PREEMPT */
|
|
|
|
#define srcu_barrier()
|
|
|
|
#endif /* #else #ifndef CONFIG_PREEMPT */
|
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
|
|
|
|
int __init_srcu_struct(struct srcu_struct *sp, const char *name,
|
|
|
|
struct lock_class_key *key);
|
|
|
|
|
|
|
|
#define init_srcu_struct(sp) \
|
|
|
|
({ \
|
|
|
|
static struct lock_class_key __srcu_key; \
|
|
|
|
\
|
|
|
|
__init_srcu_struct((sp), #sp, &__srcu_key); \
|
|
|
|
})
|
|
|
|
|
|
|
|
# define srcu_read_acquire(sp) \
|
|
|
|
lock_acquire(&(sp)->dep_map, 0, 0, 2, 1, NULL, _THIS_IP_)
|
|
|
|
# define srcu_read_release(sp) \
|
|
|
|
lock_release(&(sp)->dep_map, 1, _THIS_IP_)
|
|
|
|
|
|
|
|
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
|
2006-10-04 13:17:05 +04:00
|
|
|
int init_srcu_struct(struct srcu_struct *sp);
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
|
|
|
|
# define srcu_read_acquire(sp) do { } while (0)
|
|
|
|
# define srcu_read_release(sp) do { } while (0)
|
|
|
|
|
|
|
|
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
void cleanup_srcu_struct(struct srcu_struct *sp);
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
int __srcu_read_lock(struct srcu_struct *sp) __acquires(sp);
|
|
|
|
void __srcu_read_unlock(struct srcu_struct *sp, int idx) __releases(sp);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
void synchronize_srcu(struct srcu_struct *sp);
|
2009-10-26 05:03:51 +03:00
|
|
|
void synchronize_srcu_expedited(struct srcu_struct *sp);
|
[PATCH] srcu-3: RCU variant permitting read-side blocking
Updated patch adding a variant of RCU that permits sleeping in read-side
critical sections. SRCU is as follows:
o Each use of SRCU creates its own srcu_struct, and each
srcu_struct has its own set of grace periods. This is
critical, as it prevents one subsystem with a blocking
reader from holding up SRCU grace periods for other
subsystems.
o The SRCU primitives (srcu_read_lock(), srcu_read_unlock(),
and synchronize_srcu()) all take a pointer to a srcu_struct.
o The SRCU primitives must be called from process context.
o srcu_read_lock() returns an int that must be passed to
the matching srcu_read_unlock(). Realtime RCU avoids the
need for this by storing the state in the task struct,
but SRCU needs to allow a given code path to pass through
multiple SRCU domains -- storing state in the task struct
would therefore require either arbitrary space in the
task struct or arbitrary limits on SRCU nesting. So I
kicked the state-storage problem up to the caller.
Of course, it is not permitted to call synchronize_srcu()
while in an SRCU read-side critical section.
o There is no call_srcu(). It would not be hard to implement
one, but it seems like too easy a way to OOM the system.
(Hey, we have enough trouble with call_rcu(), which does
-not- permit readers to sleep!!!) So, if you want it,
please tell me why...
[josht@us.ibm.com: sparse notation]
Signed-off-by: Paul E. McKenney <paulmck@us.ibm.com>
Signed-off-by: Josh Triplett <josh@freedesktop.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-10-04 13:17:02 +04:00
|
|
|
long srcu_batches_completed(struct srcu_struct *sp);
|
2006-10-04 13:17:04 +04:00
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
|
|
|
|
|
|
|
/**
|
|
|
|
* srcu_read_lock_held - might we be in SRCU read-side critical section?
|
|
|
|
*
|
2010-03-30 21:52:21 +04:00
|
|
|
* If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an SRCU
|
|
|
|
* read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
* this assumes we are in an SRCU read-side critical section unless it can
|
|
|
|
* prove otherwise.
|
|
|
|
*/
|
|
|
|
static inline int srcu_read_lock_held(struct srcu_struct *sp)
|
|
|
|
{
|
|
|
|
if (debug_locks)
|
|
|
|
return lock_is_held(&sp->dep_map);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
|
|
|
|
static inline int srcu_read_lock_held(struct srcu_struct *sp)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
|
|
|
|
2010-02-23 04:04:46 +03:00
|
|
|
/**
|
|
|
|
* srcu_dereference - fetch SRCU-protected pointer with checking
|
|
|
|
*
|
|
|
|
* Makes rcu_dereference_check() do the dirty work.
|
|
|
|
*/
|
|
|
|
#define srcu_dereference(p, sp) \
|
|
|
|
rcu_dereference_check(p, srcu_read_lock_held(sp))
|
|
|
|
|
rcu: Introduce lockdep-based checking to RCU read-side primitives
Inspection is proving insufficient to catch all RCU misuses,
which is understandable given that rcu_dereference() might be
protected by any of four different flavors of RCU (RCU, RCU-bh,
RCU-sched, and SRCU), and might also/instead be protected by any
of a number of locking primitives. It is therefore time to
enlist the aid of lockdep.
This set of patches is inspired by earlier work by Peter
Zijlstra and Thomas Gleixner, and takes the following approach:
o Set up separate lockdep classes for RCU, RCU-bh, and RCU-sched.
o Set up separate lockdep classes for each instance of SRCU.
o Create primitives that check for being in an RCU read-side
critical section. These return exact answers if lockdep is
fully enabled, but if unsure, report being in an RCU read-side
critical section. (We want to avoid false positives!)
The primitives are:
For RCU: rcu_read_lock_held(void)
For RCU-bh: rcu_read_lock_bh_held(void)
For RCU-sched: rcu_read_lock_sched_held(void)
For SRCU: srcu_read_lock_held(struct srcu_struct *sp)
o Add rcu_dereference_check(), which takes a second argument
in which one places a boolean expression based on the above
primitives and/or lockdep_is_held().
o A new kernel configuration parameter, CONFIG_PROVE_RCU, enables
rcu_dereference_check(). This depends on CONFIG_PROVE_LOCKING,
and should be quite helpful during the transition period while
CONFIG_PROVE_RCU-unaware patches are in flight.
The existing rcu_dereference() primitive does no checking, but
upcoming patches will change that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: laijs@cn.fujitsu.com
Cc: dipankar@in.ibm.com
Cc: mathieu.desnoyers@polymtl.ca
Cc: josh@joshtriplett.org
Cc: dvhltc@us.ibm.com
Cc: niv@us.ibm.com
Cc: peterz@infradead.org
Cc: rostedt@goodmis.org
Cc: Valdis.Kletnieks@vt.edu
Cc: dhowells@redhat.com
LKML-Reference: <1266887105-1528-1-git-send-email-paulmck@linux.vnet.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2010-02-23 04:04:45 +03:00
|
|
|
/**
|
|
|
|
* srcu_read_lock - register a new reader for an SRCU-protected structure.
|
|
|
|
* @sp: srcu_struct in which to register the new reader.
|
|
|
|
*
|
|
|
|
* Enter an SRCU read-side critical section. Note that SRCU read-side
|
|
|
|
* critical sections may be nested.
|
|
|
|
*/
|
|
|
|
static inline int srcu_read_lock(struct srcu_struct *sp) __acquires(sp)
|
|
|
|
{
|
|
|
|
int retval = __srcu_read_lock(sp);
|
|
|
|
|
|
|
|
srcu_read_acquire(sp);
|
|
|
|
return retval;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* srcu_read_unlock - unregister a old reader from an SRCU-protected structure.
|
|
|
|
* @sp: srcu_struct in which to unregister the old reader.
|
|
|
|
* @idx: return value from corresponding srcu_read_lock().
|
|
|
|
*
|
|
|
|
* Exit an SRCU read-side critical section.
|
|
|
|
*/
|
|
|
|
static inline void srcu_read_unlock(struct srcu_struct *sp, int idx)
|
|
|
|
__releases(sp)
|
|
|
|
{
|
|
|
|
srcu_read_release(sp);
|
|
|
|
__srcu_read_unlock(sp, idx);
|
|
|
|
}
|
|
|
|
|
2006-10-04 13:17:04 +04:00
|
|
|
#endif
|