tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
#ifndef _LINUX_TRACE_SEQ_H
|
|
|
|
#define _LINUX_TRACE_SEQ_H
|
|
|
|
|
2014-06-25 23:54:42 +04:00
|
|
|
#include <linux/seq_buf.h>
|
2009-04-10 22:53:50 +04:00
|
|
|
|
2009-06-14 10:52:30 +04:00
|
|
|
#include <asm/page.h>
|
|
|
|
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
/*
|
|
|
|
* Trace sequences are used to allow a function to call several other functions
|
2009-10-24 03:36:19 +04:00
|
|
|
* to create a string of data to use (up to a max of PAGE_SIZE).
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
*/
|
|
|
|
|
|
|
|
struct trace_seq {
|
|
|
|
unsigned char buffer[PAGE_SIZE];
|
2014-06-25 23:54:42 +04:00
|
|
|
struct seq_buf seq;
|
2009-11-25 18:10:14 +03:00
|
|
|
int full;
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
trace_seq_init(struct trace_seq *s)
|
|
|
|
{
|
2014-06-25 23:54:42 +04:00
|
|
|
seq_buf_init(&s->seq, s->buffer, PAGE_SIZE);
|
2009-11-25 18:10:14 +03:00
|
|
|
s->full = 0;
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
}
|
|
|
|
|
2014-11-14 23:49:41 +03:00
|
|
|
/**
|
|
|
|
* trace_seq_used - amount of actual data written to buffer
|
|
|
|
* @s: trace sequence descriptor
|
|
|
|
*
|
|
|
|
* Returns the amount of data written to the buffer.
|
|
|
|
*
|
|
|
|
* IMPORTANT!
|
|
|
|
*
|
|
|
|
* Use this instead of @s->seq.len if you need to pass the amount
|
|
|
|
* of data from the buffer to another buffer (userspace, or what not).
|
|
|
|
* The @s->seq.len on overflow is bigger than the buffer size and
|
|
|
|
* using it can cause access to undefined memory.
|
|
|
|
*/
|
|
|
|
static inline int trace_seq_used(struct trace_seq *s)
|
|
|
|
{
|
|
|
|
return seq_buf_used(&s->seq);
|
|
|
|
}
|
|
|
|
|
2014-06-26 17:42:41 +04:00
|
|
|
/**
|
|
|
|
* trace_seq_buffer_ptr - return pointer to next location in buffer
|
|
|
|
* @s: trace sequence descriptor
|
|
|
|
*
|
|
|
|
* Returns the pointer to the buffer where the next write to
|
|
|
|
* the buffer will happen. This is useful to save the location
|
|
|
|
* that is about to be written to and then return the result
|
|
|
|
* of that write.
|
|
|
|
*/
|
|
|
|
static inline unsigned char *
|
|
|
|
trace_seq_buffer_ptr(struct trace_seq *s)
|
|
|
|
{
|
2014-11-14 23:49:41 +03:00
|
|
|
return s->buffer + seq_buf_used(&s->seq);
|
2014-06-26 17:42:41 +04:00
|
|
|
}
|
|
|
|
|
2014-11-12 18:29:54 +03:00
|
|
|
/**
|
|
|
|
* trace_seq_has_overflowed - return true if the trace_seq took too much
|
|
|
|
* @s: trace sequence descriptor
|
|
|
|
*
|
|
|
|
* Returns true if too much data was added to the trace_seq and it is
|
|
|
|
* now full and will not take anymore.
|
|
|
|
*/
|
|
|
|
static inline bool trace_seq_has_overflowed(struct trace_seq *s)
|
|
|
|
{
|
2014-06-25 23:54:42 +04:00
|
|
|
return s->full || seq_buf_has_overflowed(&s->seq);
|
2014-11-12 18:29:54 +03:00
|
|
|
}
|
|
|
|
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
/*
|
|
|
|
* Currently only defined when tracing is enabled.
|
|
|
|
*/
|
|
|
|
#ifdef CONFIG_TRACING
|
2011-11-01 04:11:33 +04:00
|
|
|
extern __printf(2, 3)
|
2014-11-13 02:07:22 +03:00
|
|
|
void trace_seq_printf(struct trace_seq *s, const char *fmt, ...);
|
2011-11-01 04:11:33 +04:00
|
|
|
extern __printf(2, 0)
|
2014-11-13 02:07:22 +03:00
|
|
|
void trace_seq_vprintf(struct trace_seq *s, const char *fmt, va_list args);
|
|
|
|
extern void
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
trace_seq_bprintf(struct trace_seq *s, const char *fmt, const u32 *binary);
|
2009-12-07 17:11:39 +03:00
|
|
|
extern int trace_print_seq(struct seq_file *m, struct trace_seq *s);
|
2014-06-21 01:38:01 +04:00
|
|
|
extern int trace_seq_to_user(struct trace_seq *s, char __user *ubuf,
|
|
|
|
int cnt);
|
2014-11-13 02:07:22 +03:00
|
|
|
extern void trace_seq_puts(struct trace_seq *s, const char *str);
|
|
|
|
extern void trace_seq_putc(struct trace_seq *s, unsigned char c);
|
|
|
|
extern void trace_seq_putmem(struct trace_seq *s, const void *mem, unsigned int len);
|
|
|
|
extern void trace_seq_putmem_hex(struct trace_seq *s, const void *mem,
|
2014-06-21 01:38:01 +04:00
|
|
|
unsigned int len);
|
2012-03-15 05:51:10 +04:00
|
|
|
extern int trace_seq_path(struct trace_seq *s, const struct path *path);
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
|
2014-11-13 02:07:22 +03:00
|
|
|
extern void trace_seq_bitmask(struct trace_seq *s, const unsigned long *maskp,
|
tracing: Add __bitmask() macro to trace events to cpumasks and other bitmasks
Being able to show a cpumask of events can be useful as some events
may affect only some CPUs. There is no standard way to record the
cpumask and converting it to a string is rather expensive during
the trace as traces happen in hotpaths. It would be better to record
the raw event mask and be able to parse it at print time.
The following macros were added for use with the TRACE_EVENT() macro:
__bitmask()
__assign_bitmask()
__get_bitmask()
To test this, I added this to the sched_migrate_task event, which
looked like this:
TRACE_EVENT(sched_migrate_task,
TP_PROTO(struct task_struct *p, int dest_cpu, const struct cpumask *cpus),
TP_ARGS(p, dest_cpu, cpus),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, orig_cpu )
__field( int, dest_cpu )
__bitmask( cpumask, num_possible_cpus() )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->orig_cpu = task_cpu(p);
__entry->dest_cpu = dest_cpu;
__assign_bitmask(cpumask, cpumask_bits(cpus), num_possible_cpus());
),
TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d cpumask=%s",
__entry->comm, __entry->pid, __entry->prio,
__entry->orig_cpu, __entry->dest_cpu,
__get_bitmask(cpumask))
);
With the output of:
ksmtuned-3613 [003] d..2 485.220508: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=3 dest_cpu=2 cpumask=00000000,0000000f
migration/1-13 [001] d..5 485.221202: sched_migrate_task: comm=ksmtuned pid=3614 prio=120 orig_cpu=1 dest_cpu=0 cpumask=00000000,0000000f
awk-3615 [002] d.H5 485.221747: sched_migrate_task: comm=rcu_preempt pid=7 prio=120 orig_cpu=0 dest_cpu=1 cpumask=00000000,000000ff
migration/2-18 [002] d..5 485.222062: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=2 dest_cpu=3 cpumask=00000000,0000000f
Link: http://lkml.kernel.org/r/1399377998-14870-6-git-send-email-javi.merino@arm.com
Link: http://lkml.kernel.org/r/20140506132238.22e136d1@gandalf.local.home
Suggested-by: Javi Merino <javi.merino@arm.com>
Tested-by: Javi Merino <javi.merino@arm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-06 21:10:24 +04:00
|
|
|
int nmaskbits);
|
|
|
|
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
#else /* CONFIG_TRACING */
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void trace_seq_printf(struct trace_seq *s, const char *fmt, ...)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
}
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
trace_seq_bprintf(struct trace_seq *s, const char *fmt, const u32 *binary)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void
|
tracing: Add __bitmask() macro to trace events to cpumasks and other bitmasks
Being able to show a cpumask of events can be useful as some events
may affect only some CPUs. There is no standard way to record the
cpumask and converting it to a string is rather expensive during
the trace as traces happen in hotpaths. It would be better to record
the raw event mask and be able to parse it at print time.
The following macros were added for use with the TRACE_EVENT() macro:
__bitmask()
__assign_bitmask()
__get_bitmask()
To test this, I added this to the sched_migrate_task event, which
looked like this:
TRACE_EVENT(sched_migrate_task,
TP_PROTO(struct task_struct *p, int dest_cpu, const struct cpumask *cpus),
TP_ARGS(p, dest_cpu, cpus),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
__field( pid_t, pid )
__field( int, prio )
__field( int, orig_cpu )
__field( int, dest_cpu )
__bitmask( cpumask, num_possible_cpus() )
),
TP_fast_assign(
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
__entry->orig_cpu = task_cpu(p);
__entry->dest_cpu = dest_cpu;
__assign_bitmask(cpumask, cpumask_bits(cpus), num_possible_cpus());
),
TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d cpumask=%s",
__entry->comm, __entry->pid, __entry->prio,
__entry->orig_cpu, __entry->dest_cpu,
__get_bitmask(cpumask))
);
With the output of:
ksmtuned-3613 [003] d..2 485.220508: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=3 dest_cpu=2 cpumask=00000000,0000000f
migration/1-13 [001] d..5 485.221202: sched_migrate_task: comm=ksmtuned pid=3614 prio=120 orig_cpu=1 dest_cpu=0 cpumask=00000000,0000000f
awk-3615 [002] d.H5 485.221747: sched_migrate_task: comm=rcu_preempt pid=7 prio=120 orig_cpu=0 dest_cpu=1 cpumask=00000000,000000ff
migration/2-18 [002] d..5 485.222062: sched_migrate_task: comm=ksmtuned pid=3615 prio=120 orig_cpu=2 dest_cpu=3 cpumask=00000000,0000000f
Link: http://lkml.kernel.org/r/1399377998-14870-6-git-send-email-javi.merino@arm.com
Link: http://lkml.kernel.org/r/20140506132238.22e136d1@gandalf.local.home
Suggested-by: Javi Merino <javi.merino@arm.com>
Tested-by: Javi Merino <javi.merino@arm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2014-05-06 21:10:24 +04:00
|
|
|
trace_seq_bitmask(struct trace_seq *s, const unsigned long *maskp,
|
|
|
|
int nmaskbits)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
2009-12-07 17:11:39 +03:00
|
|
|
static inline int trace_print_seq(struct seq_file *m, struct trace_seq *s)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
2009-12-07 17:11:39 +03:00
|
|
|
return 0;
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
}
|
2014-06-21 01:38:01 +04:00
|
|
|
static inline int trace_seq_to_user(struct trace_seq *s, char __user *ubuf,
|
|
|
|
int cnt)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void trace_seq_puts(struct trace_seq *s, const char *str)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
}
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void trace_seq_putc(struct trace_seq *s, unsigned char c)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
}
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void
|
2014-06-21 01:38:01 +04:00
|
|
|
trace_seq_putmem(struct trace_seq *s, const void *mem, unsigned int len)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
}
|
2014-11-13 02:07:22 +03:00
|
|
|
static inline void trace_seq_putmem_hex(struct trace_seq *s, const void *mem,
|
2014-06-21 01:38:01 +04:00
|
|
|
unsigned int len)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
}
|
2012-03-15 05:51:10 +04:00
|
|
|
static inline int trace_seq_path(struct trace_seq *s, const struct path *path)
|
tracing: make trace_seq operations available for core kernel
In the process to make TRACE_EVENT macro work for modules, the trace_seq
operations must be available for core kernel code.
These operations are quite useful and can be used for other implementations.
The main idea is that we create a trace_seq handle that acts very much
like the seq_file handle.
struct trace_seq *s = kmalloc(sizeof(*s, GFP_KERNEL);
trace_seq_init(s);
trace_seq_printf(s, "some data %d\n", variable);
printk("%s", s->buffer);
The main use is to allow a top level function call several other functions
that may store printf like data into the buffer. Then at the end, the top
level function can process all the data with any method it would like to.
It could be passed to userspace, output via printk or even use seq_file:
trace_seq_to_user(s, ubuf, cnt);
seq_puts(m, s->buffer);
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2009-04-11 20:59:57 +04:00
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_TRACING */
|
|
|
|
|
|
|
|
#endif /* _LINUX_TRACE_SEQ_H */
|