WSL2-Linux-Kernel/include/net/request_sock.h

293 строки
8.2 KiB
C
Исходник Обычный вид История

/*
* NET Generic infrastructure for Network protocols.
*
* Definitions for request_sock
*
* Authors: Arnaldo Carvalho de Melo <acme@conectiva.com.br>
*
* From code originally in include/net/tcp.h
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _REQUEST_SOCK_H
#define _REQUEST_SOCK_H
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <net/sock.h>
struct request_sock;
struct sk_buff;
struct dst_entry;
struct proto;
struct request_sock_ops {
int family;
int obj_size;
struct kmem_cache *slab;
char *slab_name;
int (*rtx_syn_ack)(const struct sock *sk,
struct request_sock *req);
void (*send_ack)(const struct sock *sk, struct sk_buff *skb,
struct request_sock *req);
void (*send_reset)(const struct sock *sk,
struct sk_buff *skb);
void (*destructor)(struct request_sock *req);
void (*syn_ack_timeout)(const struct request_sock *req);
};
int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req);
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 03:16:46 +04:00
/* struct request_sock - mini sock to represent a connection request
*/
struct request_sock {
struct sock_common __req_common;
#define rsk_refcnt __req_common.skc_refcnt
#define rsk_hash __req_common.skc_hash
struct request_sock *dl_next;
struct sock *rsk_listener;
u16 mss;
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 03:16:46 +04:00
u8 num_retrans; /* number of retransmits */
u8 cookie_ts:1; /* syncookie: encode tcpopts in timestamp */
u8 num_timeout:7; /* number of timeouts */
/* The following two fields can be easily recomputed I think -AK */
u32 window_clamp; /* window clamp at creation time */
u32 rcv_wnd; /* rcv_wnd offered first time */
u32 ts_recent;
struct timer_list rsk_timer;
const struct request_sock_ops *rsk_ops;
struct sock *sk;
u32 *saved_syn;
u32 secid;
u32 peer_secid;
};
static inline struct request_sock *
reqsk_alloc(const struct request_sock_ops *ops, struct sock *sk_listener)
{
struct request_sock *req = kmem_cache_alloc(ops->slab, GFP_ATOMIC);
if (req) {
req->rsk_ops = ops;
sock_hold(sk_listener);
req->rsk_listener = sk_listener;
req->saved_syn = NULL;
/* Following is temporary. It is coupled with debugging
* helpers in reqsk_put() & reqsk_free()
*/
atomic_set(&req->rsk_refcnt, 0);
}
return req;
}
static inline struct request_sock *inet_reqsk(struct sock *sk)
{
return (struct request_sock *)sk;
}
static inline struct sock *req_to_sk(struct request_sock *req)
{
return (struct sock *)req;
}
static inline void reqsk_free(struct request_sock *req)
{
/* temporary debugging */
WARN_ON_ONCE(atomic_read(&req->rsk_refcnt) != 0);
req->rsk_ops->destructor(req);
if (req->rsk_listener)
sock_put(req->rsk_listener);
kfree(req->saved_syn);
kmem_cache_free(req->rsk_ops->slab, req);
}
static inline void reqsk_put(struct request_sock *req)
{
if (atomic_dec_and_test(&req->rsk_refcnt))
reqsk_free(req);
}
extern int sysctl_max_syn_backlog;
/** struct listen_sock - listen state
*
* @max_qlen_log - log_2 of maximal queued SYNs/REQUESTs
*/
struct listen_sock {
int qlen_inc; /* protected by listener lock */
int young_inc;/* protected by listener lock */
/* following fields can be updated by timer */
atomic_t qlen_dec; /* qlen = qlen_inc - qlen_dec */
atomic_t young_dec;
u32 max_qlen_log ____cacheline_aligned_in_smp;
u32 synflood_warned;
u32 hash_rnd;
u32 nr_table_entries;
struct request_sock *syn_table[0];
};
/*
* For a TCP Fast Open listener -
* lock - protects the access to all the reqsk, which is co-owned by
* the listener and the child socket.
* qlen - pending TFO requests (still in TCP_SYN_RECV).
* max_qlen - max TFO reqs allowed before TFO is disabled.
*
* XXX (TFO) - ideally these fields can be made as part of "listen_sock"
* structure above. But there is some implementation difficulty due to
* listen_sock being part of request_sock_queue hence will be freed when
* a listener is stopped. But TFO related fields may continue to be
* accessed even after a listener is closed, until its sk_refcnt drops
* to 0 implying no more outstanding TFO reqs. One solution is to keep
* listen_opt around until sk_refcnt drops to 0. But there is some other
* complexity that needs to be resolved. E.g., a listener can be disabled
* temporarily through shutdown()->tcp_disconnect(), and re-enabled later.
*/
struct fastopen_queue {
struct request_sock *rskq_rst_head; /* Keep track of past TFO */
struct request_sock *rskq_rst_tail; /* requests that caused RST.
* This is part of the defense
* against spoofing attack.
*/
spinlock_t lock;
int qlen; /* # of pending (TCP_SYN_RECV) reqs */
int max_qlen; /* != 0 iff TFO is currently enabled */
};
/** struct request_sock_queue - queue of request_socks
*
* @rskq_accept_head - FIFO head of established children
* @rskq_accept_tail - FIFO tail of established children
* @rskq_defer_accept - User waits for some data after accept()
* @syn_wait_lock - serializer
*
* %syn_wait_lock is necessary only to avoid proc interface having to grab the main
* lock sock while browsing the listening hash (otherwise it's deadlock prone).
*
*/
struct request_sock_queue {
struct request_sock *rskq_accept_head;
struct request_sock *rskq_accept_tail;
tcp: Revert 'process defer accept as established' changes. This reverts two changesets, ec3c0982a2dd1e671bad8e9d26c28dcba0039d87 ("[TCP]: TCP_DEFER_ACCEPT updates - process as established") and the follow-on bug fix 9ae27e0adbf471c7a6b80102e38e1d5a346b3b38 ("tcp: Fix slab corruption with ipv6 and tcp6fuzz"). This change causes several problems, first reported by Ingo Molnar as a distcc-over-loopback regression where connections were getting stuck. Ilpo Järvinen first spotted the locking problems. The new function added by this code, tcp_defer_accept_check(), only has the child socket locked, yet it is modifying state of the parent listening socket. Fixing that is non-trivial at best, because we can't simply just grab the parent listening socket lock at this point, because it would create an ABBA deadlock. The normal ordering is parent listening socket --> child socket, but this code path would require the reverse lock ordering. Next is a problem noticed by Vitaliy Gusev, he noted: ---------------------------------------- >--- a/net/ipv4/tcp_timer.c >+++ b/net/ipv4/tcp_timer.c >@@ -481,6 +481,11 @@ static void tcp_keepalive_timer (unsigned long data) > goto death; > } > >+ if (tp->defer_tcp_accept.request && sk->sk_state == TCP_ESTABLISHED) { >+ tcp_send_active_reset(sk, GFP_ATOMIC); >+ goto death; Here socket sk is not attached to listening socket's request queue. tcp_done() will not call inet_csk_destroy_sock() (and tcp_v4_destroy_sock() which should release this sk) as socket is not DEAD. Therefore socket sk will be lost for freeing. ---------------------------------------- Finally, Alexey Kuznetsov argues that there might not even be any real value or advantage to these new semantics even if we fix all of the bugs: ---------------------------------------- Hiding from accept() sockets with only out-of-order data only is the only thing which is impossible with old approach. Is this really so valuable? My opinion: no, this is nothing but a new loophole to consume memory without control. ---------------------------------------- So revert this thing for now. Signed-off-by: David S. Miller <davem@davemloft.net>
2008-06-13 03:31:35 +04:00
u8 rskq_defer_accept;
struct listen_sock *listen_opt;
struct fastopen_queue fastopenq; /* Check max_qlen != 0 to determine
* if TFO is enabled.
*/
/* temporary alignment, our goal is to get rid of this lock */
spinlock_t syn_wait_lock ____cacheline_aligned_in_smp;
};
int reqsk_queue_alloc(struct request_sock_queue *queue,
unsigned int nr_table_entries);
void __reqsk_queue_destroy(struct request_sock_queue *queue);
void reqsk_queue_destroy(struct request_sock_queue *queue);
void reqsk_fastopen_remove(struct sock *sk, struct request_sock *req,
bool reset);
static inline struct request_sock *
reqsk_queue_yank_acceptq(struct request_sock_queue *queue)
{
struct request_sock *req = queue->rskq_accept_head;
queue->rskq_accept_head = NULL;
return req;
}
static inline int reqsk_queue_empty(struct request_sock_queue *queue)
{
return queue->rskq_accept_head == NULL;
}
static inline void reqsk_queue_add(struct request_sock_queue *queue,
struct request_sock *req,
struct sock *parent,
struct sock *child)
{
req->sk = child;
sk_acceptq_added(parent);
if (queue->rskq_accept_head == NULL)
queue->rskq_accept_head = req;
else
queue->rskq_accept_tail->dl_next = req;
queue->rskq_accept_tail = req;
req->dl_next = NULL;
}
static inline struct request_sock *reqsk_queue_remove(struct request_sock_queue *queue)
{
struct request_sock *req = queue->rskq_accept_head;
WARN_ON(req == NULL);
queue->rskq_accept_head = req->dl_next;
if (queue->rskq_accept_head == NULL)
queue->rskq_accept_tail = NULL;
return req;
}
static inline void reqsk_queue_removed(struct request_sock_queue *queue,
const struct request_sock *req)
{
struct listen_sock *lopt = queue->listen_opt;
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 03:16:46 +04:00
if (req->num_timeout == 0)
atomic_inc(&lopt->young_dec);
atomic_inc(&lopt->qlen_dec);
}
static inline void reqsk_queue_added(struct request_sock_queue *queue)
{
struct listen_sock *lopt = queue->listen_opt;
lopt->young_inc++;
lopt->qlen_inc++;
}
static inline int listen_sock_qlen(const struct listen_sock *lopt)
{
return lopt->qlen_inc - atomic_read(&lopt->qlen_dec);
}
static inline int listen_sock_young(const struct listen_sock *lopt)
{
return lopt->young_inc - atomic_read(&lopt->young_dec);
}
static inline int reqsk_queue_len(const struct request_sock_queue *queue)
{
const struct listen_sock *lopt = queue->listen_opt;
return lopt ? listen_sock_qlen(lopt) : 0;
}
static inline int reqsk_queue_len_young(const struct request_sock_queue *queue)
{
return listen_sock_young(queue->listen_opt);
}
static inline int reqsk_queue_is_full(const struct request_sock_queue *queue)
{
return reqsk_queue_len(queue) >> queue->listen_opt->max_qlen_log;
}
void reqsk_queue_hash_req(struct request_sock_queue *queue,
u32 hash, struct request_sock *req,
unsigned long timeout);
#endif /* _REQUEST_SOCK_H */