2019-06-04 11:11:32 +03:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
/*
|
|
|
|
* linux/mm/mmu_notifier.c
|
|
|
|
*
|
|
|
|
* Copyright (C) 2008 Qumranet, Inc.
|
|
|
|
* Copyright (C) 2008 SGI
|
2016-03-18 00:21:15 +03:00
|
|
|
* Christoph Lameter <cl@linux.com>
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/rculist.h>
|
|
|
|
#include <linux/mmu_notifier.h>
|
2011-10-16 10:01:52 +04:00
|
|
|
#include <linux/export.h>
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
#include <linux/mm.h>
|
|
|
|
#include <linux/err.h>
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
#include <linux/interval_tree.h>
|
2012-10-09 03:29:24 +04:00
|
|
|
#include <linux/srcu.h>
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
#include <linux/rcupdate.h>
|
|
|
|
#include <linux/sched.h>
|
2017-02-08 20:51:29 +03:00
|
|
|
#include <linux/sched/mm.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
|
|
|
#include <linux/slab.h>
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2012-10-09 03:29:24 +04:00
|
|
|
/* global SRCU for all MMs */
|
2017-03-25 20:42:07 +03:00
|
|
|
DEFINE_STATIC_SRCU(srcu);
|
2012-10-09 03:29:24 +04:00
|
|
|
|
2019-08-26 23:14:21 +03:00
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
|
|
struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
|
|
|
|
.name = "mmu_notifier_invalidate_range_start"
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
2019-11-12 23:22:18 +03:00
|
|
|
/*
|
2019-12-18 20:40:35 +03:00
|
|
|
* The mmu_notifier_subscriptions structure is allocated and installed in
|
|
|
|
* mm->notifier_subscriptions inside the mm_take_all_locks() protected
|
2019-11-12 23:22:18 +03:00
|
|
|
* critical section and it's released only when mm_count reaches zero
|
|
|
|
* in mmdrop().
|
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions {
|
2019-11-12 23:22:18 +03:00
|
|
|
/* all mmu notifiers registered in this mm are queued in this list */
|
|
|
|
struct hlist_head list;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
bool has_itree;
|
2019-11-12 23:22:18 +03:00
|
|
|
/* to serialize the list modifications and hlist_unhashed */
|
|
|
|
spinlock_t lock;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long invalidate_seq;
|
|
|
|
unsigned long active_invalidate_ranges;
|
|
|
|
struct rb_root_cached itree;
|
|
|
|
wait_queue_head_t wq;
|
|
|
|
struct hlist_head deferred_list;
|
2019-11-12 23:22:18 +03:00
|
|
|
};
|
|
|
|
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
/*
|
|
|
|
* This is a collision-retry read-side/write-side 'lock', a lot like a
|
|
|
|
* seqcount, however this allows multiple write-sides to hold it at
|
|
|
|
* once. Conceptually the write side is protecting the values of the PTEs in
|
|
|
|
* this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
|
|
|
|
* writer exists.
|
|
|
|
*
|
|
|
|
* Note that the core mm creates nested invalidate_range_start()/end() regions
|
|
|
|
* within the same thread, and runs invalidate_range_start()/end() in parallel
|
|
|
|
* on multiple CPUs. This is designed to not reduce concurrency or block
|
|
|
|
* progress on the mm side.
|
|
|
|
*
|
|
|
|
* As a secondary function, holding the full write side also serves to prevent
|
|
|
|
* writers for the itree, this is an optimization to avoid extra locking
|
|
|
|
* during invalidate_range_start/end notifiers.
|
|
|
|
*
|
|
|
|
* The write side has two states, fully excluded:
|
|
|
|
* - mm->active_invalidate_ranges != 0
|
2019-12-18 20:40:35 +03:00
|
|
|
* - subscriptions->invalidate_seq & 1 == True (odd)
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* - some range on the mm_struct is being invalidated
|
|
|
|
* - the itree is not allowed to change
|
|
|
|
*
|
|
|
|
* And partially excluded:
|
|
|
|
* - mm->active_invalidate_ranges != 0
|
2019-12-18 20:40:35 +03:00
|
|
|
* - subscriptions->invalidate_seq & 1 == False (even)
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* - some range on the mm_struct is being invalidated
|
|
|
|
* - the itree is allowed to change
|
|
|
|
*
|
2019-12-18 20:40:35 +03:00
|
|
|
* Operations on notifier_subscriptions->invalidate_seq (under spinlock):
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* seq |= 1 # Begin writing
|
|
|
|
* seq++ # Release the writing state
|
|
|
|
* seq & 1 # True if a writer exists
|
|
|
|
*
|
|
|
|
* The later state avoids some expensive work on inv_end in the common case of
|
2020-01-14 18:29:52 +03:00
|
|
|
* no mmu_interval_notifier monitoring the VA.
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
static bool
|
|
|
|
mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
lockdep_assert_held(&subscriptions->lock);
|
|
|
|
return subscriptions->invalidate_seq & 1;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct mmu_interval_notifier *
|
2019-12-18 20:40:35 +03:00
|
|
|
mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
const struct mmu_notifier_range *range,
|
|
|
|
unsigned long *seq)
|
|
|
|
{
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
struct mmu_interval_notifier *res = NULL;
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&subscriptions->lock);
|
|
|
|
subscriptions->active_invalidate_ranges++;
|
|
|
|
node = interval_tree_iter_first(&subscriptions->itree, range->start,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
range->end - 1);
|
|
|
|
if (node) {
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions->invalidate_seq |= 1;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
res = container_of(node, struct mmu_interval_notifier,
|
|
|
|
interval_tree);
|
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
*seq = subscriptions->invalidate_seq;
|
|
|
|
spin_unlock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct mmu_interval_notifier *
|
2020-01-14 18:29:52 +03:00
|
|
|
mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
const struct mmu_notifier_range *range)
|
|
|
|
{
|
|
|
|
struct interval_tree_node *node;
|
|
|
|
|
2020-01-14 18:29:52 +03:00
|
|
|
node = interval_tree_iter_next(&interval_sub->interval_tree,
|
|
|
|
range->start, range->end - 1);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
if (!node)
|
|
|
|
return NULL;
|
|
|
|
return container_of(node, struct mmu_interval_notifier, interval_tree);
|
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
{
|
2020-01-14 18:29:52 +03:00
|
|
|
struct mmu_interval_notifier *interval_sub;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
struct hlist_node *next;
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&subscriptions->lock);
|
|
|
|
if (--subscriptions->active_invalidate_ranges ||
|
|
|
|
!mn_itree_is_invalidating(subscriptions)) {
|
|
|
|
spin_unlock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Make invalidate_seq even */
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions->invalidate_seq++;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The inv_end incorporates a deferred mechanism like rtnl_unlock().
|
|
|
|
* Adds and removes are queued until the final inv_end happens then
|
|
|
|
* they are progressed. This arrangement for tree updates is used to
|
|
|
|
* avoid using a blocking lock during invalidate_range_start.
|
|
|
|
*/
|
2020-01-14 18:29:52 +03:00
|
|
|
hlist_for_each_entry_safe(interval_sub, next,
|
|
|
|
&subscriptions->deferred_list,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
deferred_item) {
|
2020-01-14 18:29:52 +03:00
|
|
|
if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
|
|
|
|
interval_tree_insert(&interval_sub->interval_tree,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->itree);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
else
|
2020-01-14 18:29:52 +03:00
|
|
|
interval_tree_remove(&interval_sub->interval_tree,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->itree);
|
2020-01-14 18:29:52 +03:00
|
|
|
hlist_del(&interval_sub->deferred_item);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
wake_up_all(&subscriptions->wq);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mmu_interval_read_begin - Begin a read side critical section against a VA
|
|
|
|
* range
|
2020-08-12 04:32:09 +03:00
|
|
|
* @interval_sub: The interval subscription
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
|
|
|
* mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
|
2020-01-14 18:29:52 +03:00
|
|
|
* collision-retry scheme similar to seqcount for the VA range under
|
|
|
|
* subscription. If the mm invokes invalidation during the critical section
|
|
|
|
* then mmu_interval_read_retry() will return true.
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
|
|
|
* This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
|
|
|
|
* require a blocking context. The critical region formed by this can sleep,
|
|
|
|
* and the required 'user_lock' can also be a sleeping lock.
|
|
|
|
*
|
|
|
|
* The caller is required to provide a 'user_lock' to serialize both teardown
|
|
|
|
* and setup.
|
|
|
|
*
|
|
|
|
* The return value should be passed to mmu_interval_read_retry().
|
|
|
|
*/
|
2020-01-14 18:29:52 +03:00
|
|
|
unsigned long
|
|
|
|
mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions =
|
2020-01-14 18:29:52 +03:00
|
|
|
interval_sub->mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long seq;
|
|
|
|
bool is_invalidating;
|
|
|
|
|
|
|
|
/*
|
2020-01-14 18:29:52 +03:00
|
|
|
* If the subscription has a different seq value under the user_lock
|
|
|
|
* than we started with then it has collided.
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
2020-01-14 18:29:52 +03:00
|
|
|
* If the subscription currently has the same seq value as the
|
|
|
|
* subscriptions seq, then it is currently between
|
|
|
|
* invalidate_start/end and is colliding.
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
|
|
|
* The locking looks broadly like this:
|
|
|
|
* mn_tree_invalidate_start(): mmu_interval_read_begin():
|
|
|
|
* spin_lock
|
2020-01-14 18:29:52 +03:00
|
|
|
* seq = READ_ONCE(interval_sub->invalidate_seq);
|
2019-12-18 20:40:35 +03:00
|
|
|
* seq == subs->invalidate_seq
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* spin_unlock
|
|
|
|
* spin_lock
|
2019-12-18 20:40:35 +03:00
|
|
|
* seq = ++subscriptions->invalidate_seq
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* spin_unlock
|
|
|
|
* op->invalidate_range():
|
|
|
|
* user_lock
|
|
|
|
* mmu_interval_set_seq()
|
2020-01-14 18:29:52 +03:00
|
|
|
* interval_sub->invalidate_seq = seq
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* user_unlock
|
|
|
|
*
|
|
|
|
* [Required: mmu_interval_read_retry() == true]
|
|
|
|
*
|
|
|
|
* mn_itree_inv_end():
|
|
|
|
* spin_lock
|
2019-12-18 20:40:35 +03:00
|
|
|
* seq = ++subscriptions->invalidate_seq
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* spin_unlock
|
|
|
|
*
|
|
|
|
* user_lock
|
|
|
|
* mmu_interval_read_retry():
|
2020-01-14 18:29:52 +03:00
|
|
|
* interval_sub->invalidate_seq != seq
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* user_unlock
|
|
|
|
*
|
|
|
|
* Barriers are not needed here as any races here are closed by an
|
|
|
|
* eventual mmu_interval_read_retry(), which provides a barrier via the
|
|
|
|
* user_lock.
|
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
/* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
|
2020-01-14 18:29:52 +03:00
|
|
|
seq = READ_ONCE(interval_sub->invalidate_seq);
|
2019-12-18 20:40:35 +03:00
|
|
|
is_invalidating = seq == subscriptions->invalidate_seq;
|
|
|
|
spin_unlock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
|
|
|
/*
|
2020-01-14 18:29:52 +03:00
|
|
|
* interval_sub->invalidate_seq must always be set to an odd value via
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* mmu_interval_set_seq() using the provided cur_seq from
|
|
|
|
* mn_itree_inv_start_range(). This ensures that if seq does wrap we
|
|
|
|
* will always clear the below sleep in some reasonable time as
|
2019-12-18 20:40:35 +03:00
|
|
|
* subscriptions->invalidate_seq is even in the idle state.
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*/
|
|
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
if (is_invalidating)
|
2019-12-18 20:40:35 +03:00
|
|
|
wait_event(subscriptions->wq,
|
|
|
|
READ_ONCE(subscriptions->invalidate_seq) != seq);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Notice that mmu_interval_read_retry() can already be true at this
|
|
|
|
* point, avoiding loops here allows the caller to provide a global
|
|
|
|
* time bound.
|
|
|
|
*/
|
|
|
|
|
|
|
|
return seq;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
struct mmu_notifier_range range = {
|
|
|
|
.flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
|
|
|
|
.event = MMU_NOTIFY_RELEASE,
|
|
|
|
.mm = mm,
|
|
|
|
.start = 0,
|
|
|
|
.end = ULONG_MAX,
|
|
|
|
};
|
2020-01-14 18:29:52 +03:00
|
|
|
struct mmu_interval_notifier *interval_sub;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long cur_seq;
|
|
|
|
bool ret;
|
|
|
|
|
2020-01-14 18:29:52 +03:00
|
|
|
for (interval_sub =
|
|
|
|
mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
|
|
|
|
interval_sub;
|
|
|
|
interval_sub = mn_itree_inv_next(interval_sub, &range)) {
|
|
|
|
ret = interval_sub->ops->invalidate(interval_sub, &range,
|
|
|
|
cur_seq);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
WARN_ON(!ret);
|
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
mn_itree_inv_end(subscriptions);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
/*
|
|
|
|
* This function can't run concurrently against mmu_notifier_register
|
|
|
|
* because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
|
|
|
|
* runs with mm_users == 0. Other tasks may still invoke mmu notifiers
|
|
|
|
* in parallel despite there being no task using this mm any more,
|
|
|
|
* through the vmas outside of the exit_mmap context, such as with
|
|
|
|
* vmtruncate. This serializes against mmu_notifier_unregister with
|
2019-12-18 20:40:35 +03:00
|
|
|
* the notifier_subscriptions->lock in addition to SRCU and it serializes
|
|
|
|
* against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
* can't go away from under us as exit_mmap holds an mm_count pin
|
|
|
|
* itself.
|
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
struct mm_struct *mm)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2012-10-09 03:29:24 +04:00
|
|
|
int id;
|
2012-08-01 03:45:52 +04:00
|
|
|
|
|
|
|
/*
|
2013-05-25 02:55:11 +04:00
|
|
|
* SRCU here will block mmu_notifier_unregister until
|
|
|
|
* ->release returns.
|
2012-08-01 03:45:52 +04:00
|
|
|
*/
|
2012-10-09 03:29:24 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
2020-03-22 04:22:34 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu))
|
2013-05-25 02:55:11 +04:00
|
|
|
/*
|
|
|
|
* If ->release runs before mmu_notifier_unregister it must be
|
|
|
|
* handled, as it's the only way for the driver to flush all
|
|
|
|
* existing sptes and stop the driver from establishing any more
|
|
|
|
* sptes before all the pages in the mm are freed.
|
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->release)
|
|
|
|
subscription->ops->release(subscription, mm);
|
2013-05-25 02:55:11 +04:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&subscriptions->lock);
|
|
|
|
while (unlikely(!hlist_empty(&subscriptions->list))) {
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription = hlist_entry(subscriptions->list.first,
|
|
|
|
struct mmu_notifier, hlist);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
/*
|
2013-05-25 02:55:11 +04:00
|
|
|
* We arrived before mmu_notifier_unregister so
|
|
|
|
* mmu_notifier_unregister will do nothing other than to wait
|
|
|
|
* for ->release to finish and for mmu_notifier_unregister to
|
|
|
|
* return.
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_del_init_rcu(&subscription->hlist);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&subscriptions->lock);
|
2014-08-07 03:08:20 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
|
|
|
/*
|
2013-05-25 02:55:11 +04:00
|
|
|
* synchronize_srcu here prevents mmu_notifier_release from returning to
|
|
|
|
* exit_mmap (which would proceed with freeing all pages in the mm)
|
|
|
|
* until the ->release method returns, if it was invoked by
|
|
|
|
* mmu_notifier_unregister.
|
|
|
|
*
|
2019-12-18 20:40:35 +03:00
|
|
|
* The notifier_subscriptions can't go away from under us because
|
|
|
|
* one mm_count is held by exit_mmap.
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
2012-10-09 03:29:24 +04:00
|
|
|
synchronize_srcu(&srcu);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
|
|
|
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
void __mmu_notifier_release(struct mm_struct *mm)
|
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions =
|
|
|
|
mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (subscriptions->has_itree)
|
|
|
|
mn_itree_release(subscriptions, mm);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (!hlist_empty(&subscriptions->list))
|
|
|
|
mn_hlist_release(subscriptions, mm);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
/*
|
|
|
|
* If no young bitflag is supported by the hardware, ->clear_flush_young can
|
|
|
|
* unmap the address and return 1 or 0 depending if the mapping previously
|
|
|
|
* existed or not.
|
|
|
|
*/
|
|
|
|
int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
|
2014-09-23 01:54:42 +04:00
|
|
|
unsigned long start,
|
|
|
|
unsigned long end)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2012-10-09 03:29:24 +04:00
|
|
|
int young = 0, id;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2012-10-09 03:29:24 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription,
|
2020-03-22 04:22:34 +03:00
|
|
|
&mm->notifier_subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->clear_flush_young)
|
|
|
|
young |= subscription->ops->clear_flush_young(
|
|
|
|
subscription, mm, start, end);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
2012-10-09 03:29:24 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
|
|
|
return young;
|
|
|
|
}
|
|
|
|
|
2015-09-10 01:35:41 +03:00
|
|
|
int __mmu_notifier_clear_young(struct mm_struct *mm,
|
|
|
|
unsigned long start,
|
|
|
|
unsigned long end)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2015-09-10 01:35:41 +03:00
|
|
|
int young = 0, id;
|
|
|
|
|
|
|
|
id = srcu_read_lock(&srcu);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription,
|
2020-03-22 04:22:34 +03:00
|
|
|
&mm->notifier_subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->clear_young)
|
|
|
|
young |= subscription->ops->clear_young(subscription,
|
|
|
|
mm, start, end);
|
2015-09-10 01:35:41 +03:00
|
|
|
}
|
|
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
|
|
|
|
return young;
|
|
|
|
}
|
|
|
|
|
2011-01-14 02:47:10 +03:00
|
|
|
int __mmu_notifier_test_young(struct mm_struct *mm,
|
|
|
|
unsigned long address)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2012-10-09 03:29:24 +04:00
|
|
|
int young = 0, id;
|
2011-01-14 02:47:10 +03:00
|
|
|
|
2012-10-09 03:29:24 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription,
|
2020-03-22 04:22:34 +03:00
|
|
|
&mm->notifier_subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->test_young) {
|
|
|
|
young = subscription->ops->test_young(subscription, mm,
|
|
|
|
address);
|
2011-01-14 02:47:10 +03:00
|
|
|
if (young)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2012-10-09 03:29:24 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
2011-01-14 02:47:10 +03:00
|
|
|
|
|
|
|
return young;
|
|
|
|
}
|
|
|
|
|
ksm: add mmu_notifier set_pte_at_notify()
KSM is a linux driver that allows dynamicly sharing identical memory pages
between one or more processes.
Unlike tradtional page sharing that is made at the allocation of the
memory, ksm do it dynamicly after the memory was created. Memory is
periodically scanned; identical pages are identified and merged.
The sharing is made in a transparent way to the processes that use it.
Ksm is highly important for hypervisors (kvm), where in production
enviorments there might be many copys of the same data data among the host
memory. This kind of data can be: similar kernels, librarys, cache, and
so on.
Even that ksm was wrote for kvm, any userspace application that want to
use it to share its data can try it.
Ksm may be useful for any application that might have similar (page
aligment) data strctures among the memory, ksm will find this data merge
it to one copy, and even if it will be changed and thereforew copy on
writed, ksm will merge it again as soon as it will be identical again.
Another reason to consider using ksm is the fact that it might simplify
alot the userspace code of application that want to use shared private
data, instead that the application will mange shared area, ksm will do
this for the application, and even write to this data will be allowed
without any synchinization acts from the application.
Ksm was designed to be a loadable module that doesn't change the VM code
of linux.
This patch:
The set_pte_at_notify() macro allows setting a pte in the shadow page
table directly, instead of flushing the shadow page table entry and then
getting vmexit to set it. It uses a new change_pte() callback to do so.
set_pte_at_notify() is an optimization for kvm, and other users of
mmu_notifiers, for COW pages. It is useful for kvm when ksm is used,
because it allows kvm not to have to receive vmexit and only then map the
ksm page into the shadow page table, but instead map it directly at the
same time as Linux maps the page into the host page table.
Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
callback will just receive the mmu_notifier_invalidate_page() callback.
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 04:01:51 +04:00
|
|
|
void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
|
|
|
|
pte_t pte)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2012-10-09 03:29:24 +04:00
|
|
|
int id;
|
ksm: add mmu_notifier set_pte_at_notify()
KSM is a linux driver that allows dynamicly sharing identical memory pages
between one or more processes.
Unlike tradtional page sharing that is made at the allocation of the
memory, ksm do it dynamicly after the memory was created. Memory is
periodically scanned; identical pages are identified and merged.
The sharing is made in a transparent way to the processes that use it.
Ksm is highly important for hypervisors (kvm), where in production
enviorments there might be many copys of the same data data among the host
memory. This kind of data can be: similar kernels, librarys, cache, and
so on.
Even that ksm was wrote for kvm, any userspace application that want to
use it to share its data can try it.
Ksm may be useful for any application that might have similar (page
aligment) data strctures among the memory, ksm will find this data merge
it to one copy, and even if it will be changed and thereforew copy on
writed, ksm will merge it again as soon as it will be identical again.
Another reason to consider using ksm is the fact that it might simplify
alot the userspace code of application that want to use shared private
data, instead that the application will mange shared area, ksm will do
this for the application, and even write to this data will be allowed
without any synchinization acts from the application.
Ksm was designed to be a loadable module that doesn't change the VM code
of linux.
This patch:
The set_pte_at_notify() macro allows setting a pte in the shadow page
table directly, instead of flushing the shadow page table entry and then
getting vmexit to set it. It uses a new change_pte() callback to do so.
set_pte_at_notify() is an optimization for kvm, and other users of
mmu_notifiers, for COW pages. It is useful for kvm when ksm is used,
because it allows kvm not to have to receive vmexit and only then map the
ksm page into the shadow page table, but instead map it directly at the
same time as Linux maps the page into the host page table.
Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
callback will just receive the mmu_notifier_invalidate_page() callback.
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 04:01:51 +04:00
|
|
|
|
2012-10-09 03:29:24 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription,
|
2020-03-22 04:22:34 +03:00
|
|
|
&mm->notifier_subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->change_pte)
|
|
|
|
subscription->ops->change_pte(subscription, mm, address,
|
|
|
|
pte);
|
ksm: add mmu_notifier set_pte_at_notify()
KSM is a linux driver that allows dynamicly sharing identical memory pages
between one or more processes.
Unlike tradtional page sharing that is made at the allocation of the
memory, ksm do it dynamicly after the memory was created. Memory is
periodically scanned; identical pages are identified and merged.
The sharing is made in a transparent way to the processes that use it.
Ksm is highly important for hypervisors (kvm), where in production
enviorments there might be many copys of the same data data among the host
memory. This kind of data can be: similar kernels, librarys, cache, and
so on.
Even that ksm was wrote for kvm, any userspace application that want to
use it to share its data can try it.
Ksm may be useful for any application that might have similar (page
aligment) data strctures among the memory, ksm will find this data merge
it to one copy, and even if it will be changed and thereforew copy on
writed, ksm will merge it again as soon as it will be identical again.
Another reason to consider using ksm is the fact that it might simplify
alot the userspace code of application that want to use shared private
data, instead that the application will mange shared area, ksm will do
this for the application, and even write to this data will be allowed
without any synchinization acts from the application.
Ksm was designed to be a loadable module that doesn't change the VM code
of linux.
This patch:
The set_pte_at_notify() macro allows setting a pte in the shadow page
table directly, instead of flushing the shadow page table entry and then
getting vmexit to set it. It uses a new change_pte() callback to do so.
set_pte_at_notify() is an optimization for kvm, and other users of
mmu_notifiers, for COW pages. It is useful for kvm when ksm is used,
because it allows kvm not to have to receive vmexit and only then map the
ksm page into the shadow page table, but instead map it directly at the
same time as Linux maps the page into the host page table.
Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
callback will just receive the mmu_notifier_invalidate_page() callback.
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 04:01:51 +04:00
|
|
|
}
|
2012-10-09 03:29:24 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
ksm: add mmu_notifier set_pte_at_notify()
KSM is a linux driver that allows dynamicly sharing identical memory pages
between one or more processes.
Unlike tradtional page sharing that is made at the allocation of the
memory, ksm do it dynamicly after the memory was created. Memory is
periodically scanned; identical pages are identified and merged.
The sharing is made in a transparent way to the processes that use it.
Ksm is highly important for hypervisors (kvm), where in production
enviorments there might be many copys of the same data data among the host
memory. This kind of data can be: similar kernels, librarys, cache, and
so on.
Even that ksm was wrote for kvm, any userspace application that want to
use it to share its data can try it.
Ksm may be useful for any application that might have similar (page
aligment) data strctures among the memory, ksm will find this data merge
it to one copy, and even if it will be changed and thereforew copy on
writed, ksm will merge it again as soon as it will be identical again.
Another reason to consider using ksm is the fact that it might simplify
alot the userspace code of application that want to use shared private
data, instead that the application will mange shared area, ksm will do
this for the application, and even write to this data will be allowed
without any synchinization acts from the application.
Ksm was designed to be a loadable module that doesn't change the VM code
of linux.
This patch:
The set_pte_at_notify() macro allows setting a pte in the shadow page
table directly, instead of flushing the shadow page table entry and then
getting vmexit to set it. It uses a new change_pte() callback to do so.
set_pte_at_notify() is an optimization for kvm, and other users of
mmu_notifiers, for COW pages. It is useful for kvm when ksm is used,
because it allows kvm not to have to receive vmexit and only then map the
ksm page into the shadow page table, but instead map it directly at the
same time as Linux maps the page into the host page table.
Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
callback will just receive the mmu_notifier_invalidate_page() callback.
Signed-off-by: Izik Eidus <ieidus@redhat.com>
Signed-off-by: Chris Wright <chrisw@redhat.com>
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Balbir Singh <balbir@in.ibm.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Avi Kivity <avi@redhat.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22 04:01:51 +04:00
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
const struct mmu_notifier_range *range)
|
|
|
|
{
|
2020-01-14 18:29:52 +03:00
|
|
|
struct mmu_interval_notifier *interval_sub;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long cur_seq;
|
|
|
|
|
2020-01-14 18:29:52 +03:00
|
|
|
for (interval_sub =
|
|
|
|
mn_itree_inv_start_range(subscriptions, range, &cur_seq);
|
|
|
|
interval_sub;
|
|
|
|
interval_sub = mn_itree_inv_next(interval_sub, range)) {
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
bool ret;
|
|
|
|
|
2020-01-14 18:29:52 +03:00
|
|
|
ret = interval_sub->ops->invalidate(interval_sub, range,
|
|
|
|
cur_seq);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
if (!ret) {
|
|
|
|
if (WARN_ON(mmu_notifier_range_blockable(range)))
|
|
|
|
continue;
|
|
|
|
goto out_would_block;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_would_block:
|
|
|
|
/*
|
|
|
|
* On -EAGAIN the non-blocking caller is not allowed to call
|
|
|
|
* invalidate_range_end()
|
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
mn_itree_inv_end(subscriptions);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return -EAGAIN;
|
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
static int mn_hlist_invalidate_range_start(
|
|
|
|
struct mmu_notifier_subscriptions *subscriptions,
|
|
|
|
struct mmu_notifier_range *range)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2018-08-22 07:52:33 +03:00
|
|
|
int ret = 0;
|
2012-10-09 03:29:24 +04:00
|
|
|
int id;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2012-10-09 03:29:24 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
2020-03-22 04:22:34 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
const struct mmu_notifier_ops *ops = subscription->ops;
|
|
|
|
|
|
|
|
if (ops->invalidate_range_start) {
|
2019-08-26 23:14:24 +03:00
|
|
|
int _ret;
|
|
|
|
|
|
|
|
if (!mmu_notifier_range_blockable(range))
|
|
|
|
non_block_start();
|
2020-01-14 18:11:17 +03:00
|
|
|
_ret = ops->invalidate_range_start(subscription, range);
|
2019-08-26 23:14:24 +03:00
|
|
|
if (!mmu_notifier_range_blockable(range))
|
|
|
|
non_block_end();
|
2018-08-22 07:52:33 +03:00
|
|
|
if (_ret) {
|
|
|
|
pr_info("%pS callback failed with %d in %sblockable context.\n",
|
2020-01-14 18:11:17 +03:00
|
|
|
ops->invalidate_range_start, _ret,
|
|
|
|
!mmu_notifier_range_blockable(range) ?
|
|
|
|
"non-" :
|
|
|
|
"");
|
2019-08-14 23:20:23 +03:00
|
|
|
WARN_ON(mmu_notifier_range_blockable(range) ||
|
2019-11-06 08:16:37 +03:00
|
|
|
_ret != -EAGAIN);
|
2018-08-22 07:52:33 +03:00
|
|
|
ret = _ret;
|
|
|
|
}
|
|
|
|
}
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
2012-10-09 03:29:24 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
2018-08-22 07:52:33 +03:00
|
|
|
|
|
|
|
return ret;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
|
|
|
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
|
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions =
|
|
|
|
range->mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
int ret;
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (subscriptions->has_itree) {
|
|
|
|
ret = mn_itree_invalidate(subscriptions, range);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
2019-12-18 20:40:35 +03:00
|
|
|
if (!hlist_empty(&subscriptions->list))
|
|
|
|
return mn_hlist_invalidate_range_start(subscriptions, range);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
static void
|
|
|
|
mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
|
|
|
|
struct mmu_notifier_range *range, bool only_end)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2012-10-09 03:29:24 +04:00
|
|
|
int id;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2012-10-09 03:29:24 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
2020-03-22 04:22:34 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2014-11-13 05:46:09 +03:00
|
|
|
/*
|
|
|
|
* Call invalidate_range here too to avoid the need for the
|
|
|
|
* subsystem of having to register an invalidate_range_end
|
|
|
|
* call-back when there is invalidate_range already. Usually a
|
|
|
|
* subsystem registers either invalidate_range_start()/end() or
|
|
|
|
* invalidate_range(), so this will be no additional overhead
|
|
|
|
* (besides the pointer check).
|
2017-11-16 04:34:11 +03:00
|
|
|
*
|
|
|
|
* We skip call to invalidate_range() if we know it is safe ie
|
|
|
|
* call site use mmu_notifier_invalidate_range_only_end() which
|
|
|
|
* is safe to do when we know that a call to invalidate_range()
|
|
|
|
* already happen under page table lock.
|
2014-11-13 05:46:09 +03:00
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
if (!only_end && subscription->ops->invalidate_range)
|
|
|
|
subscription->ops->invalidate_range(subscription,
|
|
|
|
range->mm,
|
|
|
|
range->start,
|
|
|
|
range->end);
|
|
|
|
if (subscription->ops->invalidate_range_end) {
|
2019-08-26 23:14:24 +03:00
|
|
|
if (!mmu_notifier_range_blockable(range))
|
|
|
|
non_block_start();
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription->ops->invalidate_range_end(subscription,
|
|
|
|
range);
|
2019-08-26 23:14:24 +03:00
|
|
|
if (!mmu_notifier_range_blockable(range))
|
|
|
|
non_block_end();
|
|
|
|
}
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
2012-10-09 03:29:24 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
|
|
|
|
bool only_end)
|
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions =
|
|
|
|
range->mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
|
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
2019-12-18 20:40:35 +03:00
|
|
|
if (subscriptions->has_itree)
|
|
|
|
mn_itree_inv_end(subscriptions);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (!hlist_empty(&subscriptions->list))
|
|
|
|
mn_hlist_invalidate_end(subscriptions, range, only_end);
|
2019-08-26 23:14:21 +03:00
|
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
|
|
|
|
2014-11-13 05:46:09 +03:00
|
|
|
void __mmu_notifier_invalidate_range(struct mm_struct *mm,
|
|
|
|
unsigned long start, unsigned long end)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2014-11-13 05:46:09 +03:00
|
|
|
int id;
|
|
|
|
|
|
|
|
id = srcu_read_lock(&srcu);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription,
|
2020-03-22 04:22:34 +03:00
|
|
|
&mm->notifier_subscriptions->list, hlist,
|
|
|
|
srcu_read_lock_held(&srcu)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->invalidate_range)
|
|
|
|
subscription->ops->invalidate_range(subscription, mm,
|
|
|
|
start, end);
|
2014-11-13 05:46:09 +03:00
|
|
|
}
|
|
|
|
srcu_read_unlock(&srcu, id);
|
|
|
|
}
|
|
|
|
|
2019-08-07 02:15:38 +03:00
|
|
|
/*
|
2020-06-09 07:33:54 +03:00
|
|
|
* Same as mmu_notifier_register but here the caller must hold the mmap_lock in
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* write mode. A NULL mn signals the notifier is being registered for itree
|
|
|
|
* mode.
|
2019-08-07 02:15:38 +03:00
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
int __mmu_notifier_register(struct mmu_notifier *subscription,
|
|
|
|
struct mm_struct *mm)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions = NULL;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
int ret;
|
|
|
|
|
2020-06-09 07:33:44 +03:00
|
|
|
mmap_assert_write_locked(mm);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
BUG_ON(atomic_read(&mm->mm_users) <= 0);
|
|
|
|
|
2019-08-26 23:14:22 +03:00
|
|
|
if (IS_ENABLED(CONFIG_LOCKDEP)) {
|
|
|
|
fs_reclaim_acquire(GFP_KERNEL);
|
|
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
fs_reclaim_release(GFP_KERNEL);
|
|
|
|
}
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (!mm->notifier_subscriptions) {
|
2019-08-07 02:15:39 +03:00
|
|
|
/*
|
|
|
|
* kmalloc cannot be called under mm_take_all_locks(), but we
|
2019-12-18 20:40:35 +03:00
|
|
|
* know that mm->notifier_subscriptions can't change while we
|
2020-06-09 07:33:54 +03:00
|
|
|
* hold the write side of the mmap_lock.
|
2019-08-07 02:15:39 +03:00
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions = kzalloc(
|
|
|
|
sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
|
|
|
|
if (!subscriptions)
|
2019-08-07 02:15:39 +03:00
|
|
|
return -ENOMEM;
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
INIT_HLIST_HEAD(&subscriptions->list);
|
|
|
|
spin_lock_init(&subscriptions->lock);
|
|
|
|
subscriptions->invalidate_seq = 2;
|
|
|
|
subscriptions->itree = RB_ROOT_CACHED;
|
|
|
|
init_waitqueue_head(&subscriptions->wq);
|
|
|
|
INIT_HLIST_HEAD(&subscriptions->deferred_list);
|
2019-08-07 02:15:39 +03:00
|
|
|
}
|
2012-10-26 00:38:01 +04:00
|
|
|
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
ret = mm_take_all_locks(mm);
|
|
|
|
if (unlikely(ret))
|
2012-10-26 00:38:01 +04:00
|
|
|
goto out_clean;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Serialize the update against mmu_notifier_unregister. A
|
|
|
|
* side note: mmu_notifier_release can't run concurrently with
|
|
|
|
* us because we hold the mm_users pin (either implicitly as
|
|
|
|
* current->mm or explicitly with get_task_mm() or similar).
|
|
|
|
* We can't race against any other mmu notifier method either
|
|
|
|
* thanks to mm_take_all_locks().
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
2019-12-18 20:40:35 +03:00
|
|
|
* release semantics on the initialization of the
|
|
|
|
* mmu_notifier_subscriptions's contents are provided for unlocked
|
|
|
|
* readers. acquire can only be used while holding the mmgrab or
|
|
|
|
* mmget, and is safe because once created the
|
|
|
|
* mmu_notifier_subscriptions is not freed until the mm is destroyed.
|
2020-06-09 07:33:54 +03:00
|
|
|
* As above, users holding the mmap_lock or one of the
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* mm_take_all_locks() do not need to use acquire semantics.
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
if (subscriptions)
|
|
|
|
smp_store_release(&mm->notifier_subscriptions, subscriptions);
|
2019-08-07 02:15:39 +03:00
|
|
|
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription) {
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
/* Pairs with the mmdrop in mmu_notifier_unregister_* */
|
|
|
|
mmgrab(mm);
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription->mm = mm;
|
|
|
|
subscription->users = 1;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&mm->notifier_subscriptions->lock);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_add_head_rcu(&subscription->hlist,
|
2019-12-18 20:40:35 +03:00
|
|
|
&mm->notifier_subscriptions->list);
|
|
|
|
spin_unlock(&mm->notifier_subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
} else
|
2019-12-18 20:40:35 +03:00
|
|
|
mm->notifier_subscriptions->has_itree = true;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
|
|
|
mm_drop_all_locks(mm);
|
2019-08-07 02:15:39 +03:00
|
|
|
BUG_ON(atomic_read(&mm->mm_users) <= 0);
|
|
|
|
return 0;
|
|
|
|
|
2012-10-26 00:38:01 +04:00
|
|
|
out_clean:
|
2019-12-18 20:40:35 +03:00
|
|
|
kfree(subscriptions);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
return ret;
|
|
|
|
}
|
2019-08-07 02:15:38 +03:00
|
|
|
EXPORT_SYMBOL_GPL(__mmu_notifier_register);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2019-08-07 02:15:40 +03:00
|
|
|
/**
|
|
|
|
* mmu_notifier_register - Register a notifier on a mm
|
2020-08-12 04:32:09 +03:00
|
|
|
* @subscription: The notifier to attach
|
2019-08-07 02:15:40 +03:00
|
|
|
* @mm: The mm to attach the notifier to
|
|
|
|
*
|
2020-06-09 07:33:54 +03:00
|
|
|
* Must not hold mmap_lock nor any other VM related lock when calling
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
* this registration function. Must also ensure mm_users can't go down
|
|
|
|
* to zero while this runs to avoid races with mmu_notifier_release,
|
|
|
|
* so mm has to be current->mm or the mm should be pinned safely such
|
|
|
|
* as with get_task_mm(). If the mm is not current->mm, the mm_users
|
|
|
|
* pin should be released by calling mmput after mmu_notifier_register
|
2019-08-07 02:15:40 +03:00
|
|
|
* returns.
|
|
|
|
*
|
|
|
|
* mmu_notifier_unregister() or mmu_notifier_put() must be always called to
|
|
|
|
* unregister the notifier.
|
|
|
|
*
|
2020-01-14 18:11:17 +03:00
|
|
|
* While the caller has a mmu_notifier get the subscription->mm pointer will remain
|
2019-08-07 02:15:40 +03:00
|
|
|
* valid, and can be converted to an active mm pointer via mmget_not_zero().
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
int mmu_notifier_register(struct mmu_notifier *subscription,
|
|
|
|
struct mm_struct *mm)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2019-08-07 02:15:38 +03:00
|
|
|
int ret;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2020-06-09 07:33:25 +03:00
|
|
|
mmap_write_lock(mm);
|
2020-01-14 18:11:17 +03:00
|
|
|
ret = __mmu_notifier_register(subscription, mm);
|
2020-06-09 07:33:25 +03:00
|
|
|
mmap_write_unlock(mm);
|
2019-08-07 02:15:38 +03:00
|
|
|
return ret;
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
2019-08-07 02:15:38 +03:00
|
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_register);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
2019-08-07 02:15:40 +03:00
|
|
|
static struct mmu_notifier *
|
|
|
|
find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2019-08-07 02:15:40 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&mm->notifier_subscriptions->lock);
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_for_each_entry_rcu(subscription,
|
2020-03-22 04:22:34 +03:00
|
|
|
&mm->notifier_subscriptions->list, hlist,
|
|
|
|
lockdep_is_held(&mm->notifier_subscriptions->lock)) {
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops != ops)
|
2019-08-07 02:15:40 +03:00
|
|
|
continue;
|
|
|
|
|
2020-01-14 18:11:17 +03:00
|
|
|
if (likely(subscription->users != UINT_MAX))
|
|
|
|
subscription->users++;
|
2019-08-07 02:15:40 +03:00
|
|
|
else
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription = ERR_PTR(-EOVERFLOW);
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&mm->notifier_subscriptions->lock);
|
2020-01-14 18:11:17 +03:00
|
|
|
return subscription;
|
2019-08-07 02:15:40 +03:00
|
|
|
}
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&mm->notifier_subscriptions->lock);
|
2019-08-07 02:15:40 +03:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mmu_notifier_get_locked - Return the single struct mmu_notifier for
|
|
|
|
* the mm & ops
|
|
|
|
* @ops: The operations struct being subscribe with
|
|
|
|
* @mm : The mm to attach notifiers too
|
|
|
|
*
|
|
|
|
* This function either allocates a new mmu_notifier via
|
|
|
|
* ops->alloc_notifier(), or returns an already existing notifier on the
|
|
|
|
* list. The value of the ops pointer is used to determine when two notifiers
|
|
|
|
* are the same.
|
|
|
|
*
|
|
|
|
* Each call to mmu_notifier_get() must be paired with a call to
|
2020-06-09 07:33:54 +03:00
|
|
|
* mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
|
2019-08-07 02:15:40 +03:00
|
|
|
*
|
|
|
|
* While the caller has a mmu_notifier get the mm pointer will remain valid,
|
|
|
|
* and can be converted to an active mm pointer via mmget_not_zero().
|
|
|
|
*/
|
|
|
|
struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
|
|
|
|
struct mm_struct *mm)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription;
|
2019-08-07 02:15:40 +03:00
|
|
|
int ret;
|
|
|
|
|
2020-06-09 07:33:44 +03:00
|
|
|
mmap_assert_write_locked(mm);
|
2019-08-07 02:15:40 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (mm->notifier_subscriptions) {
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription = find_get_mmu_notifier(mm, ops);
|
|
|
|
if (subscription)
|
|
|
|
return subscription;
|
2019-08-07 02:15:40 +03:00
|
|
|
}
|
|
|
|
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription = ops->alloc_notifier(mm);
|
|
|
|
if (IS_ERR(subscription))
|
|
|
|
return subscription;
|
|
|
|
subscription->ops = ops;
|
|
|
|
ret = __mmu_notifier_register(subscription, mm);
|
2019-08-07 02:15:40 +03:00
|
|
|
if (ret)
|
|
|
|
goto out_free;
|
2020-01-14 18:11:17 +03:00
|
|
|
return subscription;
|
2019-08-07 02:15:40 +03:00
|
|
|
out_free:
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription->ops->free_notifier(subscription);
|
2019-08-07 02:15:40 +03:00
|
|
|
return ERR_PTR(ret);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
|
|
|
|
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
/* this is called after the last mmu_notifier_unregister() returned */
|
2019-12-18 20:40:35 +03:00
|
|
|
void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
|
|
|
|
kfree(mm->notifier_subscriptions);
|
|
|
|
mm->notifier_subscriptions = LIST_POISON1; /* debug */
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This releases the mm_count pin automatically and frees the mm
|
|
|
|
* structure if it was the last user of it. It serializes against
|
2012-10-09 03:29:24 +04:00
|
|
|
* running mmu notifiers with SRCU and against mmu_notifier_unregister
|
|
|
|
* with the unregister lock + SRCU. All sptes must be dropped before
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
* calling mmu_notifier_unregister. ->release or any other notifier
|
|
|
|
* method may be invoked concurrently with mmu_notifier_unregister,
|
|
|
|
* and only after mmu_notifier_unregister returned we're guaranteed
|
|
|
|
* that ->release or any other method can't run anymore.
|
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
void mmu_notifier_unregister(struct mmu_notifier *subscription,
|
|
|
|
struct mm_struct *mm)
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
{
|
|
|
|
BUG_ON(atomic_read(&mm->mm_count) <= 0);
|
|
|
|
|
2020-01-14 18:11:17 +03:00
|
|
|
if (!hlist_unhashed(&subscription->hlist)) {
|
2013-05-25 02:55:11 +04:00
|
|
|
/*
|
|
|
|
* SRCU here will force exit_mmap to wait for ->release to
|
|
|
|
* finish before freeing the pages.
|
|
|
|
*/
|
2012-10-09 03:29:24 +04:00
|
|
|
int id;
|
2012-08-01 03:45:52 +04:00
|
|
|
|
2013-05-25 02:55:11 +04:00
|
|
|
id = srcu_read_lock(&srcu);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
/*
|
2013-05-25 02:55:11 +04:00
|
|
|
* exit_mmap will block in mmu_notifier_release to guarantee
|
|
|
|
* that ->release is called before freeing the pages.
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
if (subscription->ops->release)
|
|
|
|
subscription->ops->release(subscription, mm);
|
2013-05-25 02:55:11 +04:00
|
|
|
srcu_read_unlock(&srcu, id);
|
2012-08-01 03:45:52 +04:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&mm->notifier_subscriptions->lock);
|
2013-02-23 04:35:34 +04:00
|
|
|
/*
|
2013-05-25 02:55:11 +04:00
|
|
|
* Can not use list_del_rcu() since __mmu_notifier_release
|
|
|
|
* can delete it before we hold the lock.
|
2013-02-23 04:35:34 +04:00
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_del_init_rcu(&subscription->hlist);
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&mm->notifier_subscriptions->lock);
|
2013-05-25 02:55:11 +04:00
|
|
|
}
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
|
|
|
/*
|
2013-05-25 02:55:11 +04:00
|
|
|
* Wait for any running method to finish, of course including
|
2013-06-28 13:27:31 +04:00
|
|
|
* ->release if it was run by mmu_notifier_release instead of us.
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
*/
|
2012-10-09 03:29:24 +04:00
|
|
|
synchronize_srcu(&srcu);
|
mmu-notifiers: core
With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
There are secondary MMUs (with secondary sptes and secondary tlbs) too.
sptes in the kvm case are shadow pagetables, but when I say spte in
mmu-notifier context, I mean "secondary pte". In GRU case there's no
actual secondary pte and there's only a secondary tlb because the GRU
secondary MMU has no knowledge about sptes and every secondary tlb miss
event in the MMU always generates a page fault that has to be resolved by
the CPU (this is not the case of KVM where the a secondary tlb miss will
walk sptes in hardware and it will refill the secondary tlb transparently
to software if the corresponding spte is present). The same way
zap_page_range has to invalidate the pte before freeing the page, the spte
(and secondary tlb) must also be invalidated before any page is freed and
reused.
Currently we take a page_count pin on every page mapped by sptes, but that
means the pages can't be swapped whenever they're mapped by any spte
because they're part of the guest working set. Furthermore a spte unmap
event can immediately lead to a page to be freed when the pin is released
(so requiring the same complex and relatively slow tlb_gather smp safe
logic we have in zap_page_range and that can be avoided completely if the
spte unmap event doesn't require an unpin of the page previously mapped in
the secondary MMU).
The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
when the VM is swapping or freeing or doing anything on the primary MMU so
that the secondary MMU code can drop sptes before the pages are freed,
avoiding all page pinning and allowing 100% reliable swapping of guest
physical address space. Furthermore it avoids the code that teardown the
mappings of the secondary MMU, to implement a logic like tlb_gather in
zap_page_range that would require many IPI to flush other cpu tlbs, for
each fixed number of spte unmapped.
To make an example: if what happens on the primary MMU is a protection
downgrade (from writeable to wrprotect) the secondary MMU mappings will be
invalidated, and the next secondary-mmu-page-fault will call
get_user_pages and trigger a do_wp_page through get_user_pages if it
called get_user_pages with write=1, and it'll re-establishing an updated
spte or secondary-tlb-mapping on the copied page. Or it will setup a
readonly spte or readonly tlb mapping if it's a guest-read, if it calls
get_user_pages with write=0. This is just an example.
This allows to map any page pointed by any pte (and in turn visible in the
primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
with kvm), or a remote DMA in software like XPMEM (hence needing of
schedule in XPMEM code to send the invalidate to the remote node, while no
need to schedule in kvm/gru as it's an immediate event like invalidating
primary-mmu pte).
At least for KVM without this patch it's impossible to swap guests
reliably. And having this feature and removing the page pin allows
several other optimizations that simplify life considerably.
Dependencies:
1) mm_take_all_locks() to register the mmu notifier when the whole VM
isn't doing anything with "mm". This allows mmu notifier users to keep
track if the VM is in the middle of the invalidate_range_begin/end
critical section with an atomic counter incraese in range_begin and
decreased in range_end. No secondary MMU page fault is allowed to map
any spte or secondary tlb reference, while the VM is in the middle of
range_begin/end as any page returned by get_user_pages in that critical
section could later immediately be freed without any further
->invalidate_page notification (invalidate_range_begin/end works on
ranges and ->invalidate_page isn't called immediately before freeing
the page). To stop all page freeing and pagetable overwrites the
mmap_sem must be taken in write mode and all other anon_vma/i_mmap
locks must be taken too.
2) It'd be a waste to add branches in the VM if nobody could possibly
run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
mmu notifiers, but this already allows to compile a KVM external module
against a kernel with mmu notifiers enabled and from the next pull from
kvm.git we'll start using them. And GRU/XPMEM will also be able to
continue the development by enabling KVM=m in their config, until they
submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
are all =n.
The mmu_notifier_register call can fail because mm_take_all_locks may be
interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
is used when a driver startup, a failure can be gracefully handled. Here
an example of the change applied to kvm to register the mmu notifiers.
Usually when a driver startups other allocations are required anyway and
-ENOMEM failure paths exists already.
struct kvm *kvm_arch_create_vm(void)
{
struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
+ int err;
if (!kvm)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
+ kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
+ err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
+ if (err) {
+ kfree(kvm);
+ return ERR_PTR(err);
+ }
+
return kvm;
}
mmu_notifier_unregister returns void and it's reliable.
The patch also adds a few needed but missing includes that would prevent
kernel to compile after these changes on non-x86 archs (x86 didn't need
them by luck).
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix mm/filemap_xip.c build]
[akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
Signed-off-by: Andrea Arcangeli <andrea@qumranet.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Kanoj Sarcar <kanojsarcar@yahoo.com>
Cc: Roland Dreier <rdreier@cisco.com>
Cc: Steve Wise <swise@opengridcomputing.com>
Cc: Avi Kivity <avi@qumranet.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Chris Wright <chrisw@redhat.com>
Cc: Marcelo Tosatti <marcelo@kvack.org>
Cc: Eric Dumazet <dada1@cosmosbay.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Izik Eidus <izike@qumranet.com>
Cc: Anthony Liguori <aliguori@us.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-07-29 02:46:29 +04:00
|
|
|
|
|
|
|
BUG_ON(atomic_read(&mm->mm_count) <= 0);
|
|
|
|
|
|
|
|
mmdrop(mm);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
|
2012-10-09 03:29:24 +04:00
|
|
|
|
2019-08-07 02:15:40 +03:00
|
|
|
static void mmu_notifier_free_rcu(struct rcu_head *rcu)
|
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mmu_notifier *subscription =
|
|
|
|
container_of(rcu, struct mmu_notifier, rcu);
|
|
|
|
struct mm_struct *mm = subscription->mm;
|
2019-08-07 02:15:40 +03:00
|
|
|
|
2020-01-14 18:11:17 +03:00
|
|
|
subscription->ops->free_notifier(subscription);
|
2019-08-07 02:15:40 +03:00
|
|
|
/* Pairs with the get in __mmu_notifier_register() */
|
|
|
|
mmdrop(mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mmu_notifier_put - Release the reference on the notifier
|
2020-08-12 04:32:09 +03:00
|
|
|
* @subscription: The notifier to act on
|
2019-08-07 02:15:40 +03:00
|
|
|
*
|
|
|
|
* This function must be paired with each mmu_notifier_get(), it releases the
|
|
|
|
* reference obtained by the get. If this is the last reference then process
|
|
|
|
* to free the notifier will be run asynchronously.
|
|
|
|
*
|
|
|
|
* Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
|
|
|
|
* when the mm_struct is destroyed. Instead free_notifier is always called to
|
|
|
|
* release any resources held by the user.
|
|
|
|
*
|
|
|
|
* As ops->release is not guaranteed to be called, the user must ensure that
|
|
|
|
* all sptes are dropped, and no new sptes can be established before
|
|
|
|
* mmu_notifier_put() is called.
|
|
|
|
*
|
|
|
|
* This function can be called from the ops->release callback, however the
|
|
|
|
* caller must still ensure it is called pairwise with mmu_notifier_get().
|
|
|
|
*
|
|
|
|
* Modules calling this function must call mmu_notifier_synchronize() in
|
|
|
|
* their __exit functions to ensure the async work is completed.
|
|
|
|
*/
|
2020-01-14 18:11:17 +03:00
|
|
|
void mmu_notifier_put(struct mmu_notifier *subscription)
|
2019-08-07 02:15:40 +03:00
|
|
|
{
|
2020-01-14 18:11:17 +03:00
|
|
|
struct mm_struct *mm = subscription->mm;
|
2019-08-07 02:15:40 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&mm->notifier_subscriptions->lock);
|
2020-01-14 18:11:17 +03:00
|
|
|
if (WARN_ON(!subscription->users) || --subscription->users)
|
2019-08-07 02:15:40 +03:00
|
|
|
goto out_unlock;
|
2020-01-14 18:11:17 +03:00
|
|
|
hlist_del_init_rcu(&subscription->hlist);
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&mm->notifier_subscriptions->lock);
|
2019-08-07 02:15:40 +03:00
|
|
|
|
2020-01-14 18:11:17 +03:00
|
|
|
call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
|
2019-08-07 02:15:40 +03:00
|
|
|
return;
|
|
|
|
|
|
|
|
out_unlock:
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&mm->notifier_subscriptions->lock);
|
2019-08-07 02:15:40 +03:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_put);
|
|
|
|
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
static int __mmu_interval_notifier_insert(
|
2020-01-14 18:29:52 +03:00
|
|
|
struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long length, const struct mmu_interval_notifier_ops *ops)
|
|
|
|
{
|
2020-01-14 18:29:52 +03:00
|
|
|
interval_sub->mm = mm;
|
|
|
|
interval_sub->ops = ops;
|
|
|
|
RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
|
|
|
|
interval_sub->interval_tree.start = start;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
/*
|
|
|
|
* Note that the representation of the intervals in the interval tree
|
|
|
|
* considers the ending point as contained in the interval.
|
|
|
|
*/
|
|
|
|
if (length == 0 ||
|
2020-01-14 18:29:52 +03:00
|
|
|
check_add_overflow(start, length - 1,
|
|
|
|
&interval_sub->interval_tree.last))
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return -EOVERFLOW;
|
|
|
|
|
|
|
|
/* Must call with a mmget() held */
|
2020-10-16 06:07:43 +03:00
|
|
|
if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/* pairs with mmdrop in mmu_interval_notifier_remove() */
|
|
|
|
mmgrab(mm);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If some invalidate_range_start/end region is going on in parallel
|
|
|
|
* we don't know what VA ranges are affected, so we must assume this
|
|
|
|
* new range is included.
|
|
|
|
*
|
|
|
|
* If the itree is invalidating then we are not allowed to change
|
|
|
|
* it. Retrying until invalidation is done is tricky due to the
|
|
|
|
* possibility for live lock, instead defer the add to
|
|
|
|
* mn_itree_inv_end() so this algorithm is deterministic.
|
|
|
|
*
|
2020-01-14 18:29:52 +03:00
|
|
|
* In all cases the value for the interval_sub->invalidate_seq should be
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* odd, see mmu_interval_read_begin()
|
|
|
|
*/
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&subscriptions->lock);
|
|
|
|
if (subscriptions->active_invalidate_ranges) {
|
|
|
|
if (mn_itree_is_invalidating(subscriptions))
|
2020-01-14 18:29:52 +03:00
|
|
|
hlist_add_head(&interval_sub->deferred_item,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->deferred_list);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
else {
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions->invalidate_seq |= 1;
|
2020-01-14 18:29:52 +03:00
|
|
|
interval_tree_insert(&interval_sub->interval_tree,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->itree);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
2020-01-14 18:29:52 +03:00
|
|
|
interval_sub->invalidate_seq = subscriptions->invalidate_seq;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
} else {
|
2019-12-18 20:40:35 +03:00
|
|
|
WARN_ON(mn_itree_is_invalidating(subscriptions));
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
/*
|
2020-01-14 18:29:52 +03:00
|
|
|
* The starting seq for a subscription not under invalidation
|
|
|
|
* should be odd, not equal to the current invalidate_seq and
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* invalidate_seq should not 'wrap' to the new seq any time
|
|
|
|
* soon.
|
|
|
|
*/
|
2020-01-14 18:29:52 +03:00
|
|
|
interval_sub->invalidate_seq =
|
|
|
|
subscriptions->invalidate_seq - 1;
|
|
|
|
interval_tree_insert(&interval_sub->interval_tree,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->itree);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mmu_interval_notifier_insert - Insert an interval notifier
|
2020-01-14 18:29:52 +03:00
|
|
|
* @interval_sub: Interval subscription to register
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
* @start: Starting virtual address to monitor
|
|
|
|
* @length: Length of the range to monitor
|
2020-08-12 04:32:09 +03:00
|
|
|
* @mm: mm_struct to attach to
|
|
|
|
* @ops: Interval notifier operations to be called on matching events
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
|
|
|
* This function subscribes the interval notifier for notifications from the
|
|
|
|
* mm. Upon return the ops related to mmu_interval_notifier will be called
|
|
|
|
* whenever an event that intersects with the given range occurs.
|
|
|
|
*
|
|
|
|
* Upon return the range_notifier may not be present in the interval tree yet.
|
|
|
|
* The caller must use the normal interval notifier read flow via
|
|
|
|
* mmu_interval_read_begin() to establish SPTEs for this range.
|
|
|
|
*/
|
2020-01-14 18:29:52 +03:00
|
|
|
int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
struct mm_struct *mm, unsigned long start,
|
|
|
|
unsigned long length,
|
|
|
|
const struct mmu_interval_notifier_ops *ops)
|
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
int ret;
|
|
|
|
|
2020-06-09 07:33:47 +03:00
|
|
|
might_lock(&mm->mmap_lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
|
|
|
|
if (!subscriptions || !subscriptions->has_itree) {
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
ret = mmu_notifier_register(NULL, mm);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions = mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
2020-01-14 18:29:52 +03:00
|
|
|
return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
|
|
|
|
start, length, ops);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
|
|
|
|
|
|
|
|
int mmu_interval_notifier_insert_locked(
|
2020-01-14 18:29:52 +03:00
|
|
|
struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long start, unsigned long length,
|
|
|
|
const struct mmu_interval_notifier_ops *ops)
|
|
|
|
{
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions =
|
|
|
|
mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
int ret;
|
|
|
|
|
2020-06-09 07:33:44 +03:00
|
|
|
mmap_assert_write_locked(mm);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
if (!subscriptions || !subscriptions->has_itree) {
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
ret = __mmu_notifier_register(NULL, mm);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
2019-12-18 20:40:35 +03:00
|
|
|
subscriptions = mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
2020-01-14 18:29:52 +03:00
|
|
|
return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
|
|
|
|
start, length, ops);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mmu_interval_notifier_remove - Remove a interval notifier
|
2020-01-14 18:29:52 +03:00
|
|
|
* @interval_sub: Interval subscription to unregister
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
*
|
|
|
|
* This function must be paired with mmu_interval_notifier_insert(). It cannot
|
|
|
|
* be called from any ops callback.
|
|
|
|
*
|
|
|
|
* Once this returns ops callbacks are no longer running on other CPUs and
|
|
|
|
* will not be called in future.
|
|
|
|
*/
|
2020-01-14 18:29:52 +03:00
|
|
|
void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
{
|
2020-01-14 18:29:52 +03:00
|
|
|
struct mm_struct *mm = interval_sub->mm;
|
2019-12-18 20:40:35 +03:00
|
|
|
struct mmu_notifier_subscriptions *subscriptions =
|
|
|
|
mm->notifier_subscriptions;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
unsigned long seq = 0;
|
|
|
|
|
|
|
|
might_sleep();
|
|
|
|
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_lock(&subscriptions->lock);
|
|
|
|
if (mn_itree_is_invalidating(subscriptions)) {
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
/*
|
|
|
|
* remove is being called after insert put this on the
|
|
|
|
* deferred list, but before the deferred list was processed.
|
|
|
|
*/
|
2020-01-14 18:29:52 +03:00
|
|
|
if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
|
|
|
|
hlist_del(&interval_sub->deferred_item);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
} else {
|
2020-01-14 18:29:52 +03:00
|
|
|
hlist_add_head(&interval_sub->deferred_item,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->deferred_list);
|
|
|
|
seq = subscriptions->invalidate_seq;
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
|
|
|
} else {
|
2020-01-14 18:29:52 +03:00
|
|
|
WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
|
|
|
|
interval_tree_remove(&interval_sub->interval_tree,
|
2019-12-18 20:40:35 +03:00
|
|
|
&subscriptions->itree);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
}
|
2019-12-18 20:40:35 +03:00
|
|
|
spin_unlock(&subscriptions->lock);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The possible sleep on progress in the invalidation requires the
|
|
|
|
* caller not hold any locks held by invalidation callbacks.
|
|
|
|
*/
|
|
|
|
lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
lock_map_release(&__mmu_notifier_invalidate_range_start_map);
|
|
|
|
if (seq)
|
2019-12-18 20:40:35 +03:00
|
|
|
wait_event(subscriptions->wq,
|
|
|
|
READ_ONCE(subscriptions->invalidate_seq) != seq);
|
mm/mmu_notifier: add an interval tree notifier
Of the 13 users of mmu_notifiers, 8 of them use only
invalidate_range_start/end() and immediately intersect the
mmu_notifier_range with some kind of internal list of VAs. 4 use an
interval tree (i915_gem, radeon_mn, umem_odp, hfi1). 4 use a linked list
of some kind (scif_dma, vhost, gntdev, hmm)
And the remaining 5 either don't use invalidate_range_start() or do some
special thing with it.
It turns out that building a correct scheme with an interval tree is
pretty complicated, particularly if the use case is synchronizing against
another thread doing get_user_pages(). Many of these implementations have
various subtle and difficult to fix races.
This approach puts the interval tree as common code at the top of the mmu
notifier call tree and implements a shareable locking scheme.
It includes:
- An interval tree tracking VA ranges, with per-range callbacks
- A read/write locking scheme for the interval tree that avoids
sleeping in the notifier path (for OOM killer)
- A sequence counter based collision-retry locking scheme to tell
device page fault that a VA range is being concurrently invalidated.
This is based on various ideas:
- hmm accumulates invalidated VA ranges and releases them when all
invalidates are done, via active_invalidate_ranges count.
This approach avoids having to intersect the interval tree twice (as
umem_odp does) at the potential cost of a longer device page fault.
- kvm/umem_odp use a sequence counter to drive the collision retry,
via invalidate_seq
- a deferred work todo list on unlock scheme like RTNL, via deferred_list.
This makes adding/removing interval tree members more deterministic
- seqlock, except this version makes the seqlock idea multi-holder on the
write side by protecting it with active_invalidate_ranges and a spinlock
To minimize MM overhead when only the interval tree is being used, the
entire SRCU and hlist overheads are dropped using some simple
branches. Similarly the interval tree overhead is dropped when in hlist
mode.
The overhead from the mandatory spinlock is broadly the same as most of
existing users which already had a lock (or two) of some sort on the
invalidation path.
Link: https://lore.kernel.org/r/20191112202231.3856-3-jgg@ziepe.ca
Acked-by: Christian König <christian.koenig@amd.com>
Tested-by: Philip Yang <Philip.Yang@amd.com>
Tested-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-11-12 23:22:19 +03:00
|
|
|
|
|
|
|
/* pairs with mmgrab in mmu_interval_notifier_insert() */
|
|
|
|
mmdrop(mm);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
|
|
|
|
|
2019-08-07 02:15:40 +03:00
|
|
|
/**
|
|
|
|
* mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
|
|
|
|
*
|
|
|
|
* This function ensures that all outstanding async SRU work from
|
|
|
|
* mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
|
|
|
|
* associated with an unused mmu_notifier will no longer be called.
|
|
|
|
*
|
|
|
|
* Before using the caller must ensure that all of its mmu_notifiers have been
|
|
|
|
* fully released via mmu_notifier_put().
|
|
|
|
*
|
|
|
|
* Modules using the mmu_notifier_put() API should call this in their __exit
|
|
|
|
* function to avoid module unloading races.
|
|
|
|
*/
|
|
|
|
void mmu_notifier_synchronize(void)
|
|
|
|
{
|
|
|
|
synchronize_srcu(&srcu);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
|
|
|
|
|
2019-05-14 03:21:00 +03:00
|
|
|
bool
|
|
|
|
mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
|
|
|
|
{
|
|
|
|
if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
|
|
|
|
return false;
|
|
|
|
/* Return true if the vma still have the read flag set. */
|
|
|
|
return range->vma->vm_flags & VM_READ;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
|