2019-05-30 02:57:35 +03:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
2011-05-13 06:34:14 +04:00
|
|
|
/*
|
|
|
|
*
|
|
|
|
* Copyright (c) 2011, Microsoft Corporation.
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Haiyang Zhang <haiyangz@microsoft.com>
|
|
|
|
* Hank Janssen <hjanssen@microsoft.com>
|
|
|
|
* K. Y. Srinivasan <kys@microsoft.com>
|
|
|
|
*/
|
2011-05-13 06:34:15 +04:00
|
|
|
|
|
|
|
#ifndef _HYPERV_H
|
|
|
|
#define _HYPERV_H
|
|
|
|
|
2014-01-22 13:16:58 +04:00
|
|
|
#include <uapi/linux/hyperv.h>
|
2012-01-28 03:55:58 +04:00
|
|
|
|
2014-01-22 13:16:58 +04:00
|
|
|
#include <linux/types.h>
|
2011-05-13 06:34:27 +04:00
|
|
|
#include <linux/scatterlist.h>
|
|
|
|
#include <linux/list.h>
|
|
|
|
#include <linux/timer.h>
|
|
|
|
#include <linux/completion.h>
|
|
|
|
#include <linux/device.h>
|
2011-08-25 20:48:31 +04:00
|
|
|
#include <linux/mod_devicetable.h>
|
2017-02-12 09:02:20 +03:00
|
|
|
#include <linux/interrupt.h>
|
2018-03-28 03:48:38 +03:00
|
|
|
#include <linux/reciprocal_div.h>
|
2011-05-13 06:34:27 +04:00
|
|
|
|
2014-03-07 12:10:34 +04:00
|
|
|
#define MAX_PAGE_BUFFER_COUNT 32
|
2011-05-13 06:34:16 +04:00
|
|
|
#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */
|
|
|
|
|
|
|
|
#pragma pack(push, 1)
|
|
|
|
|
|
|
|
/* Single-page buffer */
|
|
|
|
struct hv_page_buffer {
|
|
|
|
u32 len;
|
|
|
|
u32 offset;
|
|
|
|
u64 pfn;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Multiple-page buffer */
|
|
|
|
struct hv_multipage_buffer {
|
|
|
|
/* Length and Offset determines the # of pfns in the array */
|
|
|
|
u32 len;
|
|
|
|
u32 offset;
|
|
|
|
u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT];
|
|
|
|
};
|
|
|
|
|
2015-01-10 10:54:34 +03:00
|
|
|
/*
|
|
|
|
* Multiple-page buffer array; the pfn array is variable size:
|
|
|
|
* The number of entries in the PFN array is determined by
|
|
|
|
* "len" and "offset".
|
|
|
|
*/
|
|
|
|
struct hv_mpb_array {
|
|
|
|
/* Length and Offset determines the # of pfns in the array */
|
|
|
|
u32 len;
|
|
|
|
u32 offset;
|
|
|
|
u64 pfn_array[];
|
|
|
|
};
|
|
|
|
|
2011-05-13 06:34:16 +04:00
|
|
|
/* 0x18 includes the proprietary packet header */
|
|
|
|
#define MAX_PAGE_BUFFER_PACKET (0x18 + \
|
|
|
|
(sizeof(struct hv_page_buffer) * \
|
|
|
|
MAX_PAGE_BUFFER_COUNT))
|
|
|
|
#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \
|
|
|
|
sizeof(struct hv_multipage_buffer))
|
|
|
|
|
|
|
|
|
|
|
|
#pragma pack(pop)
|
|
|
|
|
2011-05-13 06:34:17 +04:00
|
|
|
struct hv_ring_buffer {
|
|
|
|
/* Offset in bytes from the start of ring data below */
|
|
|
|
u32 write_index;
|
|
|
|
|
|
|
|
/* Offset in bytes from the start of ring data below */
|
|
|
|
u32 read_index;
|
|
|
|
|
|
|
|
u32 interrupt_mask;
|
|
|
|
|
2012-12-01 18:46:39 +04:00
|
|
|
/*
|
2018-06-05 23:37:51 +03:00
|
|
|
* WS2012/Win8 and later versions of Hyper-V implement interrupt
|
|
|
|
* driven flow management. The feature bit feat_pending_send_sz
|
|
|
|
* is set by the host on the host->guest ring buffer, and by the
|
|
|
|
* guest on the guest->host ring buffer.
|
2012-12-01 18:46:39 +04:00
|
|
|
*
|
2018-06-05 23:37:51 +03:00
|
|
|
* The meaning of the feature bit is a bit complex in that it has
|
|
|
|
* semantics that apply to both ring buffers. If the guest sets
|
|
|
|
* the feature bit in the guest->host ring buffer, the guest is
|
|
|
|
* telling the host that:
|
|
|
|
* 1) It will set the pending_send_sz field in the guest->host ring
|
|
|
|
* buffer when it is waiting for space to become available, and
|
|
|
|
* 2) It will read the pending_send_sz field in the host->guest
|
|
|
|
* ring buffer and interrupt the host when it frees enough space
|
|
|
|
*
|
|
|
|
* Similarly, if the host sets the feature bit in the host->guest
|
|
|
|
* ring buffer, the host is telling the guest that:
|
|
|
|
* 1) It will set the pending_send_sz field in the host->guest ring
|
|
|
|
* buffer when it is waiting for space to become available, and
|
|
|
|
* 2) It will read the pending_send_sz field in the guest->host
|
|
|
|
* ring buffer and interrupt the guest when it frees enough space
|
|
|
|
*
|
|
|
|
* If either the guest or host does not set the feature bit that it
|
|
|
|
* owns, that guest or host must do polling if it encounters a full
|
|
|
|
* ring buffer, and not signal the other end with an interrupt.
|
2011-05-13 06:34:17 +04:00
|
|
|
*/
|
2012-12-01 18:46:39 +04:00
|
|
|
u32 pending_send_sz;
|
|
|
|
u32 reserved1[12];
|
|
|
|
union {
|
|
|
|
struct {
|
|
|
|
u32 feat_pending_send_sz:1;
|
|
|
|
};
|
|
|
|
u32 value;
|
|
|
|
} feature_bits;
|
|
|
|
|
|
|
|
/* Pad it to PAGE_SIZE so that data starts on page boundary */
|
|
|
|
u8 reserved2[4028];
|
2011-05-13 06:34:17 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Ring data starts here + RingDataStartOffset
|
|
|
|
* !!! DO NOT place any fields below this !!!
|
|
|
|
*/
|
|
|
|
u8 buffer[0];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct hv_ring_buffer_info {
|
|
|
|
struct hv_ring_buffer *ring_buffer;
|
|
|
|
u32 ring_size; /* Include the shared header */
|
2018-03-28 03:48:38 +03:00
|
|
|
struct reciprocal_value ring_size_div10_reciprocal;
|
2011-05-13 06:34:17 +04:00
|
|
|
spinlock_t ring_lock;
|
|
|
|
|
|
|
|
u32 ring_datasize; /* < ring_size */
|
2016-04-03 03:59:51 +03:00
|
|
|
u32 priv_read_index;
|
2019-03-14 23:05:15 +03:00
|
|
|
/*
|
|
|
|
* The ring buffer mutex lock. This lock prevents the ring buffer from
|
|
|
|
* being freed while the ring buffer is being accessed.
|
|
|
|
*/
|
|
|
|
struct mutex ring_buffer_mutex;
|
2011-05-13 06:34:17 +04:00
|
|
|
};
|
|
|
|
|
2012-03-27 17:20:45 +04:00
|
|
|
|
2017-02-12 09:02:24 +03:00
|
|
|
static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi)
|
2016-04-03 03:59:46 +03:00
|
|
|
{
|
|
|
|
u32 read_loc, write_loc, dsize, read;
|
|
|
|
|
|
|
|
dsize = rbi->ring_datasize;
|
|
|
|
read_loc = rbi->ring_buffer->read_index;
|
|
|
|
write_loc = READ_ONCE(rbi->ring_buffer->write_index);
|
|
|
|
|
|
|
|
read = write_loc >= read_loc ? (write_loc - read_loc) :
|
|
|
|
(dsize - read_loc) + write_loc;
|
|
|
|
|
|
|
|
return read;
|
|
|
|
}
|
|
|
|
|
2017-02-12 09:02:24 +03:00
|
|
|
static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi)
|
2016-04-03 03:59:46 +03:00
|
|
|
{
|
|
|
|
u32 read_loc, write_loc, dsize, write;
|
|
|
|
|
|
|
|
dsize = rbi->ring_datasize;
|
|
|
|
read_loc = READ_ONCE(rbi->ring_buffer->read_index);
|
|
|
|
write_loc = rbi->ring_buffer->write_index;
|
|
|
|
|
|
|
|
write = write_loc >= read_loc ? dsize - (write_loc - read_loc) :
|
|
|
|
read_loc - write_loc;
|
|
|
|
return write;
|
|
|
|
}
|
|
|
|
|
2018-03-28 03:48:38 +03:00
|
|
|
static inline u32 hv_get_avail_to_write_percent(
|
|
|
|
const struct hv_ring_buffer_info *rbi)
|
|
|
|
{
|
|
|
|
u32 avail_write = hv_get_bytes_to_write(rbi);
|
|
|
|
|
|
|
|
return reciprocal_divide(
|
|
|
|
(avail_write << 3) + (avail_write << 1),
|
|
|
|
rbi->ring_size_div10_reciprocal);
|
|
|
|
}
|
|
|
|
|
2012-12-01 18:46:44 +04:00
|
|
|
/*
|
|
|
|
* VMBUS version is 32 bit entity broken up into
|
|
|
|
* two 16 bit quantities: major_number. minor_number.
|
|
|
|
*
|
|
|
|
* 0 . 13 (Windows Server 2008)
|
|
|
|
* 1 . 1 (Windows 7)
|
|
|
|
* 2 . 4 (Windows 8)
|
2014-04-04 05:02:45 +04:00
|
|
|
* 3 . 0 (Windows 8 R2)
|
2015-05-27 00:23:01 +03:00
|
|
|
* 4 . 0 (Windows 10)
|
Drivers: hv: vmbus: enable VMBus protocol version 5.0
With VMBus protocol 5.0, we're able to better support new features, e.g.
running two or more VMBus drivers simultaneously in a single VM -- note:
we can't simply load the current VMBus driver twice, instead, a secondary
VMBus driver must be implemented.
This patch adds the support for the new VMBus protocol, which is available
on new Windows hosts, by:
1) We still use SINT2 for compatibility;
2) We must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, we must use the Message Connection ID field in
the host-returned VersionResponse Message.
Notes for developers of the secondary VMBus driver:
1) Must use VMBus protocol 5.0 as well;
2) Must use a different SINT number that is not in use.
3) Must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, must use the Message Connection ID field in
the host-returned VersionResponse Message.
4) It's possible that the primary VMBus driver using protocol version 4.0
can work with a secondary VMBus driver using protocol version 5.0, but it's
recommended that both should use 5.0 for new Hyper-V features in the future.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-12 12:30:33 +03:00
|
|
|
* 5 . 0 (Newer Windows 10)
|
2012-12-01 18:46:44 +04:00
|
|
|
*/
|
|
|
|
|
|
|
|
#define VERSION_WS2008 ((0 << 16) | (13))
|
|
|
|
#define VERSION_WIN7 ((1 << 16) | (1))
|
|
|
|
#define VERSION_WIN8 ((2 << 16) | (4))
|
2014-04-04 05:02:45 +04:00
|
|
|
#define VERSION_WIN8_1 ((3 << 16) | (0))
|
2015-05-27 00:23:01 +03:00
|
|
|
#define VERSION_WIN10 ((4 << 16) | (0))
|
Drivers: hv: vmbus: enable VMBus protocol version 5.0
With VMBus protocol 5.0, we're able to better support new features, e.g.
running two or more VMBus drivers simultaneously in a single VM -- note:
we can't simply load the current VMBus driver twice, instead, a secondary
VMBus driver must be implemented.
This patch adds the support for the new VMBus protocol, which is available
on new Windows hosts, by:
1) We still use SINT2 for compatibility;
2) We must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, we must use the Message Connection ID field in
the host-returned VersionResponse Message.
Notes for developers of the secondary VMBus driver:
1) Must use VMBus protocol 5.0 as well;
2) Must use a different SINT number that is not in use.
3) Must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, must use the Message Connection ID field in
the host-returned VersionResponse Message.
4) It's possible that the primary VMBus driver using protocol version 4.0
can work with a secondary VMBus driver using protocol version 5.0, but it's
recommended that both should use 5.0 for new Hyper-V features in the future.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-12 12:30:33 +03:00
|
|
|
#define VERSION_WIN10_V5 ((5 << 16) | (0))
|
2012-12-01 18:46:44 +04:00
|
|
|
|
|
|
|
#define VERSION_INVAL -1
|
|
|
|
|
Drivers: hv: vmbus: enable VMBus protocol version 5.0
With VMBus protocol 5.0, we're able to better support new features, e.g.
running two or more VMBus drivers simultaneously in a single VM -- note:
we can't simply load the current VMBus driver twice, instead, a secondary
VMBus driver must be implemented.
This patch adds the support for the new VMBus protocol, which is available
on new Windows hosts, by:
1) We still use SINT2 for compatibility;
2) We must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, we must use the Message Connection ID field in
the host-returned VersionResponse Message.
Notes for developers of the secondary VMBus driver:
1) Must use VMBus protocol 5.0 as well;
2) Must use a different SINT number that is not in use.
3) Must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, must use the Message Connection ID field in
the host-returned VersionResponse Message.
4) It's possible that the primary VMBus driver using protocol version 4.0
can work with a secondary VMBus driver using protocol version 5.0, but it's
recommended that both should use 5.0 for new Hyper-V features in the future.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-12 12:30:33 +03:00
|
|
|
#define VERSION_CURRENT VERSION_WIN10_V5
|
2011-05-13 06:34:18 +04:00
|
|
|
|
2011-05-13 06:34:19 +04:00
|
|
|
/* Make maximum size of pipe payload of 16K */
|
|
|
|
#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384)
|
|
|
|
|
|
|
|
/* Define PipeMode values. */
|
|
|
|
#define VMBUS_PIPE_TYPE_BYTE 0x00000000
|
|
|
|
#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004
|
|
|
|
|
|
|
|
/* The size of the user defined data buffer for non-pipe offers. */
|
|
|
|
#define MAX_USER_DEFINED_BYTES 120
|
|
|
|
|
|
|
|
/* The size of the user defined data buffer for pipe offers. */
|
|
|
|
#define MAX_PIPE_USER_DEFINED_BYTES 116
|
|
|
|
|
|
|
|
/*
|
|
|
|
* At the center of the Channel Management library is the Channel Offer. This
|
|
|
|
* struct contains the fundamental information about an offer.
|
|
|
|
*/
|
|
|
|
struct vmbus_channel_offer {
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t if_type;
|
|
|
|
guid_t if_instance;
|
2012-12-01 18:46:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* These two fields are not currently used.
|
|
|
|
*/
|
|
|
|
u64 reserved1;
|
|
|
|
u64 reserved2;
|
|
|
|
|
2011-05-13 06:34:19 +04:00
|
|
|
u16 chn_flags;
|
|
|
|
u16 mmio_megabytes; /* in bytes * 1024 * 1024 */
|
|
|
|
|
|
|
|
union {
|
|
|
|
/* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */
|
|
|
|
struct {
|
|
|
|
unsigned char user_def[MAX_USER_DEFINED_BYTES];
|
|
|
|
} std;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Pipes:
|
|
|
|
* The following sructure is an integrated pipe protocol, which
|
|
|
|
* is implemented on top of standard user-defined data. Pipe
|
|
|
|
* clients have MAX_PIPE_USER_DEFINED_BYTES left for their own
|
|
|
|
* use.
|
|
|
|
*/
|
|
|
|
struct {
|
|
|
|
u32 pipe_mode;
|
|
|
|
unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES];
|
|
|
|
} pipe;
|
|
|
|
} u;
|
2012-12-01 18:46:40 +04:00
|
|
|
/*
|
2019-09-06 02:01:16 +03:00
|
|
|
* The sub_channel_index is defined in Win8: a value of zero means a
|
|
|
|
* primary channel and a value of non-zero means a sub-channel.
|
|
|
|
*
|
|
|
|
* Before Win8, the field is reserved, meaning it's always zero.
|
2012-12-01 18:46:40 +04:00
|
|
|
*/
|
|
|
|
u16 sub_channel_index;
|
|
|
|
u16 reserved3;
|
2011-05-13 06:34:19 +04:00
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Server Flags */
|
|
|
|
#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1
|
|
|
|
#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2
|
|
|
|
#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4
|
|
|
|
#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10
|
|
|
|
#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100
|
|
|
|
#define VMBUS_CHANNEL_PARENT_OFFER 0x200
|
|
|
|
#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400
|
2016-01-28 09:29:38 +03:00
|
|
|
#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000
|
2011-05-13 06:34:19 +04:00
|
|
|
|
2011-05-13 06:34:20 +04:00
|
|
|
struct vmpacket_descriptor {
|
|
|
|
u16 type;
|
|
|
|
u16 offset8;
|
|
|
|
u16 len8;
|
|
|
|
u16 flags;
|
|
|
|
u64 trans_id;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmpacket_header {
|
|
|
|
u32 prev_pkt_start_offset;
|
|
|
|
struct vmpacket_descriptor descriptor;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmtransfer_page_range {
|
|
|
|
u32 byte_count;
|
|
|
|
u32 byte_offset;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmtransfer_page_packet_header {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u16 xfer_pageset_id;
|
2012-08-16 19:23:20 +04:00
|
|
|
u8 sender_owns_set;
|
2011-05-13 06:34:20 +04:00
|
|
|
u8 reserved;
|
|
|
|
u32 range_cnt;
|
|
|
|
struct vmtransfer_page_range ranges[1];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmgpadl_packet_header {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u32 gpadl;
|
|
|
|
u32 reserved;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmadd_remove_transfer_page_set {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u32 gpadl;
|
|
|
|
u16 xfer_pageset_id;
|
|
|
|
u16 reserved;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This structure defines a range in guest physical space that can be made to
|
|
|
|
* look virtually contiguous.
|
|
|
|
*/
|
|
|
|
struct gpa_range {
|
|
|
|
u32 byte_count;
|
|
|
|
u32 byte_offset;
|
|
|
|
u64 pfn_array[0];
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the format for an Establish Gpadl packet, which contains a handle by
|
|
|
|
* which this GPADL will be known and a set of GPA ranges associated with it.
|
|
|
|
* This can be converted to a MDL by the guest OS. If there are multiple GPA
|
|
|
|
* ranges, then the resulting MDL will be "chained," representing multiple VA
|
|
|
|
* ranges.
|
|
|
|
*/
|
|
|
|
struct vmestablish_gpadl {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u32 gpadl;
|
|
|
|
u32 range_cnt;
|
|
|
|
struct gpa_range range[1];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the format for a Teardown Gpadl packet, which indicates that the
|
|
|
|
* GPADL handle in the Establish Gpadl packet will never be referenced again.
|
|
|
|
*/
|
|
|
|
struct vmteardown_gpadl {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u32 gpadl;
|
|
|
|
u32 reserved; /* for alignment to a 8-byte boundary */
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is the format for a GPA-Direct packet, which contains a set of GPA
|
|
|
|
* ranges, in addition to commands and/or data.
|
|
|
|
*/
|
|
|
|
struct vmdata_gpa_direct {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u32 reserved;
|
|
|
|
u32 range_cnt;
|
|
|
|
struct gpa_range range[1];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* This is the format for a Additional Data Packet. */
|
|
|
|
struct vmadditional_data {
|
|
|
|
struct vmpacket_descriptor d;
|
|
|
|
u64 total_bytes;
|
|
|
|
u32 offset;
|
|
|
|
u32 byte_cnt;
|
|
|
|
unsigned char data[1];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
union vmpacket_largest_possible_header {
|
|
|
|
struct vmpacket_descriptor simple_hdr;
|
|
|
|
struct vmtransfer_page_packet_header xfer_page_hdr;
|
|
|
|
struct vmgpadl_packet_header gpadl_hdr;
|
|
|
|
struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr;
|
|
|
|
struct vmestablish_gpadl establish_gpadl_hdr;
|
|
|
|
struct vmteardown_gpadl teardown_gpadl_hdr;
|
|
|
|
struct vmdata_gpa_direct data_gpa_direct_hdr;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define VMPACKET_DATA_START_ADDRESS(__packet) \
|
|
|
|
(void *)(((unsigned char *)__packet) + \
|
|
|
|
((struct vmpacket_descriptor)__packet)->offset8 * 8)
|
|
|
|
|
|
|
|
#define VMPACKET_DATA_LENGTH(__packet) \
|
|
|
|
((((struct vmpacket_descriptor)__packet)->len8 - \
|
|
|
|
((struct vmpacket_descriptor)__packet)->offset8) * 8)
|
|
|
|
|
|
|
|
#define VMPACKET_TRANSFER_MODE(__packet) \
|
|
|
|
(((struct IMPACT)__packet)->type)
|
|
|
|
|
|
|
|
enum vmbus_packet_type {
|
|
|
|
VM_PKT_INVALID = 0x0,
|
|
|
|
VM_PKT_SYNCH = 0x1,
|
|
|
|
VM_PKT_ADD_XFER_PAGESET = 0x2,
|
|
|
|
VM_PKT_RM_XFER_PAGESET = 0x3,
|
|
|
|
VM_PKT_ESTABLISH_GPADL = 0x4,
|
|
|
|
VM_PKT_TEARDOWN_GPADL = 0x5,
|
|
|
|
VM_PKT_DATA_INBAND = 0x6,
|
|
|
|
VM_PKT_DATA_USING_XFER_PAGES = 0x7,
|
|
|
|
VM_PKT_DATA_USING_GPADL = 0x8,
|
|
|
|
VM_PKT_DATA_USING_GPA_DIRECT = 0x9,
|
|
|
|
VM_PKT_CANCEL_REQUEST = 0xa,
|
|
|
|
VM_PKT_COMP = 0xb,
|
|
|
|
VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc,
|
|
|
|
VM_PKT_ADDITIONAL_DATA = 0xd
|
|
|
|
};
|
|
|
|
|
|
|
|
#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1
|
2011-05-13 06:34:19 +04:00
|
|
|
|
2011-05-13 06:34:21 +04:00
|
|
|
|
|
|
|
/* Version 1 messages */
|
|
|
|
enum vmbus_channel_message_type {
|
|
|
|
CHANNELMSG_INVALID = 0,
|
|
|
|
CHANNELMSG_OFFERCHANNEL = 1,
|
|
|
|
CHANNELMSG_RESCIND_CHANNELOFFER = 2,
|
|
|
|
CHANNELMSG_REQUESTOFFERS = 3,
|
|
|
|
CHANNELMSG_ALLOFFERS_DELIVERED = 4,
|
|
|
|
CHANNELMSG_OPENCHANNEL = 5,
|
|
|
|
CHANNELMSG_OPENCHANNEL_RESULT = 6,
|
|
|
|
CHANNELMSG_CLOSECHANNEL = 7,
|
|
|
|
CHANNELMSG_GPADL_HEADER = 8,
|
|
|
|
CHANNELMSG_GPADL_BODY = 9,
|
|
|
|
CHANNELMSG_GPADL_CREATED = 10,
|
|
|
|
CHANNELMSG_GPADL_TEARDOWN = 11,
|
|
|
|
CHANNELMSG_GPADL_TORNDOWN = 12,
|
|
|
|
CHANNELMSG_RELID_RELEASED = 13,
|
|
|
|
CHANNELMSG_INITIATE_CONTACT = 14,
|
|
|
|
CHANNELMSG_VERSION_RESPONSE = 15,
|
|
|
|
CHANNELMSG_UNLOAD = 16,
|
2015-04-23 07:31:32 +03:00
|
|
|
CHANNELMSG_UNLOAD_RESPONSE = 17,
|
2016-01-28 09:29:40 +03:00
|
|
|
CHANNELMSG_18 = 18,
|
|
|
|
CHANNELMSG_19 = 19,
|
|
|
|
CHANNELMSG_20 = 20,
|
|
|
|
CHANNELMSG_TL_CONNECT_REQUEST = 21,
|
2011-05-13 06:34:21 +04:00
|
|
|
CHANNELMSG_COUNT
|
|
|
|
};
|
|
|
|
|
2019-09-06 02:01:22 +03:00
|
|
|
/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */
|
|
|
|
#define INVALID_RELID U32_MAX
|
|
|
|
|
2011-05-13 06:34:21 +04:00
|
|
|
struct vmbus_channel_message_header {
|
|
|
|
enum vmbus_channel_message_type msgtype;
|
|
|
|
u32 padding;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Query VMBus Version parameters */
|
|
|
|
struct vmbus_channel_query_vmbus_version {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 version;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* VMBus Version Supported parameters */
|
|
|
|
struct vmbus_channel_version_supported {
|
|
|
|
struct vmbus_channel_message_header header;
|
2012-08-16 19:23:20 +04:00
|
|
|
u8 version_supported;
|
2011-05-13 06:34:21 +04:00
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Offer Channel parameters */
|
|
|
|
struct vmbus_channel_offer_channel {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
struct vmbus_channel_offer offer;
|
|
|
|
u32 child_relid;
|
|
|
|
u8 monitorid;
|
2012-12-01 18:46:40 +04:00
|
|
|
/*
|
|
|
|
* win7 and beyond splits this field into a bit field.
|
|
|
|
*/
|
|
|
|
u8 monitor_allocated:1;
|
|
|
|
u8 reserved:7;
|
|
|
|
/*
|
|
|
|
* These are new fields added in win7 and later.
|
|
|
|
* Do not access these fields without checking the
|
|
|
|
* negotiated protocol.
|
|
|
|
*
|
|
|
|
* If "is_dedicated_interrupt" is set, we must not set the
|
|
|
|
* associated bit in the channel bitmap while sending the
|
|
|
|
* interrupt to the host.
|
|
|
|
*
|
|
|
|
* connection_id is to be used in signaling the host.
|
|
|
|
*/
|
|
|
|
u16 is_dedicated_interrupt:1;
|
|
|
|
u16 reserved1:15;
|
|
|
|
u32 connection_id;
|
2011-05-13 06:34:21 +04:00
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Rescind Offer parameters */
|
|
|
|
struct vmbus_channel_rescind_offer {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
} __packed;
|
|
|
|
|
2017-03-05 04:27:18 +03:00
|
|
|
static inline u32
|
|
|
|
hv_ringbuffer_pending_size(const struct hv_ring_buffer_info *rbi)
|
|
|
|
{
|
|
|
|
return rbi->ring_buffer->pending_send_sz;
|
|
|
|
}
|
|
|
|
|
2011-05-13 06:34:21 +04:00
|
|
|
/*
|
|
|
|
* Request Offer -- no parameters, SynIC message contains the partition ID
|
|
|
|
* Set Snoop -- no parameters, SynIC message contains the partition ID
|
|
|
|
* Clear Snoop -- no parameters, SynIC message contains the partition ID
|
|
|
|
* All Offers Delivered -- no parameters, SynIC message contains the partition
|
|
|
|
* ID
|
|
|
|
* Flush Client -- no parameters, SynIC message contains the partition ID
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Open Channel parameters */
|
|
|
|
struct vmbus_channel_open_channel {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
|
|
|
|
/* Identifies the specific VMBus channel that is being opened. */
|
|
|
|
u32 child_relid;
|
|
|
|
|
|
|
|
/* ID making a particular open request at a channel offer unique. */
|
|
|
|
u32 openid;
|
|
|
|
|
|
|
|
/* GPADL for the channel's ring buffer. */
|
|
|
|
u32 ringbuffer_gpadlhandle;
|
|
|
|
|
2012-12-01 18:46:48 +04:00
|
|
|
/*
|
|
|
|
* Starting with win8, this field will be used to specify
|
|
|
|
* the target virtual processor on which to deliver the interrupt for
|
|
|
|
* the host to guest communication.
|
|
|
|
* Prior to win8, incoming channel interrupts would only
|
|
|
|
* be delivered on cpu 0. Setting this value to 0 would
|
|
|
|
* preserve the earlier behavior.
|
|
|
|
*/
|
|
|
|
u32 target_vp;
|
2011-05-13 06:34:21 +04:00
|
|
|
|
|
|
|
/*
|
2017-03-05 04:27:17 +03:00
|
|
|
* The upstream ring buffer begins at offset zero in the memory
|
|
|
|
* described by RingBufferGpadlHandle. The downstream ring buffer
|
|
|
|
* follows it at this offset (in pages).
|
|
|
|
*/
|
2011-05-13 06:34:21 +04:00
|
|
|
u32 downstream_ringbuffer_pageoffset;
|
|
|
|
|
|
|
|
/* User-specific data to be passed along to the server endpoint. */
|
|
|
|
unsigned char userdata[MAX_USER_DEFINED_BYTES];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Open Channel Result parameters */
|
|
|
|
struct vmbus_channel_open_result {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
u32 openid;
|
|
|
|
u32 status;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Close channel parameters; */
|
|
|
|
struct vmbus_channel_close_channel {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Channel Message GPADL */
|
|
|
|
#define GPADL_TYPE_RING_BUFFER 1
|
|
|
|
#define GPADL_TYPE_SERVER_SAVE_AREA 2
|
|
|
|
#define GPADL_TYPE_TRANSACTION 8
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The number of PFNs in a GPADL message is defined by the number of
|
|
|
|
* pages that would be spanned by ByteCount and ByteOffset. If the
|
|
|
|
* implied number of PFNs won't fit in this packet, there will be a
|
|
|
|
* follow-up packet that contains more.
|
|
|
|
*/
|
|
|
|
struct vmbus_channel_gpadl_header {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
u32 gpadl;
|
|
|
|
u16 range_buflen;
|
|
|
|
u16 rangecount;
|
|
|
|
struct gpa_range range[0];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* This is the followup packet that contains more PFNs. */
|
|
|
|
struct vmbus_channel_gpadl_body {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 msgnumber;
|
|
|
|
u32 gpadl;
|
|
|
|
u64 pfn[0];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmbus_channel_gpadl_created {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
u32 gpadl;
|
|
|
|
u32 creation_status;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmbus_channel_gpadl_teardown {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
u32 gpadl;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmbus_channel_gpadl_torndown {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 gpadl;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmbus_channel_relid_released {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 child_relid;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct vmbus_channel_initiate_contact {
|
|
|
|
struct vmbus_channel_message_header header;
|
|
|
|
u32 vmbus_version_requested;
|
2014-01-16 05:12:58 +04:00
|
|
|
u32 target_vcpu; /* The VCPU the host should respond to */
|
Drivers: hv: vmbus: enable VMBus protocol version 5.0
With VMBus protocol 5.0, we're able to better support new features, e.g.
running two or more VMBus drivers simultaneously in a single VM -- note:
we can't simply load the current VMBus driver twice, instead, a secondary
VMBus driver must be implemented.
This patch adds the support for the new VMBus protocol, which is available
on new Windows hosts, by:
1) We still use SINT2 for compatibility;
2) We must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, we must use the Message Connection ID field in
the host-returned VersionResponse Message.
Notes for developers of the secondary VMBus driver:
1) Must use VMBus protocol 5.0 as well;
2) Must use a different SINT number that is not in use.
3) Must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, must use the Message Connection ID field in
the host-returned VersionResponse Message.
4) It's possible that the primary VMBus driver using protocol version 4.0
can work with a secondary VMBus driver using protocol version 5.0, but it's
recommended that both should use 5.0 for new Hyper-V features in the future.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-12 12:30:33 +03:00
|
|
|
union {
|
|
|
|
u64 interrupt_page;
|
|
|
|
struct {
|
|
|
|
u8 msg_sint;
|
|
|
|
u8 padding1[3];
|
|
|
|
u32 padding2;
|
|
|
|
};
|
|
|
|
};
|
2011-05-13 06:34:21 +04:00
|
|
|
u64 monitor_page1;
|
|
|
|
u64 monitor_page2;
|
|
|
|
} __packed;
|
|
|
|
|
2016-01-28 09:29:40 +03:00
|
|
|
/* Hyper-V socket: guest's connect()-ing to host */
|
|
|
|
struct vmbus_channel_tl_connect_request {
|
|
|
|
struct vmbus_channel_message_header header;
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t guest_endpoint_id;
|
|
|
|
guid_t host_service_id;
|
2016-01-28 09:29:40 +03:00
|
|
|
} __packed;
|
|
|
|
|
2011-05-13 06:34:21 +04:00
|
|
|
struct vmbus_channel_version_response {
|
|
|
|
struct vmbus_channel_message_header header;
|
2012-08-16 19:23:20 +04:00
|
|
|
u8 version_supported;
|
Drivers: hv: vmbus: enable VMBus protocol version 5.0
With VMBus protocol 5.0, we're able to better support new features, e.g.
running two or more VMBus drivers simultaneously in a single VM -- note:
we can't simply load the current VMBus driver twice, instead, a secondary
VMBus driver must be implemented.
This patch adds the support for the new VMBus protocol, which is available
on new Windows hosts, by:
1) We still use SINT2 for compatibility;
2) We must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, we must use the Message Connection ID field in
the host-returned VersionResponse Message.
Notes for developers of the secondary VMBus driver:
1) Must use VMBus protocol 5.0 as well;
2) Must use a different SINT number that is not in use.
3) Must use Connection ID 4 for the Initiate Contact Message, and for
subsequent messages, must use the Message Connection ID field in
the host-returned VersionResponse Message.
4) It's possible that the primary VMBus driver using protocol version 4.0
can work with a secondary VMBus driver using protocol version 5.0, but it's
recommended that both should use 5.0 for new Hyper-V features in the future.
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-05-12 12:30:33 +03:00
|
|
|
|
|
|
|
u8 connection_state;
|
|
|
|
u16 padding;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* On new hosts that support VMBus protocol 5.0, we must use
|
|
|
|
* VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message,
|
|
|
|
* and for subsequent messages, we must use the Message Connection ID
|
|
|
|
* field in the host-returned Version Response Message.
|
|
|
|
*
|
|
|
|
* On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1).
|
|
|
|
*/
|
|
|
|
u32 msg_conn_id;
|
2011-05-13 06:34:21 +04:00
|
|
|
} __packed;
|
|
|
|
|
|
|
|
enum vmbus_channel_state {
|
|
|
|
CHANNEL_OFFER_STATE,
|
|
|
|
CHANNEL_OPENING_STATE,
|
|
|
|
CHANNEL_OPEN_STATE,
|
2013-05-23 23:02:32 +04:00
|
|
|
CHANNEL_OPENED_STATE,
|
2011-05-13 06:34:21 +04:00
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Represents each channel msg on the vmbus connection This is a
|
|
|
|
* variable-size data structure depending on the msg type itself
|
|
|
|
*/
|
|
|
|
struct vmbus_channel_msginfo {
|
|
|
|
/* Bookkeeping stuff */
|
|
|
|
struct list_head msglistentry;
|
|
|
|
|
|
|
|
/* So far, this is only used to handle gpadl body message */
|
|
|
|
struct list_head submsglist;
|
|
|
|
|
|
|
|
/* Synchronize the request/response if needed */
|
|
|
|
struct completion waitevent;
|
2016-12-23 03:54:00 +03:00
|
|
|
struct vmbus_channel *waiting_channel;
|
2011-05-13 06:34:21 +04:00
|
|
|
union {
|
|
|
|
struct vmbus_channel_version_supported version_supported;
|
|
|
|
struct vmbus_channel_open_result open_result;
|
|
|
|
struct vmbus_channel_gpadl_torndown gpadl_torndown;
|
|
|
|
struct vmbus_channel_gpadl_created gpadl_created;
|
|
|
|
struct vmbus_channel_version_response version_response;
|
|
|
|
} response;
|
|
|
|
|
|
|
|
u32 msgsize;
|
|
|
|
/*
|
|
|
|
* The channel message that goes out on the "wire".
|
|
|
|
* It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header
|
|
|
|
*/
|
|
|
|
unsigned char msg[0];
|
|
|
|
};
|
|
|
|
|
2011-06-07 02:49:58 +04:00
|
|
|
struct vmbus_close_msg {
|
|
|
|
struct vmbus_channel_msginfo info;
|
|
|
|
struct vmbus_channel_close_channel msg;
|
|
|
|
};
|
|
|
|
|
2012-12-01 18:46:45 +04:00
|
|
|
/* Define connection identifier type. */
|
|
|
|
union hv_connection_id {
|
|
|
|
u32 asu32;
|
|
|
|
struct {
|
|
|
|
u32 id:24;
|
|
|
|
u32 reserved:8;
|
|
|
|
} u;
|
|
|
|
};
|
|
|
|
|
2016-09-02 15:58:23 +03:00
|
|
|
enum hv_numa_policy {
|
|
|
|
HV_BALANCED = 0,
|
|
|
|
HV_LOCALIZED,
|
|
|
|
};
|
|
|
|
|
2015-12-26 07:00:30 +03:00
|
|
|
enum vmbus_device_type {
|
|
|
|
HV_IDE = 0,
|
|
|
|
HV_SCSI,
|
|
|
|
HV_FC,
|
|
|
|
HV_NIC,
|
|
|
|
HV_ND,
|
|
|
|
HV_PCIE,
|
|
|
|
HV_FB,
|
|
|
|
HV_KBD,
|
|
|
|
HV_MOUSE,
|
|
|
|
HV_KVP,
|
|
|
|
HV_TS,
|
|
|
|
HV_HB,
|
|
|
|
HV_SHUTDOWN,
|
|
|
|
HV_FCOPY,
|
|
|
|
HV_BACKUP,
|
|
|
|
HV_DM,
|
2016-12-03 23:34:29 +03:00
|
|
|
HV_UNKNOWN,
|
2015-12-26 07:00:30 +03:00
|
|
|
};
|
|
|
|
|
|
|
|
struct vmbus_device {
|
|
|
|
u16 dev_type;
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t guid;
|
2015-12-26 07:00:30 +03:00
|
|
|
bool perf_device;
|
|
|
|
};
|
|
|
|
|
2011-06-07 02:49:57 +04:00
|
|
|
struct vmbus_channel {
|
|
|
|
struct list_head listentry;
|
|
|
|
|
|
|
|
struct hv_device *device_obj;
|
|
|
|
|
|
|
|
enum vmbus_channel_state state;
|
|
|
|
|
|
|
|
struct vmbus_channel_offer_channel offermsg;
|
|
|
|
/*
|
|
|
|
* These are based on the OfferMsg.MonitorId.
|
|
|
|
* Save it here for easy access.
|
|
|
|
*/
|
|
|
|
u8 monitor_grp;
|
|
|
|
u8 monitor_bit;
|
|
|
|
|
2014-12-02 00:28:39 +03:00
|
|
|
bool rescind; /* got rescind msg */
|
2017-11-14 16:53:33 +03:00
|
|
|
struct completion rescind_event;
|
2014-12-02 00:28:39 +03:00
|
|
|
|
2011-06-07 02:49:57 +04:00
|
|
|
u32 ringbuffer_gpadlhandle;
|
|
|
|
|
|
|
|
/* Allocated memory for ring buffer */
|
2018-09-14 19:10:16 +03:00
|
|
|
struct page *ringbuffer_page;
|
2011-06-07 02:49:57 +04:00
|
|
|
u32 ringbuffer_pagecount;
|
2018-09-14 19:10:17 +03:00
|
|
|
u32 ringbuffer_send_offset;
|
2011-06-07 02:49:57 +04:00
|
|
|
struct hv_ring_buffer_info outbound; /* send to parent */
|
|
|
|
struct hv_ring_buffer_info inbound; /* receive from parent */
|
|
|
|
|
2011-06-07 02:49:58 +04:00
|
|
|
struct vmbus_close_msg close_msg;
|
|
|
|
|
2017-10-29 21:33:40 +03:00
|
|
|
/* Statistics */
|
|
|
|
u64 interrupts; /* Host to Guest interrupts */
|
|
|
|
u64 sig_events; /* Guest to Host events */
|
|
|
|
|
2019-02-04 10:13:09 +03:00
|
|
|
/*
|
|
|
|
* Guest to host interrupts caused by the outbound ring buffer changing
|
|
|
|
* from empty to not empty.
|
|
|
|
*/
|
|
|
|
u64 intr_out_empty;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Indicates that a full outbound ring buffer was encountered. The flag
|
|
|
|
* is set to true when a full outbound ring buffer is encountered and
|
|
|
|
* set to false when a write to the outbound ring buffer is completed.
|
|
|
|
*/
|
|
|
|
bool out_full_flag;
|
|
|
|
|
2017-02-12 09:02:18 +03:00
|
|
|
/* Channel callback's invoked in softirq context */
|
2017-02-12 09:02:20 +03:00
|
|
|
struct tasklet_struct callback_event;
|
2011-06-07 02:49:57 +04:00
|
|
|
void (*onchannel_callback)(void *context);
|
|
|
|
void *channel_callback_context;
|
2012-12-01 18:46:33 +04:00
|
|
|
|
|
|
|
/*
|
2017-02-12 09:02:21 +03:00
|
|
|
* A channel can be marked for one of three modes of reading:
|
|
|
|
* BATCHED - callback called from taslket and should read
|
|
|
|
* channel until empty. Interrupts from the host
|
|
|
|
* are masked while read is in process (default).
|
|
|
|
* DIRECT - callback called from tasklet (softirq).
|
|
|
|
* ISR - callback called in interrupt context and must
|
|
|
|
* invoke its own deferred processing.
|
|
|
|
* Host interrupts are disabled and must be re-enabled
|
|
|
|
* when ring is empty.
|
2012-12-01 18:46:33 +04:00
|
|
|
*/
|
2017-02-12 09:02:21 +03:00
|
|
|
enum hv_callback_mode {
|
|
|
|
HV_CALL_BATCHED,
|
|
|
|
HV_CALL_DIRECT,
|
|
|
|
HV_CALL_ISR
|
|
|
|
} callback_mode;
|
2012-12-01 18:46:45 +04:00
|
|
|
|
|
|
|
bool is_dedicated_interrupt;
|
2017-08-02 19:09:16 +03:00
|
|
|
u64 sig_event;
|
2012-12-01 18:46:48 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Starting with win8, this field will be used to specify
|
|
|
|
* the target virtual processor on which to deliver the interrupt for
|
|
|
|
* the host to guest communication.
|
|
|
|
* Prior to win8, incoming channel interrupts would only
|
|
|
|
* be delivered on cpu 0. Setting this value to 0 would
|
|
|
|
* preserve the earlier behavior.
|
|
|
|
*/
|
|
|
|
u32 target_vp;
|
2014-04-09 05:45:53 +04:00
|
|
|
/* The corresponding CPUID in the guest */
|
|
|
|
u32 target_cpu;
|
2015-05-31 09:37:48 +03:00
|
|
|
/*
|
|
|
|
* State to manage the CPU affiliation of channels.
|
|
|
|
*/
|
2015-08-05 10:52:39 +03:00
|
|
|
struct cpumask alloced_cpus_in_node;
|
2015-05-31 09:37:48 +03:00
|
|
|
int numa_node;
|
2013-05-23 23:02:32 +04:00
|
|
|
/*
|
|
|
|
* Support for sub-channels. For high performance devices,
|
|
|
|
* it will be useful to have multiple sub-channels to support
|
|
|
|
* a scalable communication infrastructure with the host.
|
|
|
|
* The support for sub-channels is implemented as an extention
|
|
|
|
* to the current infrastructure.
|
|
|
|
* The initial offer is considered the primary channel and this
|
|
|
|
* offer message will indicate if the host supports sub-channels.
|
|
|
|
* The guest is free to ask for sub-channels to be offerred and can
|
|
|
|
* open these sub-channels as a normal "primary" channel. However,
|
|
|
|
* all sub-channels will have the same type and instance guids as the
|
|
|
|
* primary channel. Requests sent on a given channel will result in a
|
|
|
|
* response on the same channel.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Sub-channel creation callback. This callback will be called in
|
|
|
|
* process context when a sub-channel offer is received from the host.
|
|
|
|
* The guest can open the sub-channel in the context of this callback.
|
|
|
|
*/
|
|
|
|
void (*sc_creation_callback)(struct vmbus_channel *new_sc);
|
|
|
|
|
2016-01-28 09:29:42 +03:00
|
|
|
/*
|
|
|
|
* Channel rescind callback. Some channels (the hvsock ones), need to
|
|
|
|
* register a callback which is invoked in vmbus_onoffer_rescind().
|
|
|
|
*/
|
|
|
|
void (*chn_rescind_callback)(struct vmbus_channel *channel);
|
|
|
|
|
2015-01-20 18:45:05 +03:00
|
|
|
/*
|
|
|
|
* The spinlock to protect the structure. It is being used to protect
|
|
|
|
* test-and-set access to various attributes of the structure as well
|
|
|
|
* as all sc_list operations.
|
|
|
|
*/
|
|
|
|
spinlock_t lock;
|
2013-05-23 23:02:32 +04:00
|
|
|
/*
|
|
|
|
* All Sub-channels of a primary channel are linked here.
|
|
|
|
*/
|
|
|
|
struct list_head sc_list;
|
|
|
|
/*
|
|
|
|
* The primary channel this sub-channel belongs to.
|
|
|
|
* This will be NULL for the primary channel.
|
|
|
|
*/
|
|
|
|
struct vmbus_channel *primary_channel;
|
2014-02-04 00:42:45 +04:00
|
|
|
/*
|
|
|
|
* Support per-channel state for use by vmbus drivers.
|
|
|
|
*/
|
|
|
|
void *per_channel_state;
|
2014-04-09 05:45:54 +04:00
|
|
|
/*
|
|
|
|
* To support per-cpu lookup mapping of relid to channel,
|
|
|
|
* link up channels based on their CPU affinity.
|
|
|
|
*/
|
|
|
|
struct list_head percpu_list;
|
2017-03-05 04:13:57 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Defer freeing channel until after all cpu's have
|
|
|
|
* gone through grace period.
|
|
|
|
*/
|
|
|
|
struct rcu_head rcu;
|
|
|
|
|
2017-09-22 06:58:49 +03:00
|
|
|
/*
|
|
|
|
* For sysfs per-channel properties.
|
|
|
|
*/
|
|
|
|
struct kobject kobj;
|
|
|
|
|
2016-07-02 02:26:37 +03:00
|
|
|
/*
|
|
|
|
* For performance critical channels (storage, networking
|
|
|
|
* etc,), Hyper-V has a mechanism to enhance the throughput
|
|
|
|
* at the expense of latency:
|
|
|
|
* When the host is to be signaled, we just set a bit in a shared page
|
|
|
|
* and this bit will be inspected by the hypervisor within a certain
|
|
|
|
* window and if the bit is set, the host will be signaled. The window
|
|
|
|
* of time is the monitor latency - currently around 100 usecs. This
|
|
|
|
* mechanism improves throughput by:
|
|
|
|
*
|
|
|
|
* A) Making the host more efficient - each time it wakes up,
|
|
|
|
* potentially it will process morev number of packets. The
|
|
|
|
* monitor latency allows a batch to build up.
|
|
|
|
* B) By deferring the hypercall to signal, we will also minimize
|
|
|
|
* the interrupts.
|
|
|
|
*
|
|
|
|
* Clearly, these optimizations improve throughput at the expense of
|
|
|
|
* latency. Furthermore, since the channel is shared for both
|
|
|
|
* control and data messages, control messages currently suffer
|
|
|
|
* unnecessary latency adversley impacting performance and boot
|
|
|
|
* time. To fix this issue, permit tagging the channel as being
|
|
|
|
* in "low latency" mode. In this mode, we will bypass the monitor
|
|
|
|
* mechanism.
|
|
|
|
*/
|
|
|
|
bool low_latency;
|
2016-01-28 09:29:45 +03:00
|
|
|
|
2016-09-02 15:58:23 +03:00
|
|
|
/*
|
|
|
|
* NUMA distribution policy:
|
2018-03-05 08:17:17 +03:00
|
|
|
* We support two policies:
|
2016-09-02 15:58:23 +03:00
|
|
|
* 1) Balanced: Here all performance critical channels are
|
|
|
|
* distributed evenly amongst all the NUMA nodes.
|
|
|
|
* This policy will be the default policy.
|
|
|
|
* 2) Localized: All channels of a given instance of a
|
|
|
|
* performance critical service will be assigned CPUs
|
|
|
|
* within a selected NUMA node.
|
|
|
|
*/
|
|
|
|
enum hv_numa_policy affinity_policy;
|
|
|
|
|
2017-08-11 20:03:59 +03:00
|
|
|
bool probe_done;
|
|
|
|
|
Drivers: hv: vmbus: Offload the handling of channels to two workqueues
vmbus_process_offer() mustn't call channel->sc_creation_callback()
directly for sub-channels, because sc_creation_callback() ->
vmbus_open() may never get the host's response to the
OPEN_CHANNEL message (the host may rescind a channel at any time,
e.g. in the case of hot removing a NIC), and vmbus_onoffer_rescind()
may not wake up the vmbus_open() as it's blocked due to a non-zero
vmbus_connection.offer_in_progress, and finally we have a deadlock.
The above is also true for primary channels, if the related device
drivers use sync probing mode by default.
And, usually the handling of primary channels and sub-channels can
depend on each other, so we should offload them to different
workqueues to avoid possible deadlock, e.g. in sync-probing mode,
NIC1's netvsc_subchan_work() can race with NIC2's netvsc_probe() ->
rtnl_lock(), and causes deadlock: the former gets the rtnl_lock
and waits for all the sub-channels to appear, but the latter
can't get the rtnl_lock and this blocks the handling of sub-channels.
The patch can fix the multiple-NIC deadlock described above for
v3.x kernels (e.g. RHEL 7.x) which don't support async-probing
of devices, and v4.4, v4.9, v4.14 and v4.18 which support async-probing
but don't enable async-probing for Hyper-V drivers (yet).
The patch can also fix the hang issue in sub-channel's handling described
above for all versions of kernels, including v4.19 and v4.20-rc4.
So actually the patch should be applied to all the existing kernels,
not only the kernels that have 8195b1396ec8.
Fixes: 8195b1396ec8 ("hv_netvsc: fix deadlock on hotplug")
Cc: stable@vger.kernel.org
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-03 03:54:35 +03:00
|
|
|
/*
|
|
|
|
* We must offload the handling of the primary/sub channels
|
|
|
|
* from the single-threaded vmbus_connection.work_queue to
|
|
|
|
* two different workqueue, otherwise we can block
|
|
|
|
* vmbus_connection.work_queue and hang: see vmbus_process_offer().
|
|
|
|
*/
|
|
|
|
struct work_struct add_channel_work;
|
2019-02-04 10:13:09 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Guest to host interrupts caused by the inbound ring buffer changing
|
|
|
|
* from full to not full while a packet is waiting.
|
|
|
|
*/
|
|
|
|
u64 intr_in_full;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The total number of write operations that encountered a full
|
|
|
|
* outbound ring buffer.
|
|
|
|
*/
|
|
|
|
u64 out_full_total;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The number of write operations that were the first to encounter a
|
|
|
|
* full outbound ring buffer.
|
|
|
|
*/
|
|
|
|
u64 out_full_first;
|
2011-06-07 02:49:57 +04:00
|
|
|
};
|
2011-05-13 06:34:21 +04:00
|
|
|
|
2016-01-28 09:29:38 +03:00
|
|
|
static inline bool is_hvsock_channel(const struct vmbus_channel *c)
|
|
|
|
{
|
|
|
|
return !!(c->offermsg.offer.chn_flags &
|
|
|
|
VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER);
|
|
|
|
}
|
|
|
|
|
2019-09-06 02:01:16 +03:00
|
|
|
static inline bool is_sub_channel(const struct vmbus_channel *c)
|
|
|
|
{
|
|
|
|
return c->offermsg.offer.sub_channel_index != 0;
|
|
|
|
}
|
|
|
|
|
2016-09-02 15:58:23 +03:00
|
|
|
static inline void set_channel_affinity_state(struct vmbus_channel *c,
|
|
|
|
enum hv_numa_policy policy)
|
|
|
|
{
|
|
|
|
c->affinity_policy = policy;
|
|
|
|
}
|
|
|
|
|
2017-02-12 09:02:21 +03:00
|
|
|
static inline void set_channel_read_mode(struct vmbus_channel *c,
|
|
|
|
enum hv_callback_mode mode)
|
2012-12-01 18:46:33 +04:00
|
|
|
{
|
2017-02-12 09:02:21 +03:00
|
|
|
c->callback_mode = mode;
|
2012-12-01 18:46:33 +04:00
|
|
|
}
|
|
|
|
|
2014-02-04 00:42:45 +04:00
|
|
|
static inline void set_per_channel_state(struct vmbus_channel *c, void *s)
|
|
|
|
{
|
|
|
|
c->per_channel_state = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *get_per_channel_state(struct vmbus_channel *c)
|
|
|
|
{
|
|
|
|
return c->per_channel_state;
|
|
|
|
}
|
|
|
|
|
2016-01-28 09:29:37 +03:00
|
|
|
static inline void set_channel_pending_send_size(struct vmbus_channel *c,
|
|
|
|
u32 size)
|
|
|
|
{
|
2019-02-04 10:13:09 +03:00
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
if (size) {
|
|
|
|
spin_lock_irqsave(&c->outbound.ring_lock, flags);
|
|
|
|
++c->out_full_total;
|
|
|
|
|
|
|
|
if (!c->out_full_flag) {
|
|
|
|
++c->out_full_first;
|
|
|
|
c->out_full_flag = true;
|
|
|
|
}
|
|
|
|
spin_unlock_irqrestore(&c->outbound.ring_lock, flags);
|
|
|
|
} else {
|
|
|
|
c->out_full_flag = false;
|
|
|
|
}
|
|
|
|
|
2016-01-28 09:29:37 +03:00
|
|
|
c->outbound.ring_buffer->pending_send_sz = size;
|
|
|
|
}
|
|
|
|
|
2016-07-02 02:26:37 +03:00
|
|
|
static inline void set_low_latency_mode(struct vmbus_channel *c)
|
|
|
|
{
|
|
|
|
c->low_latency = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void clear_low_latency_mode(struct vmbus_channel *c)
|
|
|
|
{
|
|
|
|
c->low_latency = false;
|
|
|
|
}
|
|
|
|
|
2011-05-13 06:34:21 +04:00
|
|
|
void vmbus_onmessage(void *context);
|
|
|
|
|
|
|
|
int vmbus_request_offers(void);
|
|
|
|
|
2013-05-23 23:02:32 +04:00
|
|
|
/*
|
|
|
|
* APIs for managing sub-channels.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel,
|
|
|
|
void (*sc_cr_cb)(struct vmbus_channel *new_sc));
|
|
|
|
|
2016-01-28 09:29:42 +03:00
|
|
|
void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel,
|
|
|
|
void (*chn_rescind_cb)(struct vmbus_channel *));
|
|
|
|
|
2013-05-23 23:02:32 +04:00
|
|
|
/*
|
|
|
|
* Check if sub-channels have already been offerred. This API will be useful
|
|
|
|
* when the driver is unloaded after establishing sub-channels. In this case,
|
|
|
|
* when the driver is re-loaded, the driver would have to check if the
|
|
|
|
* subchannels have already been established before attempting to request
|
|
|
|
* the creation of sub-channels.
|
|
|
|
* This function returns TRUE to indicate that subchannels have already been
|
|
|
|
* created.
|
|
|
|
* This function should be invoked after setting the callback function for
|
|
|
|
* sub-channel creation.
|
|
|
|
*/
|
|
|
|
bool vmbus_are_subchannels_present(struct vmbus_channel *primary);
|
|
|
|
|
2011-05-13 06:34:22 +04:00
|
|
|
/* The format must be the same as struct vmdata_gpa_direct */
|
|
|
|
struct vmbus_channel_packet_page_buffer {
|
|
|
|
u16 type;
|
|
|
|
u16 dataoffset8;
|
|
|
|
u16 length8;
|
|
|
|
u16 flags;
|
|
|
|
u64 transactionid;
|
|
|
|
u32 reserved;
|
|
|
|
u32 rangecount;
|
|
|
|
struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* The format must be the same as struct vmdata_gpa_direct */
|
|
|
|
struct vmbus_channel_packet_multipage_buffer {
|
|
|
|
u16 type;
|
|
|
|
u16 dataoffset8;
|
|
|
|
u16 length8;
|
|
|
|
u16 flags;
|
|
|
|
u64 transactionid;
|
|
|
|
u32 reserved;
|
|
|
|
u32 rangecount; /* Always 1 in this case */
|
|
|
|
struct hv_multipage_buffer range;
|
|
|
|
} __packed;
|
|
|
|
|
2015-01-10 10:54:34 +03:00
|
|
|
/* The format must be the same as struct vmdata_gpa_direct */
|
|
|
|
struct vmbus_packet_mpb_array {
|
|
|
|
u16 type;
|
|
|
|
u16 dataoffset8;
|
|
|
|
u16 length8;
|
|
|
|
u16 flags;
|
|
|
|
u64 transactionid;
|
|
|
|
u32 reserved;
|
|
|
|
u32 rangecount; /* Always 1 in this case */
|
|
|
|
struct hv_mpb_array range;
|
|
|
|
} __packed;
|
|
|
|
|
2018-09-14 19:10:17 +03:00
|
|
|
int vmbus_alloc_ring(struct vmbus_channel *channel,
|
|
|
|
u32 send_size, u32 recv_size);
|
|
|
|
void vmbus_free_ring(struct vmbus_channel *channel);
|
|
|
|
|
|
|
|
int vmbus_connect_ring(struct vmbus_channel *channel,
|
|
|
|
void (*onchannel_callback)(void *context),
|
|
|
|
void *context);
|
|
|
|
int vmbus_disconnect_ring(struct vmbus_channel *channel);
|
2011-05-13 06:34:22 +04:00
|
|
|
|
|
|
|
extern int vmbus_open(struct vmbus_channel *channel,
|
|
|
|
u32 send_ringbuffersize,
|
|
|
|
u32 recv_ringbuffersize,
|
|
|
|
void *userdata,
|
|
|
|
u32 userdatalen,
|
2017-03-05 04:27:17 +03:00
|
|
|
void (*onchannel_callback)(void *context),
|
2011-05-13 06:34:22 +04:00
|
|
|
void *context);
|
|
|
|
|
|
|
|
extern void vmbus_close(struct vmbus_channel *channel);
|
|
|
|
|
|
|
|
extern int vmbus_sendpacket(struct vmbus_channel *channel,
|
2014-02-02 07:02:20 +04:00
|
|
|
void *buffer,
|
2011-05-13 06:34:22 +04:00
|
|
|
u32 bufferLen,
|
|
|
|
u64 requestid,
|
|
|
|
enum vmbus_packet_type type,
|
|
|
|
u32 flags);
|
|
|
|
|
|
|
|
extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel,
|
|
|
|
struct hv_page_buffer pagebuffers[],
|
|
|
|
u32 pagecount,
|
|
|
|
void *buffer,
|
|
|
|
u32 bufferlen,
|
|
|
|
u64 requestid);
|
|
|
|
|
2015-01-10 10:54:34 +03:00
|
|
|
extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel,
|
|
|
|
struct vmbus_packet_mpb_array *mpb,
|
|
|
|
u32 desc_size,
|
|
|
|
void *buffer,
|
|
|
|
u32 bufferlen,
|
|
|
|
u64 requestid);
|
|
|
|
|
2011-05-13 06:34:22 +04:00
|
|
|
extern int vmbus_establish_gpadl(struct vmbus_channel *channel,
|
|
|
|
void *kbuffer,
|
|
|
|
u32 size,
|
|
|
|
u32 *gpadl_handle);
|
|
|
|
|
|
|
|
extern int vmbus_teardown_gpadl(struct vmbus_channel *channel,
|
|
|
|
u32 gpadl_handle);
|
|
|
|
|
2018-08-02 06:08:23 +03:00
|
|
|
void vmbus_reset_channel_cb(struct vmbus_channel *channel);
|
|
|
|
|
2011-05-13 06:34:22 +04:00
|
|
|
extern int vmbus_recvpacket(struct vmbus_channel *channel,
|
|
|
|
void *buffer,
|
|
|
|
u32 bufferlen,
|
|
|
|
u32 *buffer_actual_len,
|
|
|
|
u64 *requestid);
|
|
|
|
|
|
|
|
extern int vmbus_recvpacket_raw(struct vmbus_channel *channel,
|
|
|
|
void *buffer,
|
|
|
|
u32 bufferlen,
|
|
|
|
u32 *buffer_actual_len,
|
|
|
|
u64 *requestid);
|
|
|
|
|
|
|
|
|
|
|
|
extern void vmbus_ontimer(unsigned long data);
|
|
|
|
|
2011-05-13 06:34:24 +04:00
|
|
|
/* Base driver object */
|
|
|
|
struct hv_driver {
|
|
|
|
const char *name;
|
|
|
|
|
2016-01-28 09:29:41 +03:00
|
|
|
/*
|
|
|
|
* A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER
|
|
|
|
* channel flag, actually doesn't mean a synthetic device because the
|
|
|
|
* offer's if_type/if_instance can change for every new hvsock
|
|
|
|
* connection.
|
|
|
|
*
|
|
|
|
* However, to facilitate the notification of new-offer/rescind-offer
|
|
|
|
* from vmbus driver to hvsock driver, we can handle hvsock offer as
|
|
|
|
* a special vmbus device, and hence we need the below flag to
|
|
|
|
* indicate if the driver is the hvsock driver or not: we need to
|
|
|
|
* specially treat the hvosck offer & driver in vmbus_match().
|
|
|
|
*/
|
|
|
|
bool hvsock;
|
|
|
|
|
2011-05-13 06:34:24 +04:00
|
|
|
/* the device type supported by this driver */
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t dev_type;
|
2011-08-25 20:48:31 +04:00
|
|
|
const struct hv_vmbus_device_id *id_table;
|
2011-05-13 06:34:24 +04:00
|
|
|
|
|
|
|
struct device_driver driver;
|
|
|
|
|
2016-12-03 23:34:39 +03:00
|
|
|
/* dynamic device GUID's */
|
|
|
|
struct {
|
|
|
|
spinlock_t lock;
|
|
|
|
struct list_head list;
|
|
|
|
} dynids;
|
|
|
|
|
2011-09-13 21:59:38 +04:00
|
|
|
int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *);
|
2011-05-13 06:34:24 +04:00
|
|
|
int (*remove)(struct hv_device *);
|
|
|
|
void (*shutdown)(struct hv_device *);
|
|
|
|
|
2019-09-06 02:01:17 +03:00
|
|
|
int (*suspend)(struct hv_device *);
|
|
|
|
int (*resume)(struct hv_device *);
|
2011-05-13 06:34:24 +04:00
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Base device object */
|
|
|
|
struct hv_device {
|
|
|
|
/* the device type id of this device */
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t dev_type;
|
2011-05-13 06:34:24 +04:00
|
|
|
|
|
|
|
/* the device instance id of this device */
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t dev_instance;
|
2015-12-26 07:00:30 +03:00
|
|
|
u16 vendor_id;
|
|
|
|
u16 device_id;
|
2011-05-13 06:34:24 +04:00
|
|
|
|
|
|
|
struct device device;
|
2018-08-11 02:06:08 +03:00
|
|
|
char *driver_override; /* Driver name to force a match */
|
2011-05-13 06:34:24 +04:00
|
|
|
|
|
|
|
struct vmbus_channel *channel;
|
2017-09-22 06:58:49 +03:00
|
|
|
struct kset *channels_kset;
|
2011-05-13 06:34:24 +04:00
|
|
|
};
|
|
|
|
|
2011-05-13 06:34:25 +04:00
|
|
|
|
|
|
|
static inline struct hv_device *device_to_hv_device(struct device *d)
|
|
|
|
{
|
|
|
|
return container_of(d, struct hv_device, device);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d)
|
|
|
|
{
|
|
|
|
return container_of(d, struct hv_driver, driver);
|
|
|
|
}
|
|
|
|
|
2011-09-13 21:59:40 +04:00
|
|
|
static inline void hv_set_drvdata(struct hv_device *dev, void *data)
|
|
|
|
{
|
|
|
|
dev_set_drvdata(&dev->device, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *hv_get_drvdata(struct hv_device *dev)
|
|
|
|
{
|
|
|
|
return dev_get_drvdata(&dev->device);
|
|
|
|
}
|
2011-05-13 06:34:25 +04:00
|
|
|
|
2017-03-05 04:27:18 +03:00
|
|
|
struct hv_ring_buffer_debug_info {
|
|
|
|
u32 current_interrupt_mask;
|
|
|
|
u32 current_read_index;
|
|
|
|
u32 current_write_index;
|
|
|
|
u32 bytes_avail_toread;
|
|
|
|
u32 bytes_avail_towrite;
|
|
|
|
};
|
|
|
|
|
2018-12-17 23:16:09 +03:00
|
|
|
|
2019-03-14 23:05:15 +03:00
|
|
|
int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info,
|
2018-12-17 23:16:09 +03:00
|
|
|
struct hv_ring_buffer_debug_info *debug_info);
|
2017-03-05 04:27:18 +03:00
|
|
|
|
2011-05-13 06:34:25 +04:00
|
|
|
/* Vmbus interface */
|
2011-08-26 02:07:32 +04:00
|
|
|
#define vmbus_driver_register(driver) \
|
|
|
|
__vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME)
|
|
|
|
int __must_check __vmbus_driver_register(struct hv_driver *hv_driver,
|
|
|
|
struct module *owner,
|
|
|
|
const char *mod_name);
|
|
|
|
void vmbus_driver_unregister(struct hv_driver *hv_driver);
|
2011-05-13 06:34:25 +04:00
|
|
|
|
2016-01-28 09:29:43 +03:00
|
|
|
void vmbus_hvsock_device_unregister(struct vmbus_channel *channel);
|
|
|
|
|
2015-08-05 10:52:37 +03:00
|
|
|
int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
|
|
|
|
resource_size_t min, resource_size_t max,
|
|
|
|
resource_size_t size, resource_size_t align,
|
|
|
|
bool fb_overlap_ok);
|
2016-04-05 20:22:51 +03:00
|
|
|
void vmbus_free_mmio(resource_size_t start, resource_size_t size);
|
2015-12-15 03:01:39 +03:00
|
|
|
|
2013-01-24 05:42:40 +04:00
|
|
|
/*
|
|
|
|
* GUID definitions of various offer types - services offered to the guest.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Network GUID
|
|
|
|
* {f8615163-df3e-46c5-913f-f2d2f965ed0e}
|
|
|
|
*/
|
|
|
|
#define HV_NIC_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \
|
|
|
|
0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* IDE GUID
|
|
|
|
* {32412632-86cb-44a2-9b5c-50d1417354f5}
|
|
|
|
*/
|
|
|
|
#define HV_IDE_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \
|
|
|
|
0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* SCSI GUID
|
|
|
|
* {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f}
|
|
|
|
*/
|
|
|
|
#define HV_SCSI_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \
|
|
|
|
0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Shutdown GUID
|
|
|
|
* {0e0b6031-5213-4934-818b-38d90ced39db}
|
|
|
|
*/
|
|
|
|
#define HV_SHUTDOWN_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \
|
|
|
|
0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Time Synch GUID
|
|
|
|
* {9527E630-D0AE-497b-ADCE-E80AB0175CAF}
|
|
|
|
*/
|
|
|
|
#define HV_TS_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \
|
|
|
|
0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Heartbeat GUID
|
|
|
|
* {57164f39-9115-4e78-ab55-382f3bd5422d}
|
|
|
|
*/
|
|
|
|
#define HV_HEART_BEAT_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \
|
|
|
|
0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* KVP GUID
|
|
|
|
* {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6}
|
|
|
|
*/
|
|
|
|
#define HV_KVP_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \
|
|
|
|
0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Dynamic memory GUID
|
|
|
|
* {525074dc-8985-46e2-8057-a307dc18a502}
|
|
|
|
*/
|
|
|
|
#define HV_DM_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \
|
|
|
|
0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Mouse GUID
|
|
|
|
* {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a}
|
|
|
|
*/
|
|
|
|
#define HV_MOUSE_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \
|
|
|
|
0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a)
|
2013-01-24 05:42:40 +04:00
|
|
|
|
2015-12-21 23:21:22 +03:00
|
|
|
/*
|
|
|
|
* Keyboard GUID
|
|
|
|
* {f912ad6d-2b17-48ea-bd65-f927a61c7684}
|
|
|
|
*/
|
|
|
|
#define HV_KBD_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \
|
|
|
|
0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84)
|
2015-12-21 23:21:22 +03:00
|
|
|
|
2013-03-15 23:30:06 +04:00
|
|
|
/*
|
|
|
|
* VSS (Backup/Restore) GUID
|
|
|
|
*/
|
|
|
|
#define HV_VSS_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \
|
|
|
|
0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40)
|
2013-04-30 02:05:42 +04:00
|
|
|
/*
|
|
|
|
* Synthetic Video GUID
|
|
|
|
* {DA0A7802-E377-4aac-8E77-0558EB1073F8}
|
|
|
|
*/
|
|
|
|
#define HV_SYNTHVID_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \
|
|
|
|
0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8)
|
2013-04-30 02:05:42 +04:00
|
|
|
|
2013-05-23 23:02:33 +04:00
|
|
|
/*
|
|
|
|
* Synthetic FC GUID
|
|
|
|
* {2f9bcc4a-0069-4af3-b76b-6fd0be528cda}
|
|
|
|
*/
|
|
|
|
#define HV_SYNTHFC_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \
|
|
|
|
0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda)
|
2013-05-23 23:02:33 +04:00
|
|
|
|
2014-02-16 23:34:30 +04:00
|
|
|
/*
|
|
|
|
* Guest File Copy Service
|
|
|
|
* {34D14BE3-DEE4-41c8-9AE7-6B174977C192}
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define HV_FCOPY_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \
|
|
|
|
0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92)
|
2014-02-16 23:34:30 +04:00
|
|
|
|
2015-02-27 22:26:05 +03:00
|
|
|
/*
|
|
|
|
* NetworkDirect. This is the guest RDMA service.
|
|
|
|
* {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501}
|
|
|
|
*/
|
|
|
|
#define HV_ND_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \
|
|
|
|
0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01)
|
2015-02-27 22:26:05 +03:00
|
|
|
|
2015-12-15 03:01:41 +03:00
|
|
|
/*
|
|
|
|
* PCI Express Pass Through
|
|
|
|
* {44C4F61D-4444-4400-9D52-802E27EDE19F}
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define HV_PCIE_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \
|
|
|
|
0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f)
|
2015-12-15 03:01:41 +03:00
|
|
|
|
2016-09-07 15:39:34 +03:00
|
|
|
/*
|
|
|
|
* Linux doesn't support the 3 devices: the first two are for
|
|
|
|
* Automatic Virtual Machine Activation, and the third is for
|
|
|
|
* Remote Desktop Virtualization.
|
|
|
|
* {f8e65716-3cb3-4a06-9a60-1889c5cccab5}
|
|
|
|
* {3375baf4-9e15-4b30-b765-67acb10d607b}
|
|
|
|
* {276aacf4-ac15-426c-98dd-7521ad3f01fe}
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define HV_AVMA1_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \
|
|
|
|
0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5)
|
2016-09-07 15:39:34 +03:00
|
|
|
|
|
|
|
#define HV_AVMA2_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \
|
|
|
|
0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b)
|
2016-09-07 15:39:34 +03:00
|
|
|
|
|
|
|
#define HV_RDV_GUID \
|
2019-01-10 17:25:32 +03:00
|
|
|
.guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \
|
|
|
|
0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe)
|
2016-09-07 15:39:34 +03:00
|
|
|
|
2011-05-13 06:34:26 +04:00
|
|
|
/*
|
|
|
|
* Common header for Hyper-V ICs
|
|
|
|
*/
|
|
|
|
|
|
|
|
#define ICMSGTYPE_NEGOTIATE 0
|
|
|
|
#define ICMSGTYPE_HEARTBEAT 1
|
|
|
|
#define ICMSGTYPE_KVPEXCHANGE 2
|
|
|
|
#define ICMSGTYPE_SHUTDOWN 3
|
|
|
|
#define ICMSGTYPE_TIMESYNC 4
|
|
|
|
#define ICMSGTYPE_VSS 5
|
|
|
|
|
|
|
|
#define ICMSGHDRFLAG_TRANSACTION 1
|
|
|
|
#define ICMSGHDRFLAG_REQUEST 2
|
|
|
|
#define ICMSGHDRFLAG_RESPONSE 4
|
|
|
|
|
|
|
|
|
2011-09-18 21:31:33 +04:00
|
|
|
/*
|
|
|
|
* While we want to handle util services as regular devices,
|
|
|
|
* there is only one instance of each of these services; so
|
|
|
|
* we statically allocate the service specific state.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct hv_util_service {
|
|
|
|
u8 *recv_buffer;
|
2016-02-27 02:13:19 +03:00
|
|
|
void *channel;
|
2011-09-18 21:31:33 +04:00
|
|
|
void (*util_cb)(void *);
|
|
|
|
int (*util_init)(struct hv_util_service *);
|
|
|
|
void (*util_deinit)(void);
|
|
|
|
};
|
|
|
|
|
2011-05-13 06:34:26 +04:00
|
|
|
struct vmbuspipe_hdr {
|
|
|
|
u32 flags;
|
|
|
|
u32 msgsize;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct ic_version {
|
|
|
|
u16 major;
|
|
|
|
u16 minor;
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct icmsg_hdr {
|
|
|
|
struct ic_version icverframe;
|
|
|
|
u16 icmsgtype;
|
|
|
|
struct ic_version icvermsg;
|
|
|
|
u16 icmsgsize;
|
|
|
|
u32 status;
|
|
|
|
u8 ictransaction_id;
|
|
|
|
u8 icflags;
|
|
|
|
u8 reserved[2];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct icmsg_negotiate {
|
|
|
|
u16 icframe_vercnt;
|
|
|
|
u16 icmsg_vercnt;
|
|
|
|
u32 reserved;
|
|
|
|
struct ic_version icversion_data[1]; /* any size array */
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct shutdown_msg_data {
|
|
|
|
u32 reason_code;
|
|
|
|
u32 timeout_seconds;
|
|
|
|
u32 flags;
|
|
|
|
u8 display_message[2048];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
struct heartbeat_msg_data {
|
|
|
|
u64 seq_num;
|
|
|
|
u32 reserved[8];
|
|
|
|
} __packed;
|
|
|
|
|
|
|
|
/* Time Sync IC defs */
|
|
|
|
#define ICTIMESYNCFLAG_PROBE 0
|
|
|
|
#define ICTIMESYNCFLAG_SYNC 1
|
|
|
|
#define ICTIMESYNCFLAG_SAMPLE 2
|
|
|
|
|
|
|
|
#ifdef __x86_64__
|
|
|
|
#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */
|
|
|
|
#else
|
|
|
|
#define WLTIMEDELTA 116444736000000000LL
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct ictimesync_data {
|
|
|
|
u64 parenttime;
|
|
|
|
u64 childtime;
|
|
|
|
u64 roundtriptime;
|
|
|
|
u8 flags;
|
|
|
|
} __packed;
|
|
|
|
|
2016-09-08 15:24:14 +03:00
|
|
|
struct ictimesync_ref_data {
|
|
|
|
u64 parenttime;
|
|
|
|
u64 vmreferencetime;
|
|
|
|
u8 flags;
|
|
|
|
char leapflags;
|
|
|
|
char stratum;
|
|
|
|
u8 reserved[3];
|
|
|
|
} __packed;
|
|
|
|
|
2011-05-13 06:34:26 +04:00
|
|
|
struct hyperv_service_callback {
|
|
|
|
u8 msg_type;
|
|
|
|
char *log_msg;
|
2019-01-10 17:25:32 +03:00
|
|
|
guid_t data;
|
2011-05-13 06:34:26 +04:00
|
|
|
struct vmbus_channel *channel;
|
2017-03-05 04:27:17 +03:00
|
|
|
void (*callback)(void *context);
|
2011-05-13 06:34:26 +04:00
|
|
|
};
|
|
|
|
|
2012-05-13 00:44:58 +04:00
|
|
|
#define MAX_SRV_VER 0x7ffffff
|
2017-01-28 22:37:17 +03:00
|
|
|
extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf,
|
|
|
|
const int *fw_version, int fw_vercnt,
|
|
|
|
const int *srv_version, int srv_vercnt,
|
|
|
|
int *nego_fw_version, int *nego_srv_version);
|
2011-05-13 06:34:26 +04:00
|
|
|
|
2018-09-14 19:10:15 +03:00
|
|
|
void hv_process_channel_removal(struct vmbus_channel *channel);
|
2013-03-15 23:30:06 +04:00
|
|
|
|
2016-11-07 00:14:17 +03:00
|
|
|
void vmbus_setevent(struct vmbus_channel *channel);
|
2012-12-01 18:46:41 +04:00
|
|
|
/*
|
|
|
|
* Negotiated version with the Host.
|
|
|
|
*/
|
|
|
|
|
|
|
|
extern __u32 vmbus_proto_version;
|
|
|
|
|
2019-01-10 17:25:32 +03:00
|
|
|
int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id,
|
|
|
|
const guid_t *shv_host_servie_id);
|
2016-04-03 03:59:49 +03:00
|
|
|
void vmbus_set_event(struct vmbus_channel *channel);
|
2016-04-03 03:59:50 +03:00
|
|
|
|
|
|
|
/* Get the start of the ring buffer. */
|
|
|
|
static inline void *
|
2017-02-12 09:02:24 +03:00
|
|
|
hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info)
|
2016-04-03 03:59:50 +03:00
|
|
|
{
|
2017-02-12 09:02:24 +03:00
|
|
|
return ring_info->ring_buffer->buffer;
|
2016-04-03 03:59:50 +03:00
|
|
|
}
|
|
|
|
|
2017-02-12 09:02:23 +03:00
|
|
|
/*
|
|
|
|
* Mask off host interrupt callback notifications
|
|
|
|
*/
|
|
|
|
static inline void hv_begin_read(struct hv_ring_buffer_info *rbi)
|
|
|
|
{
|
|
|
|
rbi->ring_buffer->interrupt_mask = 1;
|
|
|
|
|
|
|
|
/* make sure mask update is not reordered */
|
|
|
|
virt_mb();
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Re-enable host callback and return number of outstanding bytes
|
|
|
|
*/
|
|
|
|
static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi)
|
|
|
|
{
|
|
|
|
|
|
|
|
rbi->ring_buffer->interrupt_mask = 0;
|
|
|
|
|
|
|
|
/* make sure mask update is not reordered */
|
|
|
|
virt_mb();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Now check to see if the ring buffer is still empty.
|
|
|
|
* If it is not, we raced and we need to process new
|
|
|
|
* incoming messages.
|
|
|
|
*/
|
|
|
|
return hv_get_bytes_to_read(rbi);
|
|
|
|
}
|
|
|
|
|
2016-04-03 03:59:51 +03:00
|
|
|
/*
|
|
|
|
* An API to support in-place processing of incoming VMBUS packets.
|
|
|
|
*/
|
|
|
|
|
2017-02-27 21:26:48 +03:00
|
|
|
/* Get data payload associated with descriptor */
|
|
|
|
static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc)
|
2016-04-03 03:59:51 +03:00
|
|
|
{
|
2017-02-27 21:26:48 +03:00
|
|
|
return (void *)((unsigned long)desc + (desc->offset8 << 3));
|
2016-04-03 03:59:51 +03:00
|
|
|
}
|
|
|
|
|
2017-02-27 21:26:48 +03:00
|
|
|
/* Get data size associated with descriptor */
|
|
|
|
static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc)
|
2016-04-03 03:59:51 +03:00
|
|
|
{
|
2017-02-27 21:26:48 +03:00
|
|
|
return (desc->len8 << 3) - (desc->offset8 << 3);
|
2016-04-03 03:59:51 +03:00
|
|
|
}
|
|
|
|
|
2017-02-27 21:26:48 +03:00
|
|
|
|
|
|
|
struct vmpacket_descriptor *
|
|
|
|
hv_pkt_iter_first(struct vmbus_channel *channel);
|
|
|
|
|
|
|
|
struct vmpacket_descriptor *
|
|
|
|
__hv_pkt_iter_next(struct vmbus_channel *channel,
|
|
|
|
const struct vmpacket_descriptor *pkt);
|
|
|
|
|
|
|
|
void hv_pkt_iter_close(struct vmbus_channel *channel);
|
|
|
|
|
2016-04-03 03:59:51 +03:00
|
|
|
/*
|
2017-02-27 21:26:48 +03:00
|
|
|
* Get next packet descriptor from iterator
|
|
|
|
* If at end of list, return NULL and update host.
|
2016-04-03 03:59:51 +03:00
|
|
|
*/
|
2017-02-27 21:26:48 +03:00
|
|
|
static inline struct vmpacket_descriptor *
|
|
|
|
hv_pkt_iter_next(struct vmbus_channel *channel,
|
|
|
|
const struct vmpacket_descriptor *pkt)
|
2016-04-03 03:59:51 +03:00
|
|
|
{
|
2017-02-27 21:26:48 +03:00
|
|
|
struct vmpacket_descriptor *nxt;
|
|
|
|
|
|
|
|
nxt = __hv_pkt_iter_next(channel, pkt);
|
|
|
|
if (!nxt)
|
|
|
|
hv_pkt_iter_close(channel);
|
2016-04-03 03:59:51 +03:00
|
|
|
|
2017-02-27 21:26:48 +03:00
|
|
|
return nxt;
|
2016-04-03 03:59:51 +03:00
|
|
|
}
|
|
|
|
|
2017-02-27 21:26:48 +03:00
|
|
|
#define foreach_vmbus_pkt(pkt, channel) \
|
|
|
|
for (pkt = hv_pkt_iter_first(channel); pkt; \
|
|
|
|
pkt = hv_pkt_iter_next(channel, pkt))
|
2016-04-03 03:59:51 +03:00
|
|
|
|
2019-08-22 08:05:37 +03:00
|
|
|
/*
|
2019-08-22 08:05:41 +03:00
|
|
|
* Interface for passing data between SR-IOV PF and VF drivers. The VF driver
|
2019-08-22 08:05:37 +03:00
|
|
|
* sends requests to read and write blocks. Each block must be 128 bytes or
|
|
|
|
* smaller. Optionally, the VF driver can register a callback function which
|
|
|
|
* will be invoked when the host says that one or more of the first 64 block
|
|
|
|
* IDs is "invalid" which means that the VF driver should reread them.
|
|
|
|
*/
|
|
|
|
#define HV_CONFIG_BLOCK_SIZE_MAX 128
|
2019-08-22 08:05:41 +03:00
|
|
|
|
|
|
|
int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len,
|
|
|
|
unsigned int block_id, unsigned int *bytes_returned);
|
|
|
|
int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len,
|
|
|
|
unsigned int block_id);
|
|
|
|
int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context,
|
|
|
|
void (*block_invalidate)(void *context,
|
|
|
|
u64 block_mask));
|
|
|
|
|
|
|
|
struct hyperv_pci_block_ops {
|
|
|
|
int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len,
|
|
|
|
unsigned int block_id, unsigned int *bytes_returned);
|
|
|
|
int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len,
|
|
|
|
unsigned int block_id);
|
|
|
|
int (*reg_blk_invalidate)(struct pci_dev *dev, void *context,
|
|
|
|
void (*block_invalidate)(void *context,
|
|
|
|
u64 block_mask));
|
|
|
|
};
|
|
|
|
|
|
|
|
extern struct hyperv_pci_block_ops hvpci_block_ops;
|
|
|
|
|
2011-05-13 06:34:15 +04:00
|
|
|
#endif /* _HYPERV_H */
|