WSL2-Linux-Kernel/drivers/media/i2c/ov7670.c

1587 строки
42 KiB
C
Исходник Обычный вид История

/*
* A V4L2 driver for OmniVision OV7670 cameras.
*
* Copyright 2006 One Laptop Per Child Association, Inc. Written
* by Jonathan Corbet with substantial inspiration from Mark
* McClelland's ovcamchip code.
*
* Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
*
* This file may be distributed under the terms of the GNU General
* Public License, version 2.
*/
#include <linux/init.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 11:04:11 +03:00
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/delay.h>
#include <linux/videodev2.h>
#include <media/v4l2-device.h>
#include <media/v4l2-chip-ident.h>
#include <media/v4l2-mediabus.h>
#include <media/ov7670.h>
MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
MODULE_LICENSE("GPL");
static bool debug;
module_param(debug, bool, 0644);
MODULE_PARM_DESC(debug, "Debug level (0-1)");
/*
* Basic window sizes. These probably belong somewhere more globally
* useful.
*/
#define VGA_WIDTH 640
#define VGA_HEIGHT 480
#define QVGA_WIDTH 320
#define QVGA_HEIGHT 240
#define CIF_WIDTH 352
#define CIF_HEIGHT 288
#define QCIF_WIDTH 176
#define QCIF_HEIGHT 144
/*
* The 7670 sits on i2c with ID 0x42
*/
#define OV7670_I2C_ADDR 0x42
/* Registers */
#define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
#define REG_BLUE 0x01 /* blue gain */
#define REG_RED 0x02 /* red gain */
#define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
#define REG_COM1 0x04 /* Control 1 */
#define COM1_CCIR656 0x40 /* CCIR656 enable */
#define REG_BAVE 0x05 /* U/B Average level */
#define REG_GbAVE 0x06 /* Y/Gb Average level */
#define REG_AECHH 0x07 /* AEC MS 5 bits */
#define REG_RAVE 0x08 /* V/R Average level */
#define REG_COM2 0x09 /* Control 2 */
#define COM2_SSLEEP 0x10 /* Soft sleep mode */
#define REG_PID 0x0a /* Product ID MSB */
#define REG_VER 0x0b /* Product ID LSB */
#define REG_COM3 0x0c /* Control 3 */
#define COM3_SWAP 0x40 /* Byte swap */
#define COM3_SCALEEN 0x08 /* Enable scaling */
#define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
#define REG_COM4 0x0d /* Control 4 */
#define REG_COM5 0x0e /* All "reserved" */
#define REG_COM6 0x0f /* Control 6 */
#define REG_AECH 0x10 /* More bits of AEC value */
#define REG_CLKRC 0x11 /* Clocl control */
#define CLK_EXT 0x40 /* Use external clock directly */
#define CLK_SCALE 0x3f /* Mask for internal clock scale */
#define REG_COM7 0x12 /* Control 7 */
#define COM7_RESET 0x80 /* Register reset */
#define COM7_FMT_MASK 0x38
#define COM7_FMT_VGA 0x00
#define COM7_FMT_CIF 0x20 /* CIF format */
#define COM7_FMT_QVGA 0x10 /* QVGA format */
#define COM7_FMT_QCIF 0x08 /* QCIF format */
#define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
#define COM7_YUV 0x00 /* YUV */
#define COM7_BAYER 0x01 /* Bayer format */
#define COM7_PBAYER 0x05 /* "Processed bayer" */
#define REG_COM8 0x13 /* Control 8 */
#define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
#define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
#define COM8_BFILT 0x20 /* Band filter enable */
#define COM8_AGC 0x04 /* Auto gain enable */
#define COM8_AWB 0x02 /* White balance enable */
#define COM8_AEC 0x01 /* Auto exposure enable */
#define REG_COM9 0x14 /* Control 9 - gain ceiling */
#define REG_COM10 0x15 /* Control 10 */
#define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
#define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
#define COM10_HREF_REV 0x08 /* Reverse HREF */
#define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
#define COM10_VS_NEG 0x02 /* VSYNC negative */
#define COM10_HS_NEG 0x01 /* HSYNC negative */
#define REG_HSTART 0x17 /* Horiz start high bits */
#define REG_HSTOP 0x18 /* Horiz stop high bits */
#define REG_VSTART 0x19 /* Vert start high bits */
#define REG_VSTOP 0x1a /* Vert stop high bits */
#define REG_PSHFT 0x1b /* Pixel delay after HREF */
#define REG_MIDH 0x1c /* Manuf. ID high */
#define REG_MIDL 0x1d /* Manuf. ID low */
#define REG_MVFP 0x1e /* Mirror / vflip */
#define MVFP_MIRROR 0x20 /* Mirror image */
#define MVFP_FLIP 0x10 /* Vertical flip */
#define REG_AEW 0x24 /* AGC upper limit */
#define REG_AEB 0x25 /* AGC lower limit */
#define REG_VPT 0x26 /* AGC/AEC fast mode op region */
#define REG_HSYST 0x30 /* HSYNC rising edge delay */
#define REG_HSYEN 0x31 /* HSYNC falling edge delay */
#define REG_HREF 0x32 /* HREF pieces */
#define REG_TSLB 0x3a /* lots of stuff */
#define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
#define REG_COM11 0x3b /* Control 11 */
#define COM11_NIGHT 0x80 /* NIght mode enable */
#define COM11_NMFR 0x60 /* Two bit NM frame rate */
#define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
#define COM11_50HZ 0x08 /* Manual 50Hz select */
#define COM11_EXP 0x02
#define REG_COM12 0x3c /* Control 12 */
#define COM12_HREF 0x80 /* HREF always */
#define REG_COM13 0x3d /* Control 13 */
#define COM13_GAMMA 0x80 /* Gamma enable */
#define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
#define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
#define REG_COM14 0x3e /* Control 14 */
#define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
#define REG_EDGE 0x3f /* Edge enhancement factor */
#define REG_COM15 0x40 /* Control 15 */
#define COM15_R10F0 0x00 /* Data range 10 to F0 */
#define COM15_R01FE 0x80 /* 01 to FE */
#define COM15_R00FF 0xc0 /* 00 to FF */
#define COM15_RGB565 0x10 /* RGB565 output */
#define COM15_RGB555 0x30 /* RGB555 output */
#define REG_COM16 0x41 /* Control 16 */
#define COM16_AWBGAIN 0x08 /* AWB gain enable */
#define REG_COM17 0x42 /* Control 17 */
#define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
#define COM17_CBAR 0x08 /* DSP Color bar */
/*
* This matrix defines how the colors are generated, must be
* tweaked to adjust hue and saturation.
*
* Order: v-red, v-green, v-blue, u-red, u-green, u-blue
*
* They are nine-bit signed quantities, with the sign bit
* stored in 0x58. Sign for v-red is bit 0, and up from there.
*/
#define REG_CMATRIX_BASE 0x4f
#define CMATRIX_LEN 6
#define REG_CMATRIX_SIGN 0x58
#define REG_BRIGHT 0x55 /* Brightness */
#define REG_CONTRAS 0x56 /* Contrast control */
#define REG_GFIX 0x69 /* Fix gain control */
#define REG_REG76 0x76 /* OV's name */
#define R76_BLKPCOR 0x80 /* Black pixel correction enable */
#define R76_WHTPCOR 0x40 /* White pixel correction enable */
#define REG_RGB444 0x8c /* RGB 444 control */
#define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
#define R444_RGBX 0x01 /* Empty nibble at end */
#define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
#define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
#define REG_BD50MAX 0xa5 /* 50hz banding step limit */
#define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
#define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
#define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
#define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
#define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
#define REG_BD60MAX 0xab /* 60hz banding step limit */
/*
* Information we maintain about a known sensor.
*/
struct ov7670_format_struct; /* coming later */
struct ov7670_info {
struct v4l2_subdev sd;
struct ov7670_format_struct *fmt; /* Current format */
unsigned char sat; /* Saturation value */
int hue; /* Hue value */
int min_width; /* Filter out smaller sizes */
int min_height; /* Filter out smaller sizes */
int clock_speed; /* External clock speed (MHz) */
u8 clkrc; /* Clock divider value */
bool use_smbus; /* Use smbus I/O instead of I2C */
};
static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
{
return container_of(sd, struct ov7670_info, sd);
}
/*
* The default register settings, as obtained from OmniVision. There
* is really no making sense of most of these - lots of "reserved" values
* and such.
*
* These settings give VGA YUYV.
*/
struct regval_list {
unsigned char reg_num;
unsigned char value;
};
static struct regval_list ov7670_default_regs[] = {
{ REG_COM7, COM7_RESET },
/*
* Clock scale: 3 = 15fps
* 2 = 20fps
* 1 = 30fps
*/
{ REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */
{ REG_TSLB, 0x04 }, /* OV */
{ REG_COM7, 0 }, /* VGA */
/*
* Set the hardware window. These values from OV don't entirely
* make sense - hstop is less than hstart. But they work...
*/
{ REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },
{ REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },
{ REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },
{ REG_COM3, 0 }, { REG_COM14, 0 },
/* Mystery scaling numbers */
{ 0x70, 0x3a }, { 0x71, 0x35 },
{ 0x72, 0x11 }, { 0x73, 0xf0 },
{ 0xa2, 0x02 }, { REG_COM10, 0x0 },
/* Gamma curve values */
{ 0x7a, 0x20 }, { 0x7b, 0x10 },
{ 0x7c, 0x1e }, { 0x7d, 0x35 },
{ 0x7e, 0x5a }, { 0x7f, 0x69 },
{ 0x80, 0x76 }, { 0x81, 0x80 },
{ 0x82, 0x88 }, { 0x83, 0x8f },
{ 0x84, 0x96 }, { 0x85, 0xa3 },
{ 0x86, 0xaf }, { 0x87, 0xc4 },
{ 0x88, 0xd7 }, { 0x89, 0xe8 },
/* AGC and AEC parameters. Note we start by disabling those features,
then turn them only after tweaking the values. */
{ REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
{ REG_GAIN, 0 }, { REG_AECH, 0 },
{ REG_COM4, 0x40 }, /* magic reserved bit */
{ REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
{ REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },
{ REG_AEW, 0x95 }, { REG_AEB, 0x33 },
{ REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },
{ REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */
{ REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },
{ REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },
{ REG_HAECC7, 0x94 },
{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
/* Almost all of these are magic "reserved" values. */
{ REG_COM5, 0x61 }, { REG_COM6, 0x4b },
{ 0x16, 0x02 }, { REG_MVFP, 0x07 },
{ 0x21, 0x02 }, { 0x22, 0x91 },
{ 0x29, 0x07 }, { 0x33, 0x0b },
{ 0x35, 0x0b }, { 0x37, 0x1d },
{ 0x38, 0x71 }, { 0x39, 0x2a },
{ REG_COM12, 0x78 }, { 0x4d, 0x40 },
{ 0x4e, 0x20 }, { REG_GFIX, 0 },
{ 0x6b, 0x4a }, { 0x74, 0x10 },
{ 0x8d, 0x4f }, { 0x8e, 0 },
{ 0x8f, 0 }, { 0x90, 0 },
{ 0x91, 0 }, { 0x96, 0 },
{ 0x9a, 0 }, { 0xb0, 0x84 },
{ 0xb1, 0x0c }, { 0xb2, 0x0e },
{ 0xb3, 0x82 }, { 0xb8, 0x0a },
/* More reserved magic, some of which tweaks white balance */
{ 0x43, 0x0a }, { 0x44, 0xf0 },
{ 0x45, 0x34 }, { 0x46, 0x58 },
{ 0x47, 0x28 }, { 0x48, 0x3a },
{ 0x59, 0x88 }, { 0x5a, 0x88 },
{ 0x5b, 0x44 }, { 0x5c, 0x67 },
{ 0x5d, 0x49 }, { 0x5e, 0x0e },
{ 0x6c, 0x0a }, { 0x6d, 0x55 },
{ 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
{ 0x6a, 0x40 }, { REG_BLUE, 0x40 },
{ REG_RED, 0x60 },
{ REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
/* Matrix coefficients */
{ 0x4f, 0x80 }, { 0x50, 0x80 },
{ 0x51, 0 }, { 0x52, 0x22 },
{ 0x53, 0x5e }, { 0x54, 0x80 },
{ 0x58, 0x9e },
{ REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },
{ 0x75, 0x05 }, { 0x76, 0xe1 },
{ 0x4c, 0 }, { 0x77, 0x01 },
{ REG_COM13, 0xc3 }, { 0x4b, 0x09 },
{ 0xc9, 0x60 }, { REG_COM16, 0x38 },
{ 0x56, 0x40 },
{ 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO },
{ 0xa4, 0x88 }, { 0x96, 0 },
{ 0x97, 0x30 }, { 0x98, 0x20 },
{ 0x99, 0x30 }, { 0x9a, 0x84 },
{ 0x9b, 0x29 }, { 0x9c, 0x03 },
{ 0x9d, 0x4c }, { 0x9e, 0x3f },
{ 0x78, 0x04 },
/* Extra-weird stuff. Some sort of multiplexor register */
{ 0x79, 0x01 }, { 0xc8, 0xf0 },
{ 0x79, 0x0f }, { 0xc8, 0x00 },
{ 0x79, 0x10 }, { 0xc8, 0x7e },
{ 0x79, 0x0a }, { 0xc8, 0x80 },
{ 0x79, 0x0b }, { 0xc8, 0x01 },
{ 0x79, 0x0c }, { 0xc8, 0x0f },
{ 0x79, 0x0d }, { 0xc8, 0x20 },
{ 0x79, 0x09 }, { 0xc8, 0x80 },
{ 0x79, 0x02 }, { 0xc8, 0xc0 },
{ 0x79, 0x03 }, { 0xc8, 0x40 },
{ 0x79, 0x05 }, { 0xc8, 0x30 },
{ 0x79, 0x26 },
{ 0xff, 0xff }, /* END MARKER */
};
/*
* Here we'll try to encapsulate the changes for just the output
* video format.
*
* RGB656 and YUV422 come from OV; RGB444 is homebrewed.
*
* IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
*/
static struct regval_list ov7670_fmt_yuv422[] = {
{ REG_COM7, 0x0 }, /* Selects YUV mode */
{ REG_RGB444, 0 }, /* No RGB444 please */
{ REG_COM1, 0 }, /* CCIR601 */
{ REG_COM15, COM15_R00FF },
{ REG_COM9, 0x18 }, /* 4x gain ceiling; 0x8 is reserved bit */
{ 0x4f, 0x80 }, /* "matrix coefficient 1" */
{ 0x50, 0x80 }, /* "matrix coefficient 2" */
{ 0x51, 0 }, /* vb */
{ 0x52, 0x22 }, /* "matrix coefficient 4" */
{ 0x53, 0x5e }, /* "matrix coefficient 5" */
{ 0x54, 0x80 }, /* "matrix coefficient 6" */
{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
{ 0xff, 0xff },
};
static struct regval_list ov7670_fmt_rgb565[] = {
{ REG_COM7, COM7_RGB }, /* Selects RGB mode */
{ REG_RGB444, 0 }, /* No RGB444 please */
{ REG_COM1, 0x0 }, /* CCIR601 */
{ REG_COM15, COM15_RGB565 },
{ REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
{ 0x4f, 0xb3 }, /* "matrix coefficient 1" */
{ 0x50, 0xb3 }, /* "matrix coefficient 2" */
{ 0x51, 0 }, /* vb */
{ 0x52, 0x3d }, /* "matrix coefficient 4" */
{ 0x53, 0xa7 }, /* "matrix coefficient 5" */
{ 0x54, 0xe4 }, /* "matrix coefficient 6" */
{ REG_COM13, COM13_GAMMA|COM13_UVSAT },
{ 0xff, 0xff },
};
static struct regval_list ov7670_fmt_rgb444[] = {
{ REG_COM7, COM7_RGB }, /* Selects RGB mode */
{ REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */
{ REG_COM1, 0x0 }, /* CCIR601 */
{ REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
{ REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
{ 0x4f, 0xb3 }, /* "matrix coefficient 1" */
{ 0x50, 0xb3 }, /* "matrix coefficient 2" */
{ 0x51, 0 }, /* vb */
{ 0x52, 0x3d }, /* "matrix coefficient 4" */
{ 0x53, 0xa7 }, /* "matrix coefficient 5" */
{ 0x54, 0xe4 }, /* "matrix coefficient 6" */
{ REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */
{ 0xff, 0xff },
};
static struct regval_list ov7670_fmt_raw[] = {
{ REG_COM7, COM7_BAYER },
{ REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
{ REG_COM16, 0x3d }, /* Edge enhancement, denoise */
{ REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
{ 0xff, 0xff },
};
/*
* Low-level register I/O.
*
* Note that there are two versions of these. On the XO 1, the
* i2c controller only does SMBUS, so that's what we use. The
* ov7670 is not really an SMBUS device, though, so the communication
* is not always entirely reliable.
*/
static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
unsigned char *value)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret;
ret = i2c_smbus_read_byte_data(client, reg);
if (ret >= 0) {
*value = (unsigned char)ret;
ret = 0;
}
return ret;
}
static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
unsigned char value)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
int ret = i2c_smbus_write_byte_data(client, reg, value);
if (reg == REG_COM7 && (value & COM7_RESET))
msleep(5); /* Wait for reset to run */
return ret;
}
/*
* On most platforms, we'd rather do straight i2c I/O.
*/
static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
unsigned char *value)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
u8 data = reg;
struct i2c_msg msg;
int ret;
/*
* Send out the register address...
*/
msg.addr = client->addr;
msg.flags = 0;
msg.len = 1;
msg.buf = &data;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret < 0) {
printk(KERN_ERR "Error %d on register write\n", ret);
return ret;
}
/*
* ...then read back the result.
*/
msg.flags = I2C_M_RD;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret >= 0) {
*value = data;
ret = 0;
}
return ret;
}
static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
unsigned char value)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
struct i2c_msg msg;
unsigned char data[2] = { reg, value };
int ret;
msg.addr = client->addr;
msg.flags = 0;
msg.len = 2;
msg.buf = data;
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret > 0)
ret = 0;
if (reg == REG_COM7 && (value & COM7_RESET))
msleep(5); /* Wait for reset to run */
return ret;
}
static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
unsigned char *value)
{
struct ov7670_info *info = to_state(sd);
if (info->use_smbus)
return ov7670_read_smbus(sd, reg, value);
else
return ov7670_read_i2c(sd, reg, value);
}
static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
unsigned char value)
{
struct ov7670_info *info = to_state(sd);
if (info->use_smbus)
return ov7670_write_smbus(sd, reg, value);
else
return ov7670_write_i2c(sd, reg, value);
}
/*
* Write a list of register settings; ff/ff stops the process.
*/
static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
{
while (vals->reg_num != 0xff || vals->value != 0xff) {
int ret = ov7670_write(sd, vals->reg_num, vals->value);
if (ret < 0)
return ret;
vals++;
}
return 0;
}
/*
* Stuff that knows about the sensor.
*/
static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
{
ov7670_write(sd, REG_COM7, COM7_RESET);
msleep(1);
return 0;
}
static int ov7670_init(struct v4l2_subdev *sd, u32 val)
{
return ov7670_write_array(sd, ov7670_default_regs);
}
static int ov7670_detect(struct v4l2_subdev *sd)
{
unsigned char v;
int ret;
ret = ov7670_init(sd, 0);
if (ret < 0)
return ret;
ret = ov7670_read(sd, REG_MIDH, &v);
if (ret < 0)
return ret;
if (v != 0x7f) /* OV manuf. id. */
return -ENODEV;
ret = ov7670_read(sd, REG_MIDL, &v);
if (ret < 0)
return ret;
if (v != 0xa2)
return -ENODEV;
/*
* OK, we know we have an OmniVision chip...but which one?
*/
ret = ov7670_read(sd, REG_PID, &v);
if (ret < 0)
return ret;
if (v != 0x76) /* PID + VER = 0x76 / 0x73 */
return -ENODEV;
ret = ov7670_read(sd, REG_VER, &v);
if (ret < 0)
return ret;
if (v != 0x73) /* PID + VER = 0x76 / 0x73 */
return -ENODEV;
return 0;
}
/*
* Store information about the video data format. The color matrix
* is deeply tied into the format, so keep the relevant values here.
* The magic matrix numbers come from OmniVision.
*/
static struct ov7670_format_struct {
enum v4l2_mbus_pixelcode mbus_code;
enum v4l2_colorspace colorspace;
struct regval_list *regs;
int cmatrix[CMATRIX_LEN];
} ov7670_formats[] = {
{
.mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
.colorspace = V4L2_COLORSPACE_JPEG,
.regs = ov7670_fmt_yuv422,
.cmatrix = { 128, -128, 0, -34, -94, 128 },
},
{
.mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
.colorspace = V4L2_COLORSPACE_SRGB,
.regs = ov7670_fmt_rgb444,
.cmatrix = { 179, -179, 0, -61, -176, 228 },
},
{
.mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
.colorspace = V4L2_COLORSPACE_SRGB,
.regs = ov7670_fmt_rgb565,
.cmatrix = { 179, -179, 0, -61, -176, 228 },
},
{
.mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
.colorspace = V4L2_COLORSPACE_SRGB,
.regs = ov7670_fmt_raw,
.cmatrix = { 0, 0, 0, 0, 0, 0 },
},
};
#define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
/*
* Then there is the issue of window sizes. Try to capture the info here.
*/
/*
* QCIF mode is done (by OV) in a very strange way - it actually looks like
* VGA with weird scaling options - they do *not* use the canned QCIF mode
* which is allegedly provided by the sensor. So here's the weird register
* settings.
*/
static struct regval_list ov7670_qcif_regs[] = {
{ REG_COM3, COM3_SCALEEN|COM3_DCWEN },
{ REG_COM3, COM3_DCWEN },
{ REG_COM14, COM14_DCWEN | 0x01},
{ 0x73, 0xf1 },
{ 0xa2, 0x52 },
{ 0x7b, 0x1c },
{ 0x7c, 0x28 },
{ 0x7d, 0x3c },
{ 0x7f, 0x69 },
{ REG_COM9, 0x38 },
{ 0xa1, 0x0b },
{ 0x74, 0x19 },
{ 0x9a, 0x80 },
{ 0x43, 0x14 },
{ REG_COM13, 0xc0 },
{ 0xff, 0xff },
};
static struct ov7670_win_size {
int width;
int height;
unsigned char com7_bit;
int hstart; /* Start/stop values for the camera. Note */
int hstop; /* that they do not always make complete */
int vstart; /* sense to humans, but evidently the sensor */
int vstop; /* will do the right thing... */
struct regval_list *regs; /* Regs to tweak */
/* h/vref stuff */
} ov7670_win_sizes[] = {
/* VGA */
{
.width = VGA_WIDTH,
.height = VGA_HEIGHT,
.com7_bit = COM7_FMT_VGA,
.hstart = 158, /* These values from */
.hstop = 14, /* Omnivision */
.vstart = 10,
.vstop = 490,
.regs = NULL,
},
/* CIF */
{
.width = CIF_WIDTH,
.height = CIF_HEIGHT,
.com7_bit = COM7_FMT_CIF,
.hstart = 170, /* Empirically determined */
.hstop = 90,
.vstart = 14,
.vstop = 494,
.regs = NULL,
},
/* QVGA */
{
.width = QVGA_WIDTH,
.height = QVGA_HEIGHT,
.com7_bit = COM7_FMT_QVGA,
.hstart = 168, /* Empirically determined */
.hstop = 24,
.vstart = 12,
.vstop = 492,
.regs = NULL,
},
/* QCIF */
{
.width = QCIF_WIDTH,
.height = QCIF_HEIGHT,
.com7_bit = COM7_FMT_VGA, /* see comment above */
.hstart = 456, /* Empirically determined */
.hstop = 24,
.vstart = 14,
.vstop = 494,
.regs = ov7670_qcif_regs,
},
};
#define N_WIN_SIZES (ARRAY_SIZE(ov7670_win_sizes))
/*
* Store a set of start/stop values into the camera.
*/
static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
int vstart, int vstop)
{
int ret;
unsigned char v;
/*
* Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
* hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
* a mystery "edge offset" value in the top two bits of href.
*/
ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
ret += ov7670_read(sd, REG_HREF, &v);
v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
msleep(10);
ret += ov7670_write(sd, REG_HREF, v);
/*
* Vertical: similar arrangement, but only 10 bits.
*/
ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
ret += ov7670_read(sd, REG_VREF, &v);
v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
msleep(10);
ret += ov7670_write(sd, REG_VREF, v);
return ret;
}
static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
enum v4l2_mbus_pixelcode *code)
{
if (index >= N_OV7670_FMTS)
return -EINVAL;
*code = ov7670_formats[index].mbus_code;
return 0;
}
static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt,
struct ov7670_format_struct **ret_fmt,
struct ov7670_win_size **ret_wsize)
{
int index;
struct ov7670_win_size *wsize;
for (index = 0; index < N_OV7670_FMTS; index++)
if (ov7670_formats[index].mbus_code == fmt->code)
break;
if (index >= N_OV7670_FMTS) {
/* default to first format */
index = 0;
fmt->code = ov7670_formats[0].mbus_code;
}
if (ret_fmt != NULL)
*ret_fmt = ov7670_formats + index;
/*
* Fields: the OV devices claim to be progressive.
*/
fmt->field = V4L2_FIELD_NONE;
/*
* Round requested image size down to the nearest
* we support, but not below the smallest.
*/
for (wsize = ov7670_win_sizes; wsize < ov7670_win_sizes + N_WIN_SIZES;
wsize++)
if (fmt->width >= wsize->width && fmt->height >= wsize->height)
break;
if (wsize >= ov7670_win_sizes + N_WIN_SIZES)
wsize--; /* Take the smallest one */
if (ret_wsize != NULL)
*ret_wsize = wsize;
/*
* Note the size we'll actually handle.
*/
fmt->width = wsize->width;
fmt->height = wsize->height;
fmt->colorspace = ov7670_formats[index].colorspace;
return 0;
}
static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
}
/*
* Set a format.
*/
static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
struct v4l2_mbus_framefmt *fmt)
{
struct ov7670_format_struct *ovfmt;
struct ov7670_win_size *wsize;
struct ov7670_info *info = to_state(sd);
unsigned char com7;
int ret;
ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
if (ret)
return ret;
/*
* COM7 is a pain in the ass, it doesn't like to be read then
* quickly written afterward. But we have everything we need
* to set it absolutely here, as long as the format-specific
* register sets list it first.
*/
com7 = ovfmt->regs[0].value;
com7 |= wsize->com7_bit;
ov7670_write(sd, REG_COM7, com7);
/*
* Now write the rest of the array. Also store start/stops
*/
ov7670_write_array(sd, ovfmt->regs + 1);
ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
wsize->vstop);
ret = 0;
if (wsize->regs)
ret = ov7670_write_array(sd, wsize->regs);
info->fmt = ovfmt;
/*
* If we're running RGB565, we must rewrite clkrc after setting
* the other parameters or the image looks poor. If we're *not*
* doing RGB565, we must not rewrite clkrc or the image looks
* *really* poor.
*
* (Update) Now that we retain clkrc state, we should be able
* to write it unconditionally, and that will make the frame
* rate persistent too.
*/
if (ret == 0)
ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
return 0;
}
/*
* Implement G/S_PARM. There is a "high quality" mode we could try
* to do someday; for now, we just do the frame rate tweak.
*/
static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct ov7670_info *info = to_state(sd);
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
memset(cp, 0, sizeof(struct v4l2_captureparm));
cp->capability = V4L2_CAP_TIMEPERFRAME;
cp->timeperframe.numerator = 1;
cp->timeperframe.denominator = info->clock_speed;
if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
cp->timeperframe.denominator /= (info->clkrc & CLK_SCALE);
return 0;
}
static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
{
struct v4l2_captureparm *cp = &parms->parm.capture;
struct v4l2_fract *tpf = &cp->timeperframe;
struct ov7670_info *info = to_state(sd);
int div;
if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
return -EINVAL;
if (cp->extendedmode != 0)
return -EINVAL;
if (tpf->numerator == 0 || tpf->denominator == 0)
div = 1; /* Reset to full rate */
else
div = (tpf->numerator * info->clock_speed) / tpf->denominator;
if (div == 0)
div = 1;
else if (div > CLK_SCALE)
div = CLK_SCALE;
info->clkrc = (info->clkrc & 0x80) | div;
tpf->numerator = 1;
tpf->denominator = info->clock_speed / div;
return ov7670_write(sd, REG_CLKRC, info->clkrc);
}
/*
* Frame intervals. Since frame rates are controlled with the clock
* divider, we can only do 30/n for integer n values. So no continuous
* or stepwise options. Here we just pick a handful of logical values.
*/
static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
static int ov7670_enum_frameintervals(struct v4l2_subdev *sd,
struct v4l2_frmivalenum *interval)
{
if (interval->index >= ARRAY_SIZE(ov7670_frame_rates))
return -EINVAL;
interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
interval->discrete.numerator = 1;
interval->discrete.denominator = ov7670_frame_rates[interval->index];
return 0;
}
/*
* Frame size enumeration
*/
static int ov7670_enum_framesizes(struct v4l2_subdev *sd,
struct v4l2_frmsizeenum *fsize)
{
struct ov7670_info *info = to_state(sd);
int i;
int num_valid = -1;
__u32 index = fsize->index;
/*
* If a minimum width/height was requested, filter out the capture
* windows that fall outside that.
*/
for (i = 0; i < N_WIN_SIZES; i++) {
struct ov7670_win_size *win = &ov7670_win_sizes[index];
if (info->min_width && win->width < info->min_width)
continue;
if (info->min_height && win->height < info->min_height)
continue;
if (index == ++num_valid) {
fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
fsize->discrete.width = win->width;
fsize->discrete.height = win->height;
return 0;
}
}
return -EINVAL;
}
/*
* Code for dealing with controls.
*/
static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
int matrix[CMATRIX_LEN])
{
int i, ret;
unsigned char signbits = 0;
/*
* Weird crap seems to exist in the upper part of
* the sign bits register, so let's preserve it.
*/
ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
signbits &= 0xc0;
for (i = 0; i < CMATRIX_LEN; i++) {
unsigned char raw;
if (matrix[i] < 0) {
signbits |= (1 << i);
if (matrix[i] < -255)
raw = 0xff;
else
raw = (-1 * matrix[i]) & 0xff;
}
else {
if (matrix[i] > 255)
raw = 0xff;
else
raw = matrix[i] & 0xff;
}
ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
}
ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
return ret;
}
/*
* Hue also requires messing with the color matrix. It also requires
* trig functions, which tend not to be well supported in the kernel.
* So here is a simple table of sine values, 0-90 degrees, in steps
* of five degrees. Values are multiplied by 1000.
*
* The following naive approximate trig functions require an argument
* carefully limited to -180 <= theta <= 180.
*/
#define SIN_STEP 5
static const int ov7670_sin_table[] = {
0, 87, 173, 258, 342, 422,
499, 573, 642, 707, 766, 819,
866, 906, 939, 965, 984, 996,
1000
};
static int ov7670_sine(int theta)
{
int chs = 1;
int sine;
if (theta < 0) {
theta = -theta;
chs = -1;
}
if (theta <= 90)
sine = ov7670_sin_table[theta/SIN_STEP];
else {
theta -= 90;
sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
}
return sine*chs;
}
static int ov7670_cosine(int theta)
{
theta = 90 - theta;
if (theta > 180)
theta -= 360;
else if (theta < -180)
theta += 360;
return ov7670_sine(theta);
}
static void ov7670_calc_cmatrix(struct ov7670_info *info,
int matrix[CMATRIX_LEN])
{
int i;
/*
* Apply the current saturation setting first.
*/
for (i = 0; i < CMATRIX_LEN; i++)
matrix[i] = (info->fmt->cmatrix[i]*info->sat) >> 7;
/*
* Then, if need be, rotate the hue value.
*/
if (info->hue != 0) {
int sinth, costh, tmpmatrix[CMATRIX_LEN];
memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
sinth = ov7670_sine(info->hue);
costh = ov7670_cosine(info->hue);
matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
}
}
static int ov7670_s_sat(struct v4l2_subdev *sd, int value)
{
struct ov7670_info *info = to_state(sd);
int matrix[CMATRIX_LEN];
int ret;
info->sat = value;
ov7670_calc_cmatrix(info, matrix);
ret = ov7670_store_cmatrix(sd, matrix);
return ret;
}
static int ov7670_g_sat(struct v4l2_subdev *sd, __s32 *value)
{
struct ov7670_info *info = to_state(sd);
*value = info->sat;
return 0;
}
static int ov7670_s_hue(struct v4l2_subdev *sd, int value)
{
struct ov7670_info *info = to_state(sd);
int matrix[CMATRIX_LEN];
int ret;
if (value < -180 || value > 180)
return -EINVAL;
info->hue = value;
ov7670_calc_cmatrix(info, matrix);
ret = ov7670_store_cmatrix(sd, matrix);
return ret;
}
static int ov7670_g_hue(struct v4l2_subdev *sd, __s32 *value)
{
struct ov7670_info *info = to_state(sd);
*value = info->hue;
return 0;
}
/*
* Some weird registers seem to store values in a sign/magnitude format!
*/
static unsigned char ov7670_sm_to_abs(unsigned char v)
{
if ((v & 0x80) == 0)
return v + 128;
return 128 - (v & 0x7f);
}
static unsigned char ov7670_abs_to_sm(unsigned char v)
{
if (v > 127)
return v & 0x7f;
return (128 - v) | 0x80;
}
static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
{
unsigned char com8 = 0, v;
int ret;
ov7670_read(sd, REG_COM8, &com8);
com8 &= ~COM8_AEC;
ov7670_write(sd, REG_COM8, com8);
v = ov7670_abs_to_sm(value);
ret = ov7670_write(sd, REG_BRIGHT, v);
return ret;
}
static int ov7670_g_brightness(struct v4l2_subdev *sd, __s32 *value)
{
unsigned char v = 0;
int ret = ov7670_read(sd, REG_BRIGHT, &v);
*value = ov7670_sm_to_abs(v);
return ret;
}
static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
{
return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
}
static int ov7670_g_contrast(struct v4l2_subdev *sd, __s32 *value)
{
unsigned char v = 0;
int ret = ov7670_read(sd, REG_CONTRAS, &v);
*value = v;
return ret;
}
static int ov7670_g_hflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
unsigned char v = 0;
ret = ov7670_read(sd, REG_MVFP, &v);
*value = (v & MVFP_MIRROR) == MVFP_MIRROR;
return ret;
}
static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
{
unsigned char v = 0;
int ret;
ret = ov7670_read(sd, REG_MVFP, &v);
if (value)
v |= MVFP_MIRROR;
else
v &= ~MVFP_MIRROR;
msleep(10); /* FIXME */
ret += ov7670_write(sd, REG_MVFP, v);
return ret;
}
static int ov7670_g_vflip(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
unsigned char v = 0;
ret = ov7670_read(sd, REG_MVFP, &v);
*value = (v & MVFP_FLIP) == MVFP_FLIP;
return ret;
}
static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
{
unsigned char v = 0;
int ret;
ret = ov7670_read(sd, REG_MVFP, &v);
if (value)
v |= MVFP_FLIP;
else
v &= ~MVFP_FLIP;
msleep(10); /* FIXME */
ret += ov7670_write(sd, REG_MVFP, v);
return ret;
}
/*
* GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
* the data sheet, the VREF parts should be the most significant, but
* experience shows otherwise. There seems to be little value in
* messing with the VREF bits, so we leave them alone.
*/
static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
unsigned char gain;
ret = ov7670_read(sd, REG_GAIN, &gain);
*value = gain;
return ret;
}
static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
{
int ret;
unsigned char com8;
ret = ov7670_write(sd, REG_GAIN, value & 0xff);
/* Have to turn off AGC as well */
if (ret == 0) {
ret = ov7670_read(sd, REG_COM8, &com8);
ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
}
return ret;
}
/*
* Tweak autogain.
*/
static int ov7670_g_autogain(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
unsigned char com8;
ret = ov7670_read(sd, REG_COM8, &com8);
*value = (com8 & COM8_AGC) != 0;
return ret;
}
static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
{
int ret;
unsigned char com8;
ret = ov7670_read(sd, REG_COM8, &com8);
if (ret == 0) {
if (value)
com8 |= COM8_AGC;
else
com8 &= ~COM8_AGC;
ret = ov7670_write(sd, REG_COM8, com8);
}
return ret;
}
/*
* Exposure is spread all over the place: top 6 bits in AECHH, middle
* 8 in AECH, and two stashed in COM1 just for the hell of it.
*/
static int ov7670_g_exp(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
unsigned char com1, aech, aechh;
ret = ov7670_read(sd, REG_COM1, &com1) +
ov7670_read(sd, REG_AECH, &aech) +
ov7670_read(sd, REG_AECHH, &aechh);
*value = ((aechh & 0x3f) << 10) | (aech << 2) | (com1 & 0x03);
return ret;
}
static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
{
int ret;
unsigned char com1, com8, aech, aechh;
ret = ov7670_read(sd, REG_COM1, &com1) +
ov7670_read(sd, REG_COM8, &com8);
ov7670_read(sd, REG_AECHH, &aechh);
if (ret)
return ret;
com1 = (com1 & 0xfc) | (value & 0x03);
aech = (value >> 2) & 0xff;
aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
ret = ov7670_write(sd, REG_COM1, com1) +
ov7670_write(sd, REG_AECH, aech) +
ov7670_write(sd, REG_AECHH, aechh);
/* Have to turn off AEC as well */
if (ret == 0)
ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
return ret;
}
/*
* Tweak autoexposure.
*/
static int ov7670_g_autoexp(struct v4l2_subdev *sd, __s32 *value)
{
int ret;
unsigned char com8;
enum v4l2_exposure_auto_type *atype = (enum v4l2_exposure_auto_type *) value;
ret = ov7670_read(sd, REG_COM8, &com8);
if (com8 & COM8_AEC)
*atype = V4L2_EXPOSURE_AUTO;
else
*atype = V4L2_EXPOSURE_MANUAL;
return ret;
}
static int ov7670_s_autoexp(struct v4l2_subdev *sd,
enum v4l2_exposure_auto_type value)
{
int ret;
unsigned char com8;
ret = ov7670_read(sd, REG_COM8, &com8);
if (ret == 0) {
if (value == V4L2_EXPOSURE_AUTO)
com8 |= COM8_AEC;
else
com8 &= ~COM8_AEC;
ret = ov7670_write(sd, REG_COM8, com8);
}
return ret;
}
static int ov7670_queryctrl(struct v4l2_subdev *sd,
struct v4l2_queryctrl *qc)
{
/* Fill in min, max, step and default value for these controls. */
switch (qc->id) {
case V4L2_CID_BRIGHTNESS:
return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
case V4L2_CID_CONTRAST:
return v4l2_ctrl_query_fill(qc, 0, 127, 1, 64);
case V4L2_CID_VFLIP:
case V4L2_CID_HFLIP:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
case V4L2_CID_SATURATION:
return v4l2_ctrl_query_fill(qc, 0, 256, 1, 128);
case V4L2_CID_HUE:
return v4l2_ctrl_query_fill(qc, -180, 180, 5, 0);
case V4L2_CID_GAIN:
return v4l2_ctrl_query_fill(qc, 0, 255, 1, 128);
case V4L2_CID_AUTOGAIN:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 1);
case V4L2_CID_EXPOSURE:
return v4l2_ctrl_query_fill(qc, 0, 65535, 1, 500);
case V4L2_CID_EXPOSURE_AUTO:
return v4l2_ctrl_query_fill(qc, 0, 1, 1, 0);
}
return -EINVAL;
}
static int ov7670_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return ov7670_g_brightness(sd, &ctrl->value);
case V4L2_CID_CONTRAST:
return ov7670_g_contrast(sd, &ctrl->value);
case V4L2_CID_SATURATION:
return ov7670_g_sat(sd, &ctrl->value);
case V4L2_CID_HUE:
return ov7670_g_hue(sd, &ctrl->value);
case V4L2_CID_VFLIP:
return ov7670_g_vflip(sd, &ctrl->value);
case V4L2_CID_HFLIP:
return ov7670_g_hflip(sd, &ctrl->value);
case V4L2_CID_GAIN:
return ov7670_g_gain(sd, &ctrl->value);
case V4L2_CID_AUTOGAIN:
return ov7670_g_autogain(sd, &ctrl->value);
case V4L2_CID_EXPOSURE:
return ov7670_g_exp(sd, &ctrl->value);
case V4L2_CID_EXPOSURE_AUTO:
return ov7670_g_autoexp(sd, &ctrl->value);
}
return -EINVAL;
}
static int ov7670_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl)
{
switch (ctrl->id) {
case V4L2_CID_BRIGHTNESS:
return ov7670_s_brightness(sd, ctrl->value);
case V4L2_CID_CONTRAST:
return ov7670_s_contrast(sd, ctrl->value);
case V4L2_CID_SATURATION:
return ov7670_s_sat(sd, ctrl->value);
case V4L2_CID_HUE:
return ov7670_s_hue(sd, ctrl->value);
case V4L2_CID_VFLIP:
return ov7670_s_vflip(sd, ctrl->value);
case V4L2_CID_HFLIP:
return ov7670_s_hflip(sd, ctrl->value);
case V4L2_CID_GAIN:
return ov7670_s_gain(sd, ctrl->value);
case V4L2_CID_AUTOGAIN:
return ov7670_s_autogain(sd, ctrl->value);
case V4L2_CID_EXPOSURE:
return ov7670_s_exp(sd, ctrl->value);
case V4L2_CID_EXPOSURE_AUTO:
return ov7670_s_autoexp(sd,
(enum v4l2_exposure_auto_type) ctrl->value);
}
return -EINVAL;
}
static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
struct v4l2_dbg_chip_ident *chip)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
}
#ifdef CONFIG_VIDEO_ADV_DEBUG
static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
unsigned char val = 0;
int ret;
if (!v4l2_chip_match_i2c_client(client, &reg->match))
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ret = ov7670_read(sd, reg->reg & 0xff, &val);
reg->val = val;
reg->size = 1;
return ret;
}
static int ov7670_s_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
{
struct i2c_client *client = v4l2_get_subdevdata(sd);
if (!v4l2_chip_match_i2c_client(client, &reg->match))
return -EINVAL;
if (!capable(CAP_SYS_ADMIN))
return -EPERM;
ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
return 0;
}
#endif
/* ----------------------------------------------------------------------- */
static const struct v4l2_subdev_core_ops ov7670_core_ops = {
.g_chip_ident = ov7670_g_chip_ident,
.g_ctrl = ov7670_g_ctrl,
.s_ctrl = ov7670_s_ctrl,
.queryctrl = ov7670_queryctrl,
.reset = ov7670_reset,
.init = ov7670_init,
#ifdef CONFIG_VIDEO_ADV_DEBUG
.g_register = ov7670_g_register,
.s_register = ov7670_s_register,
#endif
};
static const struct v4l2_subdev_video_ops ov7670_video_ops = {
.enum_mbus_fmt = ov7670_enum_mbus_fmt,
.try_mbus_fmt = ov7670_try_mbus_fmt,
.s_mbus_fmt = ov7670_s_mbus_fmt,
.s_parm = ov7670_s_parm,
.g_parm = ov7670_g_parm,
.enum_frameintervals = ov7670_enum_frameintervals,
.enum_framesizes = ov7670_enum_framesizes,
};
static const struct v4l2_subdev_ops ov7670_ops = {
.core = &ov7670_core_ops,
.video = &ov7670_video_ops,
};
/* ----------------------------------------------------------------------- */
static int ov7670_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct v4l2_subdev *sd;
struct ov7670_info *info;
int ret;
info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
if (info == NULL)
return -ENOMEM;
sd = &info->sd;
v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
info->clock_speed = 30; /* default: a guess */
if (client->dev.platform_data) {
struct ov7670_config *config = client->dev.platform_data;
/*
* Must apply configuration before initializing device, because it
* selects I/O method.
*/
info->min_width = config->min_width;
info->min_height = config->min_height;
info->use_smbus = config->use_smbus;
if (config->clock_speed)
info->clock_speed = config->clock_speed;
}
/* Make sure it's an ov7670 */
ret = ov7670_detect(sd);
if (ret) {
v4l_dbg(1, debug, client,
"chip found @ 0x%x (%s) is not an ov7670 chip.\n",
client->addr << 1, client->adapter->name);
kfree(info);
return ret;
}
v4l_info(client, "chip found @ 0x%02x (%s)\n",
client->addr << 1, client->adapter->name);
info->fmt = &ov7670_formats[0];
info->sat = 128; /* Review this */
info->clkrc = info->clock_speed / 30;
return 0;
}
static int ov7670_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
v4l2_device_unregister_subdev(sd);
kfree(to_state(sd));
return 0;
}
static const struct i2c_device_id ov7670_id[] = {
{ "ov7670", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, ov7670_id);
static struct i2c_driver ov7670_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "ov7670",
},
.probe = ov7670_probe,
.remove = ov7670_remove,
.id_table = ov7670_id,
};
module_i2c_driver(ov7670_driver);