perf scripts python: Add event_analyzing_sample.py as a sample for general event handling
Currently only trace point events are supported in perf/python script, the first 3 patches of this serie add the support for all types of events. This script is just a simple sample to show how to gather the basic information of the events and analyze them. This script will create one object for each event sample and insert them into a table in a database, then leverage the simple SQL commands to sort/group them. User can modify or write their brand new functions according to their specific requirment. Here is the sample of how to use the script: $ perf record -a tree $ perf script -s process_event.py There is 100 records in gen_events table Statistics about the general events grouped by thread/symbol/dso: comm number histgram ========================================== swapper 56 ###### tree 20 ##### perf 10 #### sshd 8 #### kworker/7:2 4 ### ksoftirqd/7 1 # plugin-containe 1 # symbol number histgram ========================================================== native_write_msr_safe 40 ###### __lock_acquire 8 #### ftrace_graph_caller 4 ### prepare_ftrace_return 4 ### intel_idle 3 ## native_sched_clock 3 ## Unknown_symbol 2 ## do_softirq 2 ## lock_release 2 ## lock_release_holdtime 2 ## trace_graph_entry 2 ## _IO_putc 1 # __d_lookup_rcu 1 # __do_fault 1 # __schedule 1 # _raw_spin_lock 1 # delay_tsc 1 # generic_exec_single 1 # generic_fillattr 1 # dso number histgram ================================================================== [kernel.kallsyms] 95 ####### /lib/libc-2.12.1.so 5 ### Signed-off-by: Feng Tang <feng.tang@intel.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: David Ahern <dsahern@gmail.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robert Richter <robert.richter@amd.com> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/1344419875-21665-6-git-send-email-feng.tang@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit is contained in:
Родитель
02f1c33f7d
Коммит
0076d546b4
|
@ -0,0 +1,193 @@
|
|||
# process_event.py: general event handler in python
|
||||
#
|
||||
# Current perf report is alreay very powerful with the anotation integrated,
|
||||
# and this script is not trying to be as powerful as perf report, but
|
||||
# providing end user/developer a flexible way to analyze the events other
|
||||
# than trace points.
|
||||
#
|
||||
# The 2 database related functions in this script just show how to gather
|
||||
# the basic information, and users can modify and write their own functions
|
||||
# according to their specific requirment.
|
||||
#
|
||||
# The first sample "show_general_events" just does a baisc grouping for all
|
||||
# generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
|
||||
# for a x86 HW PMU event: PEBS with load latency data.
|
||||
#
|
||||
|
||||
import os
|
||||
import sys
|
||||
import math
|
||||
import struct
|
||||
import sqlite3
|
||||
|
||||
sys.path.append(os.environ['PERF_EXEC_PATH'] + \
|
||||
'/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
|
||||
|
||||
from perf_trace_context import *
|
||||
from EventClass import *
|
||||
|
||||
#
|
||||
# If the perf.data has a big number of samples, then the insert operation
|
||||
# will be very time consuming (about 10+ minutes for 10000 samples) if the
|
||||
# .db database is on disk. Move the .db file to RAM based FS to speedup
|
||||
# the handling, which will cut the time down to several seconds.
|
||||
#
|
||||
con = sqlite3.connect("/dev/shm/perf.db")
|
||||
con.isolation_level = None
|
||||
|
||||
def trace_begin():
|
||||
print "In trace_begin:\n"
|
||||
|
||||
#
|
||||
# Will create several tables at the start, pebs_ll is for PEBS data with
|
||||
# load latency info, while gen_events is for general event.
|
||||
#
|
||||
con.execute("""
|
||||
create table if not exists gen_events (
|
||||
name text,
|
||||
symbol text,
|
||||
comm text,
|
||||
dso text
|
||||
);""")
|
||||
con.execute("""
|
||||
create table if not exists pebs_ll (
|
||||
name text,
|
||||
symbol text,
|
||||
comm text,
|
||||
dso text,
|
||||
flags integer,
|
||||
ip integer,
|
||||
status integer,
|
||||
dse integer,
|
||||
dla integer,
|
||||
lat integer
|
||||
);""")
|
||||
|
||||
#
|
||||
# Create and insert event object to a database so that user could
|
||||
# do more analysis with simple database commands.
|
||||
#
|
||||
def process_event(param_dict):
|
||||
event_attr = param_dict["attr"]
|
||||
sample = param_dict["sample"]
|
||||
raw_buf = param_dict["raw_buf"]
|
||||
comm = param_dict["comm"]
|
||||
name = param_dict["ev_name"]
|
||||
|
||||
# Symbol and dso info are not always resolved
|
||||
if (param_dict.has_key("dso")):
|
||||
dso = param_dict["dso"]
|
||||
else:
|
||||
dso = "Unknown_dso"
|
||||
|
||||
if (param_dict.has_key("symbol")):
|
||||
symbol = param_dict["symbol"]
|
||||
else:
|
||||
symbol = "Unknown_symbol"
|
||||
|
||||
# Creat the event object and insert it to the right table in database
|
||||
event = create_event(name, comm, dso, symbol, raw_buf)
|
||||
insert_db(event)
|
||||
|
||||
def insert_db(event):
|
||||
if event.ev_type == EVTYPE_GENERIC:
|
||||
con.execute("insert into gen_events values(?, ?, ?, ?)",
|
||||
(event.name, event.symbol, event.comm, event.dso))
|
||||
elif event.ev_type == EVTYPE_PEBS_LL:
|
||||
event.ip &= 0x7fffffffffffffff
|
||||
event.dla &= 0x7fffffffffffffff
|
||||
con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
|
||||
(event.name, event.symbol, event.comm, event.dso, event.flags,
|
||||
event.ip, event.status, event.dse, event.dla, event.lat))
|
||||
|
||||
def trace_end():
|
||||
print "In trace_end:\n"
|
||||
# We show the basic info for the 2 type of event classes
|
||||
show_general_events()
|
||||
show_pebs_ll()
|
||||
con.close()
|
||||
|
||||
#
|
||||
# As the event number may be very big, so we can't use linear way
|
||||
# to show the histgram in real number, but use a log2 algorithm.
|
||||
#
|
||||
|
||||
def num2sym(num):
|
||||
# Each number will have at least one '#'
|
||||
snum = '#' * (int)(math.log(num, 2) + 1)
|
||||
return snum
|
||||
|
||||
def show_general_events():
|
||||
|
||||
# Check the total record number in the table
|
||||
count = con.execute("select count(*) from gen_events")
|
||||
for t in count:
|
||||
print "There is %d records in gen_events table" % t[0]
|
||||
if t[0] == 0:
|
||||
return
|
||||
|
||||
print "Statistics about the general events grouped by thread/symbol/dso: \n"
|
||||
|
||||
# Group by thread
|
||||
commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
|
||||
print "\n%16s %8s %16s\n%s" % ("comm", "number", "histgram", "="*42)
|
||||
for row in commq:
|
||||
print "%16s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
# Group by symbol
|
||||
print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histgram", "="*58)
|
||||
symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
|
||||
for row in symbolq:
|
||||
print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
# Group by dso
|
||||
print "\n%40s %8s %16s\n%s" % ("dso", "number", "histgram", "="*74)
|
||||
dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
|
||||
for row in dsoq:
|
||||
print "%40s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
#
|
||||
# This function just shows the basic info, and we could do more with the
|
||||
# data in the tables, like checking the function parameters when some
|
||||
# big latency events happen.
|
||||
#
|
||||
def show_pebs_ll():
|
||||
|
||||
count = con.execute("select count(*) from pebs_ll")
|
||||
for t in count:
|
||||
print "There is %d records in pebs_ll table" % t[0]
|
||||
if t[0] == 0:
|
||||
return
|
||||
|
||||
print "Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n"
|
||||
|
||||
# Group by thread
|
||||
commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
|
||||
print "\n%16s %8s %16s\n%s" % ("comm", "number", "histgram", "="*42)
|
||||
for row in commq:
|
||||
print "%16s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
# Group by symbol
|
||||
print "\n%32s %8s %16s\n%s" % ("symbol", "number", "histgram", "="*58)
|
||||
symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
|
||||
for row in symbolq:
|
||||
print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
# Group by dse
|
||||
dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
|
||||
print "\n%32s %8s %16s\n%s" % ("dse", "number", "histgram", "="*58)
|
||||
for row in dseq:
|
||||
print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
# Group by latency
|
||||
latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
|
||||
print "\n%32s %8s %16s\n%s" % ("latency", "number", "histgram", "="*58)
|
||||
for row in latq:
|
||||
print "%32s %8d %s" % (row[0], row[1], num2sym(row[1]))
|
||||
|
||||
def trace_unhandled(event_name, context, event_fields_dict):
|
||||
print ' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())])
|
||||
|
||||
def print_header(event_name, cpu, secs, nsecs, pid, comm):
|
||||
print "%-20s %5u %05u.%09u %8u %-20s " % \
|
||||
(event_name, cpu, secs, nsecs, pid, comm),
|
Загрузка…
Ссылка в новой задаче