ufs: sb mutex merge + mutex_destroy

Commit 788257d610 ("ufs: remove the BKL") replaced BKL with mutex
protection using functions lock_ufs, unlock_ufs and struct mutex 'mutex'
in sb_info.

Commit b6963327e0 ("ufs: drop lock/unlock super") removed lock/unlock
super and added struct mutex 's_lock' in sb_info.

Those 2 mutexes are generally locked/unlocked at the same time except in
allocation (balloc, ialloc).

This patch merges the 2 mutexes and propagates first commit solution.
It also adds mutex destruction before kfree during ufs_fill_super
failure and ufs_put_super.

[akpm@linux-foundation.org: avoid ifdefs, return -EROFS not -EINVAL]
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: "Chen, Jet" <jet.chen@intel.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
Fabian Frederick 2014-06-06 14:38:34 -07:00 коммит произвёл Linus Torvalds
Родитель 0d2b7ea928
Коммит 0244756edc
4 изменённых файлов: 33 добавлений и 43 удалений

Просмотреть файл

@ -52,7 +52,7 @@ void ufs_free_fragments(struct inode *inode, u64 fragment, unsigned count)
if (ufs_fragnum(fragment) + count > uspi->s_fpg) if (ufs_fragnum(fragment) + count > uspi->s_fpg)
ufs_error (sb, "ufs_free_fragments", "internal error"); ufs_error (sb, "ufs_free_fragments", "internal error");
mutex_lock(&UFS_SB(sb)->s_lock); lock_ufs(sb);
cgno = ufs_dtog(uspi, fragment); cgno = ufs_dtog(uspi, fragment);
bit = ufs_dtogd(uspi, fragment); bit = ufs_dtogd(uspi, fragment);
@ -116,12 +116,12 @@ void ufs_free_fragments(struct inode *inode, u64 fragment, unsigned count)
ubh_sync_block(UCPI_UBH(ucpi)); ubh_sync_block(UCPI_UBH(ucpi));
ufs_mark_sb_dirty(sb); ufs_mark_sb_dirty(sb);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT\n"); UFSD("EXIT\n");
return; return;
failed: failed:
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT (FAILED)\n"); UFSD("EXIT (FAILED)\n");
return; return;
} }
@ -151,7 +151,7 @@ void ufs_free_blocks(struct inode *inode, u64 fragment, unsigned count)
goto failed; goto failed;
} }
mutex_lock(&UFS_SB(sb)->s_lock); lock_ufs(sb);
do_more: do_more:
overflow = 0; overflow = 0;
@ -211,12 +211,12 @@ do_more:
} }
ufs_mark_sb_dirty(sb); ufs_mark_sb_dirty(sb);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT\n"); UFSD("EXIT\n");
return; return;
failed_unlock: failed_unlock:
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
failed: failed:
UFSD("EXIT (FAILED)\n"); UFSD("EXIT (FAILED)\n");
return; return;
@ -357,7 +357,7 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
usb1 = ubh_get_usb_first(uspi); usb1 = ubh_get_usb_first(uspi);
*err = -ENOSPC; *err = -ENOSPC;
mutex_lock(&UFS_SB(sb)->s_lock); lock_ufs(sb);
tmp = ufs_data_ptr_to_cpu(sb, p); tmp = ufs_data_ptr_to_cpu(sb, p);
if (count + ufs_fragnum(fragment) > uspi->s_fpb) { if (count + ufs_fragnum(fragment) > uspi->s_fpb) {
@ -378,19 +378,19 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
"fragment %llu, tmp %llu\n", "fragment %llu, tmp %llu\n",
(unsigned long long)fragment, (unsigned long long)fragment,
(unsigned long long)tmp); (unsigned long long)tmp);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
return INVBLOCK; return INVBLOCK;
} }
if (fragment < UFS_I(inode)->i_lastfrag) { if (fragment < UFS_I(inode)->i_lastfrag) {
UFSD("EXIT (ALREADY ALLOCATED)\n"); UFSD("EXIT (ALREADY ALLOCATED)\n");
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
return 0; return 0;
} }
} }
else { else {
if (tmp) { if (tmp) {
UFSD("EXIT (ALREADY ALLOCATED)\n"); UFSD("EXIT (ALREADY ALLOCATED)\n");
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
return 0; return 0;
} }
} }
@ -399,7 +399,7 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
* There is not enough space for user on the device * There is not enough space for user on the device
*/ */
if (!capable(CAP_SYS_RESOURCE) && ufs_freespace(uspi, UFS_MINFREE) <= 0) { if (!capable(CAP_SYS_RESOURCE) && ufs_freespace(uspi, UFS_MINFREE) <= 0) {
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT (FAILED)\n"); UFSD("EXIT (FAILED)\n");
return 0; return 0;
} }
@ -424,7 +424,7 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
ufs_clear_frags(inode, result + oldcount, ufs_clear_frags(inode, result + oldcount,
newcount - oldcount, locked_page != NULL); newcount - oldcount, locked_page != NULL);
} }
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT, result %llu\n", (unsigned long long)result); UFSD("EXIT, result %llu\n", (unsigned long long)result);
return result; return result;
} }
@ -439,7 +439,7 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
fragment + count); fragment + count);
ufs_clear_frags(inode, result + oldcount, newcount - oldcount, ufs_clear_frags(inode, result + oldcount, newcount - oldcount,
locked_page != NULL); locked_page != NULL);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT, result %llu\n", (unsigned long long)result); UFSD("EXIT, result %llu\n", (unsigned long long)result);
return result; return result;
} }
@ -477,7 +477,7 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
*err = 0; *err = 0;
UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag, UFS_I(inode)->i_lastfrag = max(UFS_I(inode)->i_lastfrag,
fragment + count); fragment + count);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
if (newcount < request) if (newcount < request)
ufs_free_fragments (inode, result + newcount, request - newcount); ufs_free_fragments (inode, result + newcount, request - newcount);
ufs_free_fragments (inode, tmp, oldcount); ufs_free_fragments (inode, tmp, oldcount);
@ -485,7 +485,7 @@ u64 ufs_new_fragments(struct inode *inode, void *p, u64 fragment,
return result; return result;
} }
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT (FAILED)\n"); UFSD("EXIT (FAILED)\n");
return 0; return 0;
} }

Просмотреть файл

@ -69,11 +69,11 @@ void ufs_free_inode (struct inode * inode)
ino = inode->i_ino; ino = inode->i_ino;
mutex_lock(&UFS_SB(sb)->s_lock); lock_ufs(sb);
if (!((ino > 1) && (ino < (uspi->s_ncg * uspi->s_ipg )))) { if (!((ino > 1) && (ino < (uspi->s_ncg * uspi->s_ipg )))) {
ufs_warning(sb, "ufs_free_inode", "reserved inode or nonexistent inode %u\n", ino); ufs_warning(sb, "ufs_free_inode", "reserved inode or nonexistent inode %u\n", ino);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
return; return;
} }
@ -81,7 +81,7 @@ void ufs_free_inode (struct inode * inode)
bit = ufs_inotocgoff (ino); bit = ufs_inotocgoff (ino);
ucpi = ufs_load_cylinder (sb, cg); ucpi = ufs_load_cylinder (sb, cg);
if (!ucpi) { if (!ucpi) {
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
return; return;
} }
ucg = ubh_get_ucg(UCPI_UBH(ucpi)); ucg = ubh_get_ucg(UCPI_UBH(ucpi));
@ -115,7 +115,7 @@ void ufs_free_inode (struct inode * inode)
ubh_sync_block(UCPI_UBH(ucpi)); ubh_sync_block(UCPI_UBH(ucpi));
ufs_mark_sb_dirty(sb); ufs_mark_sb_dirty(sb);
mutex_unlock(&UFS_SB(sb)->s_lock); unlock_ufs(sb);
UFSD("EXIT\n"); UFSD("EXIT\n");
} }
@ -193,7 +193,7 @@ struct inode *ufs_new_inode(struct inode *dir, umode_t mode)
sbi = UFS_SB(sb); sbi = UFS_SB(sb);
uspi = sbi->s_uspi; uspi = sbi->s_uspi;
mutex_lock(&sbi->s_lock); lock_ufs(sb);
/* /*
* Try to place the inode in its parent directory * Try to place the inode in its parent directory
@ -328,21 +328,20 @@ cg_found:
sync_dirty_buffer(bh); sync_dirty_buffer(bh);
brelse(bh); brelse(bh);
} }
unlock_ufs(sb);
mutex_unlock(&sbi->s_lock);
UFSD("allocating inode %lu\n", inode->i_ino); UFSD("allocating inode %lu\n", inode->i_ino);
UFSD("EXIT\n"); UFSD("EXIT\n");
return inode; return inode;
fail_remove_inode: fail_remove_inode:
mutex_unlock(&sbi->s_lock); unlock_ufs(sb);
clear_nlink(inode); clear_nlink(inode);
iput(inode); iput(inode);
UFSD("EXIT (FAILED): err %d\n", err); UFSD("EXIT (FAILED): err %d\n", err);
return ERR_PTR(err); return ERR_PTR(err);
failed: failed:
mutex_unlock(&sbi->s_lock); unlock_ufs(sb);
make_bad_inode(inode); make_bad_inode(inode);
iput (inode); iput (inode);
UFSD("EXIT (FAILED): err %d\n", err); UFSD("EXIT (FAILED): err %d\n", err);

Просмотреть файл

@ -697,7 +697,6 @@ static int ufs_sync_fs(struct super_block *sb, int wait)
unsigned flags; unsigned flags;
lock_ufs(sb); lock_ufs(sb);
mutex_lock(&UFS_SB(sb)->s_lock);
UFSD("ENTER\n"); UFSD("ENTER\n");
@ -715,7 +714,6 @@ static int ufs_sync_fs(struct super_block *sb, int wait)
ufs_put_cstotal(sb); ufs_put_cstotal(sb);
UFSD("EXIT\n"); UFSD("EXIT\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return 0; return 0;
@ -760,6 +758,7 @@ static void ufs_put_super(struct super_block *sb)
ubh_brelse_uspi (sbi->s_uspi); ubh_brelse_uspi (sbi->s_uspi);
kfree (sbi->s_uspi); kfree (sbi->s_uspi);
mutex_destroy(&sbi->mutex);
kfree (sbi); kfree (sbi);
sb->s_fs_info = NULL; sb->s_fs_info = NULL;
UFSD("EXIT\n"); UFSD("EXIT\n");
@ -787,6 +786,14 @@ static int ufs_fill_super(struct super_block *sb, void *data, int silent)
UFSD("ENTER\n"); UFSD("ENTER\n");
#ifndef CONFIG_UFS_FS_WRITE
if (!(sb->s_flags & MS_RDONLY)) {
printk("ufs was compiled with read-only support, "
"can't be mounted as read-write\n");
return -EROFS;
}
#endif
sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL); sbi = kzalloc(sizeof(struct ufs_sb_info), GFP_KERNEL);
if (!sbi) if (!sbi)
goto failed_nomem; goto failed_nomem;
@ -795,15 +802,7 @@ static int ufs_fill_super(struct super_block *sb, void *data, int silent)
UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY)); UFSD("flag %u\n", (int)(sb->s_flags & MS_RDONLY));
#ifndef CONFIG_UFS_FS_WRITE
if (!(sb->s_flags & MS_RDONLY)) {
printk("ufs was compiled with read-only support, "
"can't be mounted as read-write\n");
goto failed;
}
#endif
mutex_init(&sbi->mutex); mutex_init(&sbi->mutex);
mutex_init(&sbi->s_lock);
spin_lock_init(&sbi->work_lock); spin_lock_init(&sbi->work_lock);
INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs); INIT_DELAYED_WORK(&sbi->sync_work, delayed_sync_fs);
/* /*
@ -1257,6 +1256,7 @@ magic_found:
return 0; return 0;
failed: failed:
mutex_destroy(&sbi->mutex);
if (ubh) if (ubh)
ubh_brelse_uspi (uspi); ubh_brelse_uspi (uspi);
kfree (uspi); kfree (uspi);
@ -1280,7 +1280,6 @@ static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
sync_filesystem(sb); sync_filesystem(sb);
lock_ufs(sb); lock_ufs(sb);
mutex_lock(&UFS_SB(sb)->s_lock);
uspi = UFS_SB(sb)->s_uspi; uspi = UFS_SB(sb)->s_uspi;
flags = UFS_SB(sb)->s_flags; flags = UFS_SB(sb)->s_flags;
usb1 = ubh_get_usb_first(uspi); usb1 = ubh_get_usb_first(uspi);
@ -1294,7 +1293,6 @@ static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
new_mount_opt = 0; new_mount_opt = 0;
ufs_set_opt (new_mount_opt, ONERROR_LOCK); ufs_set_opt (new_mount_opt, ONERROR_LOCK);
if (!ufs_parse_options (data, &new_mount_opt)) { if (!ufs_parse_options (data, &new_mount_opt)) {
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return -EINVAL; return -EINVAL;
} }
@ -1302,14 +1300,12 @@ static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
new_mount_opt |= ufstype; new_mount_opt |= ufstype;
} else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) { } else if ((new_mount_opt & UFS_MOUNT_UFSTYPE) != ufstype) {
printk("ufstype can't be changed during remount\n"); printk("ufstype can't be changed during remount\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return -EINVAL; return -EINVAL;
} }
if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) { if ((*mount_flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) {
UFS_SB(sb)->s_mount_opt = new_mount_opt; UFS_SB(sb)->s_mount_opt = new_mount_opt;
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return 0; return 0;
} }
@ -1334,7 +1330,6 @@ static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
#ifndef CONFIG_UFS_FS_WRITE #ifndef CONFIG_UFS_FS_WRITE
printk("ufs was compiled with read-only support, " printk("ufs was compiled with read-only support, "
"can't be mounted as read-write\n"); "can't be mounted as read-write\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return -EINVAL; return -EINVAL;
#else #else
@ -1344,13 +1339,11 @@ static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
ufstype != UFS_MOUNT_UFSTYPE_SUNx86 && ufstype != UFS_MOUNT_UFSTYPE_SUNx86 &&
ufstype != UFS_MOUNT_UFSTYPE_UFS2) { ufstype != UFS_MOUNT_UFSTYPE_UFS2) {
printk("this ufstype is read-only supported\n"); printk("this ufstype is read-only supported\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return -EINVAL; return -EINVAL;
} }
if (!ufs_read_cylinder_structures(sb)) { if (!ufs_read_cylinder_structures(sb)) {
printk("failed during remounting\n"); printk("failed during remounting\n");
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return -EPERM; return -EPERM;
} }
@ -1358,7 +1351,6 @@ static int ufs_remount (struct super_block *sb, int *mount_flags, char *data)
#endif #endif
} }
UFS_SB(sb)->s_mount_opt = new_mount_opt; UFS_SB(sb)->s_mount_opt = new_mount_opt;
mutex_unlock(&UFS_SB(sb)->s_lock);
unlock_ufs(sb); unlock_ufs(sb);
return 0; return 0;
} }

Просмотреть файл

@ -24,7 +24,6 @@ struct ufs_sb_info {
int work_queued; /* non-zero if the delayed work is queued */ int work_queued; /* non-zero if the delayed work is queued */
struct delayed_work sync_work; /* FS sync delayed work */ struct delayed_work sync_work; /* FS sync delayed work */
spinlock_t work_lock; /* protects sync_work and work_queued */ spinlock_t work_lock; /* protects sync_work and work_queued */
struct mutex s_lock;
}; };
struct ufs_inode_info { struct ufs_inode_info {