Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (45 commits)
  crypto: caam - add support for sha512 variants of existing AEAD algorithms
  crypto: caam - remove unused authkeylen from caam_ctx
  crypto: caam - fix decryption shared vs. non-shared key setting
  crypto: caam - platform_bus_type migration
  crypto: aesni-intel - fix aesni build on i386
  crypto: aesni-intel - Merge with fpu.ko
  crypto: mv_cesa - make count_sgs() null-pointer proof
  crypto: mv_cesa - copy remaining bytes to SRAM only when needed
  crypto: mv_cesa - move digest state initialisation to a better place
  crypto: mv_cesa - fill inner/outer IV fields only in HMAC case
  crypto: mv_cesa - refactor copy_src_to_buf()
  crypto: mv_cesa - no need to save digest state after the last chunk
  crypto: mv_cesa - print a warning when registration of AES algos fail
  crypto: mv_cesa - drop this call to mv_hash_final from mv_hash_finup
  crypto: mv_cesa - the descriptor pointer register needs to be set just once
  crypto: mv_cesa - use ablkcipher_request_cast instead of the manual container_of
  crypto: caam - fix printk recursion for long error texts
  crypto: caam - remove unused keylen from session context
  hwrng: amd - enable AMD hw rnd driver for Maple PPC boards
  hwrng: amd - manage resource allocation
  ...
This commit is contained in:
Linus Torvalds 2011-05-20 17:24:14 -07:00
Родитель cae13fe4cc 4427b1b4ec
Коммит 052497553e
41 изменённых файлов: 7661 добавлений и 423 удалений

Просмотреть файл

@ -0,0 +1,397 @@
=====================================================================
SEC 4 Device Tree Binding
Copyright (C) 2008-2011 Freescale Semiconductor Inc.
CONTENTS
-Overview
-SEC 4 Node
-Job Ring Node
-Run Time Integrity Check (RTIC) Node
-Run Time Integrity Check (RTIC) Memory Node
-Secure Non-Volatile Storage (SNVS) Node
-Full Example
NOTE: the SEC 4 is also known as Freescale's Cryptographic Accelerator
Accelerator and Assurance Module (CAAM).
=====================================================================
Overview
DESCRIPTION
SEC 4 h/w can process requests from 2 types of sources.
1. DPAA Queue Interface (HW interface between Queue Manager & SEC 4).
2. Job Rings (HW interface between cores & SEC 4 registers).
High Speed Data Path Configuration:
HW interface between QM & SEC 4 and also BM & SEC 4, on DPAA-enabled parts
such as the P4080. The number of simultaneous dequeues the QI can make is
equal to the number of Descriptor Controller (DECO) engines in a particular
SEC version. E.g., the SEC 4.0 in the P4080 has 5 DECOs and can thus
dequeue from 5 subportals simultaneously.
Job Ring Data Path Configuration:
Each JR is located on a separate 4k page, they may (or may not) be made visible
in the memory partition devoted to a particular core. The P4080 has 4 JRs, so
up to 4 JRs can be configured; and all 4 JRs process requests in parallel.
=====================================================================
SEC 4 Node
Description
Node defines the base address of the SEC 4 block.
This block specifies the address range of all global
configuration registers for the SEC 4 block. It
also receives interrupts from the Run Time Integrity Check
(RTIC) function within the SEC 4 block.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0"
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration registers.
registers
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4.0 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
EXAMPLE
crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
};
=====================================================================
Job Ring (JR) Node
Child of the crypto node defines data processing interface to SEC 4
across the peripheral bus for purposes of processing
cryptographic descriptors. The specified address
range can be made visible to one (or more) cores.
The interrupt defined for this node is controlled within
the address range of this node.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-job-ring"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: Specifies a two JR parameters: an offset from
the parent physical address and the length the JR registers.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN mapping.
Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this JR. This property is
normally set by boot firmware.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
fsl,liodn = <0x081>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
=====================================================================
Run Time Integrity Check (RTIC) Node
Child node of the crypto node. Defines a register space that
contains up to 5 sets of addresses and their lengths (sizes) that
will be checked at run time. After an initial hash result is
calculated, these addresses are checked by HW to monitor any
change. If any memory is modified, a Security Violation is
triggered (see SNVS definition).
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-rtic".
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes. Must
have a value of 1.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes. Must have a value of 1.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies a two parameters:
an offset from the parent physical address and the length
the SEC4 registers.
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
EXAMPLE
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
};
=====================================================================
Run Time Integrity Check (RTIC) Memory Node
A child node that defines individual RTIC memory regions that are used to
perform run-time integrity check of memory areas that should not modified.
The node defines a register that contains the memory address &
length (combined) and a second register that contains the hash result
in big endian format.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-rtic-memory".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies two parameters:
an offset from the parent physical address and the length:
1. The location of the RTIC memory address & length registers.
2. The location RTIC hash result.
- fsl,rtic-region
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the HW address (36 bit address) for this region
followed by the length of the HW partition to be checked;
the address is represented as a 64 bit quantity followed
by a 32 bit length.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN
mapping. Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this RTIC memory region. This
property is normally set by boot firmware.
EXAMPLE
rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
fsl,liodn = <0x03c>;
fsl,rtic-region = <0x12345678 0x12345678 0x12345678>;
};
=====================================================================
Secure Non-Volatile Storage (SNVS) Node
Node defines address range and the associated
interrupt for the SNVS function. This function
monitors security state information & reports
security violations.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-mon".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration
registers.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
FULL EXAMPLE
crypto: crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================

Просмотреть файл

@ -1,7 +1,7 @@
/*
* P4080DS Device Tree Source
*
* Copyright 2009 Freescale Semiconductor Inc.
* Copyright 2009-2011 Freescale Semiconductor Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
@ -33,6 +33,17 @@
dma1 = &dma1;
sdhc = &sdhc;
crypto = &crypto;
sec_jr0 = &sec_jr0;
sec_jr1 = &sec_jr1;
sec_jr2 = &sec_jr2;
sec_jr3 = &sec_jr3;
rtic_a = &rtic_a;
rtic_b = &rtic_b;
rtic_c = &rtic_c;
rtic_d = &rtic_d;
sec_mon = &sec_mon;
rio0 = &rapidio0;
};
@ -410,6 +421,79 @@
dr_mode = "host";
phy_type = "ulpi";
};
crypto: crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
};
rapidio0: rapidio@ffe0c0000 {

Просмотреть файл

@ -8,3 +8,4 @@ obj-$(CONFIG_CRYPTO_SHA512_S390) += sha512_s390.o sha_common.o
obj-$(CONFIG_CRYPTO_DES_S390) += des_s390.o
obj-$(CONFIG_CRYPTO_AES_S390) += aes_s390.o
obj-$(CONFIG_S390_PRNG) += prng.o
obj-$(CONFIG_CRYPTO_GHASH_S390) += ghash_s390.o

Просмотреть файл

@ -31,7 +31,8 @@
#define AES_KEYLEN_192 2
#define AES_KEYLEN_256 4
static char keylen_flag = 0;
static u8 *ctrblk;
static char keylen_flag;
struct s390_aes_ctx {
u8 iv[AES_BLOCK_SIZE];
@ -45,6 +46,24 @@ struct s390_aes_ctx {
} fallback;
};
struct pcc_param {
u8 key[32];
u8 tweak[16];
u8 block[16];
u8 bit[16];
u8 xts[16];
};
struct s390_xts_ctx {
u8 key[32];
u8 xts_param[16];
struct pcc_param pcc;
long enc;
long dec;
int key_len;
struct crypto_blkcipher *fallback;
};
/*
* Check if the key_len is supported by the HW.
* Returns 0 if it is, a positive number if it is not and software fallback is
@ -504,15 +523,337 @@ static struct crypto_alg cbc_aes_alg = {
}
};
static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int len)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
unsigned int ret;
xts_ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
xts_ctx->fallback->base.crt_flags |= (tfm->crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_blkcipher_setkey(xts_ctx->fallback, key, len);
if (ret) {
tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->crt_flags |= (xts_ctx->fallback->base.crt_flags &
CRYPTO_TFM_RES_MASK);
}
return ret;
}
static int xts_fallback_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct crypto_blkcipher *tfm;
unsigned int ret;
tfm = desc->tfm;
desc->tfm = xts_ctx->fallback;
ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
desc->tfm = tfm;
return ret;
}
static int xts_fallback_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct crypto_blkcipher *tfm;
unsigned int ret;
tfm = desc->tfm;
desc->tfm = xts_ctx->fallback;
ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
desc->tfm = tfm;
return ret;
}
static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
switch (key_len) {
case 32:
xts_ctx->enc = KM_XTS_128_ENCRYPT;
xts_ctx->dec = KM_XTS_128_DECRYPT;
memcpy(xts_ctx->key + 16, in_key, 16);
memcpy(xts_ctx->pcc.key + 16, in_key + 16, 16);
break;
case 48:
xts_ctx->enc = 0;
xts_ctx->dec = 0;
xts_fallback_setkey(tfm, in_key, key_len);
break;
case 64:
xts_ctx->enc = KM_XTS_256_ENCRYPT;
xts_ctx->dec = KM_XTS_256_DECRYPT;
memcpy(xts_ctx->key, in_key, 32);
memcpy(xts_ctx->pcc.key, in_key + 32, 32);
break;
default:
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
xts_ctx->key_len = key_len;
return 0;
}
static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
struct s390_xts_ctx *xts_ctx,
struct blkcipher_walk *walk)
{
unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
int ret = blkcipher_walk_virt(desc, walk);
unsigned int nbytes = walk->nbytes;
unsigned int n;
u8 *in, *out;
void *param;
if (!nbytes)
goto out;
memset(xts_ctx->pcc.block, 0, sizeof(xts_ctx->pcc.block));
memset(xts_ctx->pcc.bit, 0, sizeof(xts_ctx->pcc.bit));
memset(xts_ctx->pcc.xts, 0, sizeof(xts_ctx->pcc.xts));
memcpy(xts_ctx->pcc.tweak, walk->iv, sizeof(xts_ctx->pcc.tweak));
param = xts_ctx->pcc.key + offset;
ret = crypt_s390_pcc(func, param);
BUG_ON(ret < 0);
memcpy(xts_ctx->xts_param, xts_ctx->pcc.xts, 16);
param = xts_ctx->key + offset;
do {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
ret = crypt_s390_km(func, param, out, in, n);
BUG_ON(ret < 0 || ret != n);
nbytes &= AES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, walk, nbytes);
} while ((nbytes = walk->nbytes));
out:
return ret;
}
static int xts_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
if (unlikely(xts_ctx->key_len == 48))
return xts_fallback_encrypt(desc, dst, src, nbytes);
blkcipher_walk_init(&walk, dst, src, nbytes);
return xts_aes_crypt(desc, xts_ctx->enc, xts_ctx, &walk);
}
static int xts_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
if (unlikely(xts_ctx->key_len == 48))
return xts_fallback_decrypt(desc, dst, src, nbytes);
blkcipher_walk_init(&walk, dst, src, nbytes);
return xts_aes_crypt(desc, xts_ctx->dec, xts_ctx, &walk);
}
static int xts_fallback_init(struct crypto_tfm *tfm)
{
const char *name = tfm->__crt_alg->cra_name;
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
xts_ctx->fallback = crypto_alloc_blkcipher(name, 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(xts_ctx->fallback)) {
pr_err("Allocating XTS fallback algorithm %s failed\n",
name);
return PTR_ERR(xts_ctx->fallback);
}
return 0;
}
static void xts_fallback_exit(struct crypto_tfm *tfm)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
crypto_free_blkcipher(xts_ctx->fallback);
xts_ctx->fallback = NULL;
}
static struct crypto_alg xts_aes_alg = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_xts_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(xts_aes_alg.cra_list),
.cra_init = xts_fallback_init,
.cra_exit = xts_fallback_exit,
.cra_u = {
.blkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_aes_set_key,
.encrypt = xts_aes_encrypt,
.decrypt = xts_aes_decrypt,
}
}
};
static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
switch (key_len) {
case 16:
sctx->enc = KMCTR_AES_128_ENCRYPT;
sctx->dec = KMCTR_AES_128_DECRYPT;
break;
case 24:
sctx->enc = KMCTR_AES_192_ENCRYPT;
sctx->dec = KMCTR_AES_192_DECRYPT;
break;
case 32:
sctx->enc = KMCTR_AES_256_ENCRYPT;
sctx->dec = KMCTR_AES_256_DECRYPT;
break;
}
return aes_set_key(tfm, in_key, key_len);
}
static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
{
int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
unsigned int i, n, nbytes;
u8 buf[AES_BLOCK_SIZE];
u8 *out, *in;
if (!walk->nbytes)
return ret;
memcpy(ctrblk, walk->iv, AES_BLOCK_SIZE);
while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
while (nbytes >= AES_BLOCK_SIZE) {
/* only use complete blocks, max. PAGE_SIZE */
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE :
nbytes & ~(AES_BLOCK_SIZE - 1);
for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
memcpy(ctrblk + i, ctrblk + i - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(ctrblk + i, AES_BLOCK_SIZE);
}
ret = crypt_s390_kmctr(func, sctx->key, out, in, n, ctrblk);
BUG_ON(ret < 0 || ret != n);
if (n > AES_BLOCK_SIZE)
memcpy(ctrblk, ctrblk + n - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
out += n;
in += n;
nbytes -= n;
}
ret = blkcipher_walk_done(desc, walk, nbytes);
}
/*
* final block may be < AES_BLOCK_SIZE, copy only nbytes
*/
if (nbytes) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
ret = crypt_s390_kmctr(func, sctx->key, buf, in,
AES_BLOCK_SIZE, ctrblk);
BUG_ON(ret < 0 || ret != AES_BLOCK_SIZE);
memcpy(out, buf, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
ret = blkcipher_walk_done(desc, walk, 0);
}
memcpy(walk->iv, ctrblk, AES_BLOCK_SIZE);
return ret;
}
static int ctr_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_aes_crypt(desc, sctx->enc, sctx, &walk);
}
static int ctr_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_aes_crypt(desc, sctx->dec, sctx, &walk);
}
static struct crypto_alg ctr_aes_alg = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_aes_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ctr_aes_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ctr_aes_set_key,
.encrypt = ctr_aes_encrypt,
.decrypt = ctr_aes_decrypt,
}
}
};
static int __init aes_s390_init(void)
{
int ret;
if (crypt_s390_func_available(KM_AES_128_ENCRYPT))
if (crypt_s390_func_available(KM_AES_128_ENCRYPT, CRYPT_S390_MSA))
keylen_flag |= AES_KEYLEN_128;
if (crypt_s390_func_available(KM_AES_192_ENCRYPT))
if (crypt_s390_func_available(KM_AES_192_ENCRYPT, CRYPT_S390_MSA))
keylen_flag |= AES_KEYLEN_192;
if (crypt_s390_func_available(KM_AES_256_ENCRYPT))
if (crypt_s390_func_available(KM_AES_256_ENCRYPT, CRYPT_S390_MSA))
keylen_flag |= AES_KEYLEN_256;
if (!keylen_flag)
@ -535,9 +876,40 @@ static int __init aes_s390_init(void)
if (ret)
goto cbc_aes_err;
if (crypt_s390_func_available(KM_XTS_128_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KM_XTS_256_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
ret = crypto_register_alg(&xts_aes_alg);
if (ret)
goto xts_aes_err;
}
if (crypt_s390_func_available(KMCTR_AES_128_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KMCTR_AES_192_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KMCTR_AES_256_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
ret = -ENOMEM;
goto ctr_aes_err;
}
ret = crypto_register_alg(&ctr_aes_alg);
if (ret) {
free_page((unsigned long) ctrblk);
goto ctr_aes_err;
}
}
out:
return ret;
ctr_aes_err:
crypto_unregister_alg(&xts_aes_alg);
xts_aes_err:
crypto_unregister_alg(&cbc_aes_alg);
cbc_aes_err:
crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err:
@ -548,6 +920,9 @@ aes_err:
static void __exit aes_s390_fini(void)
{
crypto_unregister_alg(&ctr_aes_alg);
free_page((unsigned long) ctrblk);
crypto_unregister_alg(&xts_aes_alg);
crypto_unregister_alg(&cbc_aes_alg);
crypto_unregister_alg(&ecb_aes_alg);
crypto_unregister_alg(&aes_alg);

Просмотреть файл

@ -24,13 +24,18 @@
#define CRYPT_S390_PRIORITY 300
#define CRYPT_S390_COMPOSITE_PRIORITY 400
#define CRYPT_S390_MSA 0x1
#define CRYPT_S390_MSA3 0x2
#define CRYPT_S390_MSA4 0x4
/* s390 cryptographic operations */
enum crypt_s390_operations {
CRYPT_S390_KM = 0x0100,
CRYPT_S390_KMC = 0x0200,
CRYPT_S390_KIMD = 0x0300,
CRYPT_S390_KLMD = 0x0400,
CRYPT_S390_KMAC = 0x0500
CRYPT_S390_KMAC = 0x0500,
CRYPT_S390_KMCTR = 0x0600
};
/*
@ -51,6 +56,10 @@ enum crypt_s390_km_func {
KM_AES_192_DECRYPT = CRYPT_S390_KM | 0x13 | 0x80,
KM_AES_256_ENCRYPT = CRYPT_S390_KM | 0x14,
KM_AES_256_DECRYPT = CRYPT_S390_KM | 0x14 | 0x80,
KM_XTS_128_ENCRYPT = CRYPT_S390_KM | 0x32,
KM_XTS_128_DECRYPT = CRYPT_S390_KM | 0x32 | 0x80,
KM_XTS_256_ENCRYPT = CRYPT_S390_KM | 0x34,
KM_XTS_256_DECRYPT = CRYPT_S390_KM | 0x34 | 0x80,
};
/*
@ -74,6 +83,26 @@ enum crypt_s390_kmc_func {
KMC_PRNG = CRYPT_S390_KMC | 0x43,
};
/*
* function codes for KMCTR (CIPHER MESSAGE WITH COUNTER)
* instruction
*/
enum crypt_s390_kmctr_func {
KMCTR_QUERY = CRYPT_S390_KMCTR | 0x0,
KMCTR_DEA_ENCRYPT = CRYPT_S390_KMCTR | 0x1,
KMCTR_DEA_DECRYPT = CRYPT_S390_KMCTR | 0x1 | 0x80,
KMCTR_TDEA_128_ENCRYPT = CRYPT_S390_KMCTR | 0x2,
KMCTR_TDEA_128_DECRYPT = CRYPT_S390_KMCTR | 0x2 | 0x80,
KMCTR_TDEA_192_ENCRYPT = CRYPT_S390_KMCTR | 0x3,
KMCTR_TDEA_192_DECRYPT = CRYPT_S390_KMCTR | 0x3 | 0x80,
KMCTR_AES_128_ENCRYPT = CRYPT_S390_KMCTR | 0x12,
KMCTR_AES_128_DECRYPT = CRYPT_S390_KMCTR | 0x12 | 0x80,
KMCTR_AES_192_ENCRYPT = CRYPT_S390_KMCTR | 0x13,
KMCTR_AES_192_DECRYPT = CRYPT_S390_KMCTR | 0x13 | 0x80,
KMCTR_AES_256_ENCRYPT = CRYPT_S390_KMCTR | 0x14,
KMCTR_AES_256_DECRYPT = CRYPT_S390_KMCTR | 0x14 | 0x80,
};
/*
* function codes for KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST)
* instruction
@ -83,6 +112,7 @@ enum crypt_s390_kimd_func {
KIMD_SHA_1 = CRYPT_S390_KIMD | 1,
KIMD_SHA_256 = CRYPT_S390_KIMD | 2,
KIMD_SHA_512 = CRYPT_S390_KIMD | 3,
KIMD_GHASH = CRYPT_S390_KIMD | 65,
};
/*
@ -283,6 +313,45 @@ static inline int crypt_s390_kmac(long func, void *param,
return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
}
/**
* crypt_s390_kmctr:
* @func: the function code passed to KMCTR; see crypt_s390_kmctr_func
* @param: address of parameter block; see POP for details on each func
* @dest: address of destination memory area
* @src: address of source memory area
* @src_len: length of src operand in bytes
* @counter: address of counter value
*
* Executes the KMCTR (CIPHER MESSAGE WITH COUNTER) operation of the CPU.
*
* Returns -1 for failure, 0 for the query func, number of processed
* bytes for encryption/decryption funcs
*/
static inline int crypt_s390_kmctr(long func, void *param, u8 *dest,
const u8 *src, long src_len, u8 *counter)
{
register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
register void *__param asm("1") = param;
register const u8 *__src asm("2") = src;
register long __src_len asm("3") = src_len;
register u8 *__dest asm("4") = dest;
register u8 *__ctr asm("6") = counter;
int ret = -1;
asm volatile(
"0: .insn rrf,0xb92d0000,%3,%1,%4,0 \n" /* KMCTR opcode */
"1: brc 1,0b \n" /* handle partial completion */
" la %0,0\n"
"2:\n"
EX_TABLE(0b,2b) EX_TABLE(1b,2b)
: "+d" (ret), "+a" (__src), "+d" (__src_len), "+a" (__dest),
"+a" (__ctr)
: "d" (__func), "a" (__param) : "cc", "memory");
if (ret < 0)
return ret;
return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
}
/**
* crypt_s390_func_available:
* @func: the function code of the specific function; 0 if op in general
@ -291,13 +360,17 @@ static inline int crypt_s390_kmac(long func, void *param,
*
* Returns 1 if func available; 0 if func or op in general not available
*/
static inline int crypt_s390_func_available(int func)
static inline int crypt_s390_func_available(int func,
unsigned int facility_mask)
{
unsigned char status[16];
int ret;
/* check if CPACF facility (bit 17) is available */
if (!test_facility(17))
if (facility_mask & CRYPT_S390_MSA && !test_facility(17))
return 0;
if (facility_mask & CRYPT_S390_MSA3 && !test_facility(76))
return 0;
if (facility_mask & CRYPT_S390_MSA4 && !test_facility(77))
return 0;
switch (func & CRYPT_S390_OP_MASK) {
@ -316,6 +389,10 @@ static inline int crypt_s390_func_available(int func)
case CRYPT_S390_KMAC:
ret = crypt_s390_kmac(KMAC_QUERY, &status, NULL, 0);
break;
case CRYPT_S390_KMCTR:
ret = crypt_s390_kmctr(KMCTR_QUERY, &status, NULL, NULL, 0,
NULL);
break;
default:
return 0;
}
@ -326,4 +403,31 @@ static inline int crypt_s390_func_available(int func)
return (status[func >> 3] & (0x80 >> (func & 7))) != 0;
}
/**
* crypt_s390_pcc:
* @func: the function code passed to KM; see crypt_s390_km_func
* @param: address of parameter block; see POP for details on each func
*
* Executes the PCC (PERFORM CRYPTOGRAPHIC COMPUTATION) operation of the CPU.
*
* Returns -1 for failure, 0 for success.
*/
static inline int crypt_s390_pcc(long func, void *param)
{
register long __func asm("0") = func & 0x7f; /* encrypt or decrypt */
register void *__param asm("1") = param;
int ret = -1;
asm volatile(
"0: .insn rre,0xb92c0000,0,0 \n" /* PCC opcode */
"1: brc 1,0b \n" /* handle partial completion */
" la %0,0\n"
"2:\n"
EX_TABLE(0b,2b) EX_TABLE(1b,2b)
: "+d" (ret)
: "d" (__func), "a" (__param) : "cc", "memory");
return ret;
}
#endif /* _CRYPTO_ARCH_S390_CRYPT_S390_H */

Просмотреть файл

@ -1,132 +0,0 @@
/*
* Cryptographic API.
*
* Function for checking keys for the DES and Tripple DES Encryption
* algorithms.
*
* Originally released as descore by Dana L. How <how@isl.stanford.edu>.
* Modified by Raimar Falke <rf13@inf.tu-dresden.de> for the Linux-Kernel.
* Derived from Cryptoapi and Nettle implementations, adapted for in-place
* scatterlist interface. Changed LGPL to GPL per section 3 of the LGPL.
*
* s390 Version:
* Copyright IBM Corp. 2003
* Author(s): Thomas Spatzier
* Jan Glauber (jan.glauber@de.ibm.com)
*
* Derived from "crypto/des.c"
* Copyright (c) 1992 Dana L. How.
* Copyright (c) Raimar Falke <rf13@inf.tu-dresden.de>
* Copyright (c) Gisle Sflensminde <gisle@ii.uib.no>
* Copyright (C) 2001 Niels Mvller.
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include "crypto_des.h"
#define ROR(d,c,o) ((d) = (d) >> (c) | (d) << (o))
static const u8 parity[] = {
8,1,0,8,0,8,8,0,0,8,8,0,8,0,2,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,3,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
4,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,5,0,8,0,8,8,0,0,8,8,0,8,0,6,8,
};
/*
* RFC2451: Weak key checks SHOULD be performed.
*/
int
crypto_des_check_key(const u8 *key, unsigned int keylen, u32 *flags)
{
u32 n, w;
n = parity[key[0]]; n <<= 4;
n |= parity[key[1]]; n <<= 4;
n |= parity[key[2]]; n <<= 4;
n |= parity[key[3]]; n <<= 4;
n |= parity[key[4]]; n <<= 4;
n |= parity[key[5]]; n <<= 4;
n |= parity[key[6]]; n <<= 4;
n |= parity[key[7]];
w = 0x88888888L;
if ((*flags & CRYPTO_TFM_REQ_WEAK_KEY)
&& !((n - (w >> 3)) & w)) { /* 1 in 10^10 keys passes this test */
if (n < 0x41415151) {
if (n < 0x31312121) {
if (n < 0x14141515) {
/* 01 01 01 01 01 01 01 01 */
if (n == 0x11111111) goto weak;
/* 01 1F 01 1F 01 0E 01 0E */
if (n == 0x13131212) goto weak;
} else {
/* 01 E0 01 E0 01 F1 01 F1 */
if (n == 0x14141515) goto weak;
/* 01 FE 01 FE 01 FE 01 FE */
if (n == 0x16161616) goto weak;
}
} else {
if (n < 0x34342525) {
/* 1F 01 1F 01 0E 01 0E 01 */
if (n == 0x31312121) goto weak;
/* 1F 1F 1F 1F 0E 0E 0E 0E (?) */
if (n == 0x33332222) goto weak;
} else {
/* 1F E0 1F E0 0E F1 0E F1 */
if (n == 0x34342525) goto weak;
/* 1F FE 1F FE 0E FE 0E FE */
if (n == 0x36362626) goto weak;
}
}
} else {
if (n < 0x61616161) {
if (n < 0x44445555) {
/* E0 01 E0 01 F1 01 F1 01 */
if (n == 0x41415151) goto weak;
/* E0 1F E0 1F F1 0E F1 0E */
if (n == 0x43435252) goto weak;
} else {
/* E0 E0 E0 E0 F1 F1 F1 F1 (?) */
if (n == 0x44445555) goto weak;
/* E0 FE E0 FE F1 FE F1 FE */
if (n == 0x46465656) goto weak;
}
} else {
if (n < 0x64646565) {
/* FE 01 FE 01 FE 01 FE 01 */
if (n == 0x61616161) goto weak;
/* FE 1F FE 1F FE 0E FE 0E */
if (n == 0x63636262) goto weak;
} else {
/* FE E0 FE E0 FE F1 FE F1 */
if (n == 0x64646565) goto weak;
/* FE FE FE FE FE FE FE FE */
if (n == 0x66666666) goto weak;
}
}
}
}
return 0;
weak:
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
EXPORT_SYMBOL(crypto_des_check_key);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Key Check function for DES & DES3 Cipher Algorithms");

Просмотреть файл

@ -3,7 +3,7 @@
*
* s390 implementation of the DES Cipher Algorithm.
*
* Copyright IBM Corp. 2003,2007
* Copyright IBM Corp. 2003,2011
* Author(s): Thomas Spatzier
* Jan Glauber (jan.glauber@de.ibm.com)
*
@ -22,22 +22,19 @@
#include "crypt_s390.h"
#define DES3_192_KEY_SIZE (3 * DES_KEY_SIZE)
#define DES3_KEY_SIZE (3 * DES_KEY_SIZE)
struct crypt_s390_des_ctx {
u8 iv[DES_BLOCK_SIZE];
u8 key[DES_KEY_SIZE];
};
static u8 *ctrblk;
struct crypt_s390_des3_192_ctx {
struct s390_des_ctx {
u8 iv[DES_BLOCK_SIZE];
u8 key[DES3_192_KEY_SIZE];
u8 key[DES3_KEY_SIZE];
};
static int des_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
unsigned int key_len)
{
struct crypt_s390_des_ctx *dctx = crypto_tfm_ctx(tfm);
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
u32 tmp[DES_EXPKEY_WORDS];
@ -47,22 +44,22 @@ static int des_setkey(struct crypto_tfm *tfm, const u8 *key,
return -EINVAL;
}
memcpy(dctx->key, key, keylen);
memcpy(ctx->key, key, key_len);
return 0;
}
static void des_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct crypt_s390_des_ctx *dctx = crypto_tfm_ctx(tfm);
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_DEA_ENCRYPT, dctx->key, out, in, DES_BLOCK_SIZE);
crypt_s390_km(KM_DEA_ENCRYPT, ctx->key, out, in, DES_BLOCK_SIZE);
}
static void des_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{
struct crypt_s390_des_ctx *dctx = crypto_tfm_ctx(tfm);
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_DEA_DECRYPT, dctx->key, out, in, DES_BLOCK_SIZE);
crypt_s390_km(KM_DEA_DECRYPT, ctx->key, out, in, DES_BLOCK_SIZE);
}
static struct crypto_alg des_alg = {
@ -71,7 +68,7 @@ static struct crypto_alg des_alg = {
.cra_priority = CRYPT_S390_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des_ctx),
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(des_alg.cra_list),
.cra_u = {
@ -86,7 +83,7 @@ static struct crypto_alg des_alg = {
};
static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
void *param, struct blkcipher_walk *walk)
u8 *key, struct blkcipher_walk *walk)
{
int ret = blkcipher_walk_virt(desc, walk);
unsigned int nbytes;
@ -97,7 +94,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr;
ret = crypt_s390_km(func, param, out, in, n);
ret = crypt_s390_km(func, key, out, in, n);
BUG_ON((ret < 0) || (ret != n));
nbytes &= DES_BLOCK_SIZE - 1;
@ -108,7 +105,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
}
static int cbc_desall_crypt(struct blkcipher_desc *desc, long func,
void *param, struct blkcipher_walk *walk)
u8 *iv, struct blkcipher_walk *walk)
{
int ret = blkcipher_walk_virt(desc, walk);
unsigned int nbytes = walk->nbytes;
@ -116,20 +113,20 @@ static int cbc_desall_crypt(struct blkcipher_desc *desc, long func,
if (!nbytes)
goto out;
memcpy(param, walk->iv, DES_BLOCK_SIZE);
memcpy(iv, walk->iv, DES_BLOCK_SIZE);
do {
/* only use complete blocks */
unsigned int n = nbytes & ~(DES_BLOCK_SIZE - 1);
u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr;
ret = crypt_s390_kmc(func, param, out, in, n);
ret = crypt_s390_kmc(func, iv, out, in, n);
BUG_ON((ret < 0) || (ret != n));
nbytes &= DES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, walk, nbytes);
} while ((nbytes = walk->nbytes));
memcpy(walk->iv, param, DES_BLOCK_SIZE);
memcpy(walk->iv, iv, DES_BLOCK_SIZE);
out:
return ret;
@ -139,22 +136,22 @@ static int ecb_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_DEA_ENCRYPT, sctx->key, &walk);
return ecb_desall_crypt(desc, KM_DEA_ENCRYPT, ctx->key, &walk);
}
static int ecb_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_DEA_DECRYPT, sctx->key, &walk);
return ecb_desall_crypt(desc, KM_DEA_DECRYPT, ctx->key, &walk);
}
static struct crypto_alg ecb_des_alg = {
@ -163,7 +160,7 @@ static struct crypto_alg ecb_des_alg = {
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des_ctx),
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ecb_des_alg.cra_list),
@ -182,22 +179,22 @@ static int cbc_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_DEA_ENCRYPT, sctx->iv, &walk);
return cbc_desall_crypt(desc, KMC_DEA_ENCRYPT, ctx->iv, &walk);
}
static int cbc_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_DEA_DECRYPT, sctx->iv, &walk);
return cbc_desall_crypt(desc, KMC_DEA_DECRYPT, ctx->iv, &walk);
}
static struct crypto_alg cbc_des_alg = {
@ -206,7 +203,7 @@ static struct crypto_alg cbc_des_alg = {
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des_ctx),
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(cbc_des_alg.cra_list),
@ -235,10 +232,10 @@ static struct crypto_alg cbc_des_alg = {
* property.
*
*/
static int des3_192_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen)
static int des3_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int key_len)
{
struct crypt_s390_des3_192_ctx *dctx = crypto_tfm_ctx(tfm);
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) &&
@ -248,141 +245,276 @@ static int des3_192_setkey(struct crypto_tfm *tfm, const u8 *key,
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
memcpy(dctx->key, key, keylen);
memcpy(ctx->key, key, key_len);
return 0;
}
static void des3_192_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
static void des3_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypt_s390_des3_192_ctx *dctx = crypto_tfm_ctx(tfm);
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_TDEA_192_ENCRYPT, dctx->key, dst, (void*)src,
DES_BLOCK_SIZE);
crypt_s390_km(KM_TDEA_192_ENCRYPT, ctx->key, dst, src, DES_BLOCK_SIZE);
}
static void des3_192_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
static void des3_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{
struct crypt_s390_des3_192_ctx *dctx = crypto_tfm_ctx(tfm);
struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_TDEA_192_DECRYPT, dctx->key, dst, (void*)src,
DES_BLOCK_SIZE);
crypt_s390_km(KM_TDEA_192_DECRYPT, ctx->key, dst, src, DES_BLOCK_SIZE);
}
static struct crypto_alg des3_192_alg = {
static struct crypto_alg des3_alg = {
.cra_name = "des3_ede",
.cra_driver_name = "des3_ede-s390",
.cra_priority = CRYPT_S390_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des3_192_ctx),
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(des3_192_alg.cra_list),
.cra_list = LIST_HEAD_INIT(des3_alg.cra_list),
.cra_u = {
.cipher = {
.cia_min_keysize = DES3_192_KEY_SIZE,
.cia_max_keysize = DES3_192_KEY_SIZE,
.cia_setkey = des3_192_setkey,
.cia_encrypt = des3_192_encrypt,
.cia_decrypt = des3_192_decrypt,
.cia_min_keysize = DES3_KEY_SIZE,
.cia_max_keysize = DES3_KEY_SIZE,
.cia_setkey = des3_setkey,
.cia_encrypt = des3_encrypt,
.cia_decrypt = des3_decrypt,
}
}
};
static int ecb_des3_192_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
static int ecb_des3_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_TDEA_192_ENCRYPT, sctx->key, &walk);
return ecb_desall_crypt(desc, KM_TDEA_192_ENCRYPT, ctx->key, &walk);
}
static int ecb_des3_192_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
static int ecb_des3_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_TDEA_192_DECRYPT, sctx->key, &walk);
return ecb_desall_crypt(desc, KM_TDEA_192_DECRYPT, ctx->key, &walk);
}
static struct crypto_alg ecb_des3_192_alg = {
static struct crypto_alg ecb_des3_alg = {
.cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3_ede-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des3_192_ctx),
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(
ecb_des3_192_alg.cra_list),
ecb_des3_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES3_192_KEY_SIZE,
.max_keysize = DES3_192_KEY_SIZE,
.setkey = des3_192_setkey,
.encrypt = ecb_des3_192_encrypt,
.decrypt = ecb_des3_192_decrypt,
.min_keysize = DES3_KEY_SIZE,
.max_keysize = DES3_KEY_SIZE,
.setkey = des3_setkey,
.encrypt = ecb_des3_encrypt,
.decrypt = ecb_des3_decrypt,
}
}
};
static int cbc_des3_192_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
static int cbc_des3_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_TDEA_192_ENCRYPT, sctx->iv, &walk);
return cbc_desall_crypt(desc, KMC_TDEA_192_ENCRYPT, ctx->iv, &walk);
}
static int cbc_des3_192_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
static int cbc_des3_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_TDEA_192_DECRYPT, sctx->iv, &walk);
return cbc_desall_crypt(desc, KMC_TDEA_192_DECRYPT, ctx->iv, &walk);
}
static struct crypto_alg cbc_des3_192_alg = {
static struct crypto_alg cbc_des3_alg = {
.cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3_ede-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des3_192_ctx),
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(
cbc_des3_192_alg.cra_list),
cbc_des3_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES3_192_KEY_SIZE,
.max_keysize = DES3_192_KEY_SIZE,
.min_keysize = DES3_KEY_SIZE,
.max_keysize = DES3_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = des3_192_setkey,
.encrypt = cbc_des3_192_encrypt,
.decrypt = cbc_des3_192_decrypt,
.setkey = des3_setkey,
.encrypt = cbc_des3_encrypt,
.decrypt = cbc_des3_decrypt,
}
}
};
static int des_s390_init(void)
static int ctr_desall_crypt(struct blkcipher_desc *desc, long func,
struct s390_des_ctx *ctx, struct blkcipher_walk *walk)
{
int ret = blkcipher_walk_virt_block(desc, walk, DES_BLOCK_SIZE);
unsigned int i, n, nbytes;
u8 buf[DES_BLOCK_SIZE];
u8 *out, *in;
memcpy(ctrblk, walk->iv, DES_BLOCK_SIZE);
while ((nbytes = walk->nbytes) >= DES_BLOCK_SIZE) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
while (nbytes >= DES_BLOCK_SIZE) {
/* align to block size, max. PAGE_SIZE */
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE :
nbytes & ~(DES_BLOCK_SIZE - 1);
for (i = DES_BLOCK_SIZE; i < n; i += DES_BLOCK_SIZE) {
memcpy(ctrblk + i, ctrblk + i - DES_BLOCK_SIZE,
DES_BLOCK_SIZE);
crypto_inc(ctrblk + i, DES_BLOCK_SIZE);
}
ret = crypt_s390_kmctr(func, ctx->key, out, in, n, ctrblk);
BUG_ON((ret < 0) || (ret != n));
if (n > DES_BLOCK_SIZE)
memcpy(ctrblk, ctrblk + n - DES_BLOCK_SIZE,
DES_BLOCK_SIZE);
crypto_inc(ctrblk, DES_BLOCK_SIZE);
out += n;
in += n;
nbytes -= n;
}
ret = blkcipher_walk_done(desc, walk, nbytes);
}
/* final block may be < DES_BLOCK_SIZE, copy only nbytes */
if (nbytes) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
ret = crypt_s390_kmctr(func, ctx->key, buf, in,
DES_BLOCK_SIZE, ctrblk);
BUG_ON(ret < 0 || ret != DES_BLOCK_SIZE);
memcpy(out, buf, nbytes);
crypto_inc(ctrblk, DES_BLOCK_SIZE);
ret = blkcipher_walk_done(desc, walk, 0);
}
memcpy(walk->iv, ctrblk, DES_BLOCK_SIZE);
return ret;
}
static int ctr_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_DEA_ENCRYPT, ctx, &walk);
}
static int ctr_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_DEA_DECRYPT, ctx, &walk);
}
static struct crypto_alg ctr_des_alg = {
.cra_name = "ctr(des)",
.cra_driver_name = "ctr-des-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ctr_des_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = des_setkey,
.encrypt = ctr_des_encrypt,
.decrypt = ctr_des_decrypt,
}
}
};
static int ctr_des3_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_TDEA_192_ENCRYPT, ctx, &walk);
}
static int ctr_des3_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_TDEA_192_DECRYPT, ctx, &walk);
}
static struct crypto_alg ctr_des3_alg = {
.cra_name = "ctr(des3_ede)",
.cra_driver_name = "ctr-des3_ede-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ctr_des3_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES3_KEY_SIZE,
.max_keysize = DES3_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = des3_setkey,
.encrypt = ctr_des3_encrypt,
.decrypt = ctr_des3_decrypt,
}
}
};
static int __init des_s390_init(void)
{
int ret;
if (!crypt_s390_func_available(KM_DEA_ENCRYPT) ||
!crypt_s390_func_available(KM_TDEA_192_ENCRYPT))
if (!crypt_s390_func_available(KM_DEA_ENCRYPT, CRYPT_S390_MSA) ||
!crypt_s390_func_available(KM_TDEA_192_ENCRYPT, CRYPT_S390_MSA))
return -EOPNOTSUPP;
ret = crypto_register_alg(&des_alg);
@ -394,23 +526,46 @@ static int des_s390_init(void)
ret = crypto_register_alg(&cbc_des_alg);
if (ret)
goto cbc_des_err;
ret = crypto_register_alg(&des3_192_alg);
ret = crypto_register_alg(&des3_alg);
if (ret)
goto des3_192_err;
ret = crypto_register_alg(&ecb_des3_192_alg);
goto des3_err;
ret = crypto_register_alg(&ecb_des3_alg);
if (ret)
goto ecb_des3_192_err;
ret = crypto_register_alg(&cbc_des3_192_alg);
goto ecb_des3_err;
ret = crypto_register_alg(&cbc_des3_alg);
if (ret)
goto cbc_des3_192_err;
goto cbc_des3_err;
if (crypt_s390_func_available(KMCTR_DEA_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KMCTR_TDEA_192_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
ret = crypto_register_alg(&ctr_des_alg);
if (ret)
goto ctr_des_err;
ret = crypto_register_alg(&ctr_des3_alg);
if (ret)
goto ctr_des3_err;
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
ret = -ENOMEM;
goto ctr_mem_err;
}
}
out:
return ret;
cbc_des3_192_err:
crypto_unregister_alg(&ecb_des3_192_alg);
ecb_des3_192_err:
crypto_unregister_alg(&des3_192_alg);
des3_192_err:
ctr_mem_err:
crypto_unregister_alg(&ctr_des3_alg);
ctr_des3_err:
crypto_unregister_alg(&ctr_des_alg);
ctr_des_err:
crypto_unregister_alg(&cbc_des3_alg);
cbc_des3_err:
crypto_unregister_alg(&ecb_des3_alg);
ecb_des3_err:
crypto_unregister_alg(&des3_alg);
des3_err:
crypto_unregister_alg(&cbc_des_alg);
cbc_des_err:
crypto_unregister_alg(&ecb_des_alg);
@ -422,9 +577,14 @@ des_err:
static void __exit des_s390_exit(void)
{
crypto_unregister_alg(&cbc_des3_192_alg);
crypto_unregister_alg(&ecb_des3_192_alg);
crypto_unregister_alg(&des3_192_alg);
if (ctrblk) {
crypto_unregister_alg(&ctr_des_alg);
crypto_unregister_alg(&ctr_des3_alg);
free_page((unsigned long) ctrblk);
}
crypto_unregister_alg(&cbc_des3_alg);
crypto_unregister_alg(&ecb_des3_alg);
crypto_unregister_alg(&des3_alg);
crypto_unregister_alg(&cbc_des_alg);
crypto_unregister_alg(&ecb_des_alg);
crypto_unregister_alg(&des_alg);

Просмотреть файл

@ -0,0 +1,162 @@
/*
* Cryptographic API.
*
* s390 implementation of the GHASH algorithm for GCM (Galois/Counter Mode).
*
* Copyright IBM Corp. 2011
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <linux/module.h>
#include "crypt_s390.h"
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
struct ghash_ctx {
u8 icv[16];
u8 key[16];
};
struct ghash_desc_ctx {
u8 buffer[GHASH_BLOCK_SIZE];
u32 bytes;
};
static int ghash_init(struct shash_desc *desc)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
memset(dctx, 0, sizeof(*dctx));
return 0;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
struct ghash_ctx *ctx = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key, key, GHASH_BLOCK_SIZE);
memset(ctx->icv, 0, GHASH_BLOCK_SIZE);
return 0;
}
static int ghash_update(struct shash_desc *desc,
const u8 *src, unsigned int srclen)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
unsigned int n;
u8 *buf = dctx->buffer;
int ret;
if (dctx->bytes) {
u8 *pos = buf + (GHASH_BLOCK_SIZE - dctx->bytes);
n = min(srclen, dctx->bytes);
dctx->bytes -= n;
srclen -= n;
memcpy(pos, src, n);
src += n;
if (!dctx->bytes) {
ret = crypt_s390_kimd(KIMD_GHASH, ctx, buf,
GHASH_BLOCK_SIZE);
BUG_ON(ret != GHASH_BLOCK_SIZE);
}
}
n = srclen & ~(GHASH_BLOCK_SIZE - 1);
if (n) {
ret = crypt_s390_kimd(KIMD_GHASH, ctx, src, n);
BUG_ON(ret != n);
src += n;
srclen -= n;
}
if (srclen) {
dctx->bytes = GHASH_BLOCK_SIZE - srclen;
memcpy(buf, src, srclen);
}
return 0;
}
static void ghash_flush(struct ghash_ctx *ctx, struct ghash_desc_ctx *dctx)
{
u8 *buf = dctx->buffer;
int ret;
if (dctx->bytes) {
u8 *pos = buf + (GHASH_BLOCK_SIZE - dctx->bytes);
memset(pos, 0, dctx->bytes);
ret = crypt_s390_kimd(KIMD_GHASH, ctx, buf, GHASH_BLOCK_SIZE);
BUG_ON(ret != GHASH_BLOCK_SIZE);
}
dctx->bytes = 0;
}
static int ghash_final(struct shash_desc *desc, u8 *dst)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
ghash_flush(ctx, dctx);
memcpy(dst, ctx->icv, GHASH_BLOCK_SIZE);
return 0;
}
static struct shash_alg ghash_alg = {
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.final = ghash_final,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
.base = {
.cra_name = "ghash",
.cra_driver_name = "ghash-s390",
.cra_priority = CRYPT_S390_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ghash_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ghash_alg.base.cra_list),
},
};
static int __init ghash_mod_init(void)
{
if (!crypt_s390_func_available(KIMD_GHASH,
CRYPT_S390_MSA | CRYPT_S390_MSA4))
return -EOPNOTSUPP;
return crypto_register_shash(&ghash_alg);
}
static void __exit ghash_mod_exit(void)
{
crypto_unregister_shash(&ghash_alg);
}
module_init(ghash_mod_init);
module_exit(ghash_mod_exit);
MODULE_ALIAS("ghash");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GHASH Message Digest Algorithm, s390 implementation");

Просмотреть файл

@ -166,7 +166,7 @@ static int __init prng_init(void)
int ret;
/* check if the CPU has a PRNG */
if (!crypt_s390_func_available(KMC_PRNG))
if (!crypt_s390_func_available(KMC_PRNG, CRYPT_S390_MSA))
return -EOPNOTSUPP;
if (prng_chunk_size < 8)

Просмотреть файл

@ -90,7 +90,7 @@ static struct shash_alg alg = {
static int __init sha1_s390_init(void)
{
if (!crypt_s390_func_available(KIMD_SHA_1))
if (!crypt_s390_func_available(KIMD_SHA_1, CRYPT_S390_MSA))
return -EOPNOTSUPP;
return crypto_register_shash(&alg);
}

Просмотреть файл

@ -86,7 +86,7 @@ static struct shash_alg alg = {
static int sha256_s390_init(void)
{
if (!crypt_s390_func_available(KIMD_SHA_256))
if (!crypt_s390_func_available(KIMD_SHA_256, CRYPT_S390_MSA))
return -EOPNOTSUPP;
return crypto_register_shash(&alg);

Просмотреть файл

@ -132,7 +132,7 @@ static int __init init(void)
{
int ret;
if (!crypt_s390_func_available(KIMD_SHA_512))
if (!crypt_s390_func_available(KIMD_SHA_512, CRYPT_S390_MSA))
return -EOPNOTSUPP;
if ((ret = crypto_register_shash(&sha512_alg)) < 0)
goto out;

Просмотреть файл

@ -2,8 +2,6 @@
# Arch-specific CryptoAPI modules.
#
obj-$(CONFIG_CRYPTO_FPU) += fpu.o
obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o
obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o
obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o
@ -24,6 +22,6 @@ aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o fpu.o
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o

Просмотреть файл

@ -94,6 +94,10 @@ asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
int crypto_fpu_init(void);
void crypto_fpu_exit(void);
#ifdef CONFIG_X86_64
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv);
@ -1257,6 +1261,8 @@ static int __init aesni_init(void)
return -ENODEV;
}
if ((err = crypto_fpu_init()))
goto fpu_err;
if ((err = crypto_register_alg(&aesni_alg)))
goto aes_err;
if ((err = crypto_register_alg(&__aesni_alg)))
@ -1334,6 +1340,7 @@ blk_ecb_err:
__aes_err:
crypto_unregister_alg(&aesni_alg);
aes_err:
fpu_err:
return err;
}
@ -1363,6 +1370,8 @@ static void __exit aesni_exit(void)
crypto_unregister_alg(&blk_ecb_alg);
crypto_unregister_alg(&__aesni_alg);
crypto_unregister_alg(&aesni_alg);
crypto_fpu_exit();
}
module_init(aesni_init);

Просмотреть файл

@ -150,18 +150,12 @@ static struct crypto_template crypto_fpu_tmpl = {
.module = THIS_MODULE,
};
static int __init crypto_fpu_module_init(void)
int __init crypto_fpu_init(void)
{
return crypto_register_template(&crypto_fpu_tmpl);
}
static void __exit crypto_fpu_module_exit(void)
void __exit crypto_fpu_exit(void)
{
crypto_unregister_template(&crypto_fpu_tmpl);
}
module_init(crypto_fpu_module_init);
module_exit(crypto_fpu_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FPU block cipher wrapper");

Просмотреть файл

@ -264,11 +264,6 @@ config CRYPTO_XTS
key size 256, 384 or 512 bits. This implementation currently
can't handle a sectorsize which is not a multiple of 16 bytes.
config CRYPTO_FPU
tristate
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
comment "Hash modes"
config CRYPTO_HMAC
@ -543,7 +538,6 @@ config CRYPTO_AES_NI_INTEL
select CRYPTO_AES_586 if !64BIT
select CRYPTO_CRYPTD
select CRYPTO_ALGAPI
select CRYPTO_FPU
help
Use Intel AES-NI instructions for AES algorithm.

Просмотреть файл

@ -1009,6 +1009,10 @@ static int do_test(int m)
speed_template_32_48_64);
test_cipher_speed("xts(aes)", DECRYPT, sec, NULL, 0,
speed_template_32_48_64);
test_cipher_speed("ctr(aes)", ENCRYPT, sec, NULL, 0,
speed_template_16_24_32);
test_cipher_speed("ctr(aes)", DECRYPT, sec, NULL, 0,
speed_template_16_24_32);
break;
case 201:

Просмотреть файл

@ -2218,6 +2218,22 @@ static const struct alg_test_desc alg_test_descs[] = {
.count = MICHAEL_MIC_TEST_VECTORS
}
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ofb_enc_tv_template,
.count = AES_OFB_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ofb_dec_tv_template,
.count = AES_OFB_DEC_TEST_VECTORS
}
}
}
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,

Просмотреть файл

@ -2980,6 +2980,8 @@ static struct cipher_testvec cast6_dec_tv_template[] = {
#define AES_XTS_DEC_TEST_VECTORS 4
#define AES_CTR_ENC_TEST_VECTORS 3
#define AES_CTR_DEC_TEST_VECTORS 3
#define AES_OFB_ENC_TEST_VECTORS 1
#define AES_OFB_DEC_TEST_VECTORS 1
#define AES_CTR_3686_ENC_TEST_VECTORS 7
#define AES_CTR_3686_DEC_TEST_VECTORS 6
#define AES_GCM_ENC_TEST_VECTORS 9
@ -5506,6 +5508,64 @@ static struct cipher_testvec aes_ctr_rfc3686_dec_tv_template[] = {
},
};
static struct cipher_testvec aes_ofb_enc_tv_template[] = {
/* From NIST Special Publication 800-38A, Appendix F.5 */
{
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07\x08"
"\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.input = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ilen = 64,
.result = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\x77\x89\x50\x8d\x16\x91\x8f\x03\xf5"
"\x3c\x52\xda\xc5\x4e\xd8\x25"
"\x97\x40\x05\x1e\x9c\x5f\xec\xf6\x43"
"\x44\xf7\xa8\x22\x60\xed\xcc"
"\x30\x4c\x65\x28\xf6\x59\xc7\x78"
"\x66\xa5\x10\xd9\xc1\xd6\xae\x5e",
.rlen = 64,
}
};
static struct cipher_testvec aes_ofb_dec_tv_template[] = {
/* From NIST Special Publication 800-38A, Appendix F.5 */
{
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07\x08"
"\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.input = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\x77\x89\x50\x8d\x16\x91\x8f\x03\xf5"
"\x3c\x52\xda\xc5\x4e\xd8\x25"
"\x97\x40\x05\x1e\x9c\x5f\xec\xf6\x43"
"\x44\xf7\xa8\x22\x60\xed\xcc"
"\x30\x4c\x65\x28\xf6\x59\xc7\x78"
"\x66\xa5\x10\xd9\xc1\xd6\xae\x5e",
.ilen = 64,
.result = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.rlen = 64,
}
};
static struct aead_testvec aes_gcm_enc_tv_template[] = {
{ /* From McGrew & Viega - http://citeseer.ist.psu.edu/656989.html */
.key = zeroed_string,

Просмотреть файл

@ -49,7 +49,7 @@ config HW_RANDOM_INTEL
config HW_RANDOM_AMD
tristate "AMD HW Random Number Generator support"
depends on HW_RANDOM && X86 && PCI
depends on HW_RANDOM && (X86 || PPC_MAPLE) && PCI
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number

Просмотреть файл

@ -133,6 +133,12 @@ found:
pmbase &= 0x0000FF00;
if (pmbase == 0)
goto out;
if (!request_region(pmbase + 0xF0, 8, "AMD HWRNG")) {
dev_err(&pdev->dev, "AMD HWRNG region 0x%x already in use!\n",
pmbase + 0xF0);
err = -EBUSY;
goto out;
}
amd_rng.priv = (unsigned long)pmbase;
amd_pdev = pdev;
@ -141,6 +147,7 @@ found:
if (err) {
printk(KERN_ERR PFX "RNG registering failed (%d)\n",
err);
release_region(pmbase + 0xF0, 8);
goto out;
}
out:
@ -149,6 +156,8 @@ out:
static void __exit mod_exit(void)
{
u32 pmbase = (unsigned long)amd_rng.priv;
release_region(pmbase + 0xF0, 8);
hwrng_unregister(&amd_rng);
}

Просмотреть файл

@ -91,6 +91,8 @@ config CRYPTO_SHA1_S390
This is the s390 hardware accelerated implementation of the
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
It is available as of z990.
config CRYPTO_SHA256_S390
tristate "SHA256 digest algorithm"
depends on S390
@ -99,8 +101,7 @@ config CRYPTO_SHA256_S390
This is the s390 hardware accelerated implementation of the
SHA256 secure hash standard (DFIPS 180-2).
This version of SHA implements a 256 bit hash with 128 bits of
security against collision attacks.
It is available as of z9.
config CRYPTO_SHA512_S390
tristate "SHA384 and SHA512 digest algorithm"
@ -110,10 +111,7 @@ config CRYPTO_SHA512_S390
This is the s390 hardware accelerated implementation of the
SHA512 secure hash standard.
This version of SHA implements a 512 bit hash with 256 bits of
security against collision attacks. The code also includes SHA-384,
a 384 bit hash with 192 bits of security against collision attacks.
It is available as of z10.
config CRYPTO_DES_S390
tristate "DES and Triple DES cipher algorithms"
@ -121,9 +119,12 @@ config CRYPTO_DES_S390
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
This us the s390 hardware accelerated implementation of the
This is the s390 hardware accelerated implementation of the
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
As of z990 the ECB and CBC mode are hardware accelerated.
As of z196 the CTR mode is hardware accelerated.
config CRYPTO_AES_S390
tristate "AES cipher algorithms"
depends on S390
@ -131,20 +132,15 @@ config CRYPTO_AES_S390
select CRYPTO_BLKCIPHER
help
This is the s390 hardware accelerated implementation of the
AES cipher algorithms (FIPS-197). AES uses the Rijndael
algorithm.
AES cipher algorithms (FIPS-197).
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
On s390 the System z9-109 currently only supports the key size
of 128 bit.
As of z9 the ECB and CBC modes are hardware accelerated
for 128 bit keys.
As of z10 the ECB and CBC modes are hardware accelerated
for all AES key sizes.
As of z196 the CTR mode is hardware accelerated for all AES
key sizes and XTS mode is hardware accelerated for 256 and
512 bit keys.
config S390_PRNG
tristate "Pseudo random number generator device driver"
@ -154,8 +150,20 @@ config S390_PRNG
Select this option if you want to use the s390 pseudo random number
generator. The PRNG is part of the cryptographic processor functions
and uses triple-DES to generate secure random numbers like the
ANSI X9.17 standard. The PRNG is usable via the char device
/dev/prandom.
ANSI X9.17 standard. User-space programs access the
pseudo-random-number device through the char device /dev/prandom.
It is available as of z9.
config CRYPTO_GHASH_S390
tristate "GHASH digest algorithm"
depends on S390
select CRYPTO_HASH
help
This is the s390 hardware accelerated implementation of the
GHASH message digest algorithm for GCM (Galois/Counter Mode).
It is available as of z196.
config CRYPTO_DEV_MV_CESA
tristate "Marvell's Cryptographic Engine"
@ -200,6 +208,8 @@ config CRYPTO_DEV_HIFN_795X_RNG
Select this option if you want to enable the random number generator
on the HIFN 795x crypto adapters.
source drivers/crypto/caam/Kconfig
config CRYPTO_DEV_TALITOS
tristate "Talitos Freescale Security Engine (SEC)"
select CRYPTO_ALGAPI
@ -269,4 +279,15 @@ config CRYPTO_DEV_PICOXCELL
Saying m here will build a module named pipcoxcell_crypto.
config CRYPTO_DEV_S5P
tristate "Support for Samsung S5PV210 crypto accelerator"
depends on ARCH_S5PV210
select CRYPTO_AES
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
This option allows you to have support for S5P crypto acceleration.
Select this to offload Samsung S5PV210 or S5PC110 from AES
algorithms execution.
endif # CRYPTO_HW

Просмотреть файл

@ -6,8 +6,10 @@ n2_crypto-y := n2_core.o n2_asm.o
obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o
obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam/
obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o
obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/
obj-$(CONFIG_CRYPTO_DEV_OMAP_SHAM) += omap-sham.o
obj-$(CONFIG_CRYPTO_DEV_OMAP_AES) += omap-aes.o
obj-$(CONFIG_CRYPTO_DEV_PICOXCELL) += picoxcell_crypto.o
obj-$(CONFIG_CRYPTO_DEV_S5P) += s5p-sss.o

Просмотреть файл

@ -0,0 +1,72 @@
config CRYPTO_DEV_FSL_CAAM
tristate "Freescale CAAM-Multicore driver backend"
depends on FSL_SOC
help
Enables the driver module for Freescale's Cryptographic Accelerator
and Assurance Module (CAAM), also known as the SEC version 4 (SEC4).
This module adds a job ring operation interface, and configures h/w
to operate as a DPAA component automatically, depending
on h/w feature availability.
To compile this driver as a module, choose M here: the module
will be called caam.
config CRYPTO_DEV_FSL_CAAM_RINGSIZE
int "Job Ring size"
depends on CRYPTO_DEV_FSL_CAAM
range 2 9
default "9"
help
Select size of Job Rings as a power of 2, within the
range 2-9 (ring size 4-512).
Examples:
2 => 4
3 => 8
4 => 16
5 => 32
6 => 64
7 => 128
8 => 256
9 => 512
config CRYPTO_DEV_FSL_CAAM_INTC
bool "Job Ring interrupt coalescing"
depends on CRYPTO_DEV_FSL_CAAM
default y
help
Enable the Job Ring's interrupt coalescing feature.
config CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD
int "Job Ring interrupt coalescing count threshold"
depends on CRYPTO_DEV_FSL_CAAM_INTC
range 1 255
default 255
help
Select number of descriptor completions to queue before
raising an interrupt, in the range 1-255. Note that a selection
of 1 functionally defeats the coalescing feature, and a selection
equal or greater than the job ring size will force timeouts.
config CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD
int "Job Ring interrupt coalescing timer threshold"
depends on CRYPTO_DEV_FSL_CAAM_INTC
range 1 65535
default 2048
help
Select number of bus clocks/64 to timeout in the case that one or
more descriptor completions are queued without reaching the count
threshold. Range is 1-65535.
config CRYPTO_DEV_FSL_CAAM_CRYPTO_API
tristate "Register algorithm implementations with the Crypto API"
depends on CRYPTO_DEV_FSL_CAAM
default y
select CRYPTO_ALGAPI
select CRYPTO_AUTHENC
help
Selecting this will offload crypto for users of the
scatterlist crypto API (such as the linux native IPSec
stack) to the SEC4 via job ring.
To compile this as a module, choose M here: the module
will be called caamalg.

Просмотреть файл

@ -0,0 +1,8 @@
#
# Makefile for the CAAM backend and dependent components
#
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API) += caamalg.o
caam-objs := ctrl.o jr.o error.o

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,35 @@
/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef CAAM_COMPAT_H
#define CAAM_COMPAT_H
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/rtnetlink.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/debugfs.h>
#include <linux/circ_buf.h>
#include <net/xfrm.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/sha.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#endif /* !defined(CAAM_COMPAT_H) */

269
drivers/crypto/caam/ctrl.c Normal file
Просмотреть файл

@ -0,0 +1,269 @@
/*
* CAAM control-plane driver backend
* Controller-level driver, kernel property detection, initialization
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "jr.h"
static int caam_remove(struct platform_device *pdev)
{
struct device *ctrldev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_jr *jrpriv;
struct caam_full __iomem *topregs;
int ring, ret = 0;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
topregs = (struct caam_full __iomem *)ctrlpriv->ctrl;
/* shut down JobRs */
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
ret |= caam_jr_shutdown(ctrlpriv->jrdev[ring]);
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
irq_dispose_mapping(jrpriv->irq);
}
/* Shut down debug views */
#ifdef CONFIG_DEBUG_FS
debugfs_remove_recursive(ctrlpriv->dfs_root);
#endif
/* Unmap controller region */
iounmap(&topregs->ctrl);
kfree(ctrlpriv->jrdev);
kfree(ctrlpriv);
return ret;
}
/* Probe routine for CAAM top (controller) level */
static int caam_probe(struct platform_device *pdev)
{
int d, ring, rspec;
struct device *dev;
struct device_node *nprop, *np;
struct caam_ctrl __iomem *ctrl;
struct caam_full __iomem *topregs;
struct caam_drv_private *ctrlpriv;
struct caam_perfmon *perfmon;
struct caam_deco **deco;
u32 deconum;
ctrlpriv = kzalloc(sizeof(struct caam_drv_private), GFP_KERNEL);
if (!ctrlpriv)
return -ENOMEM;
dev = &pdev->dev;
dev_set_drvdata(dev, ctrlpriv);
ctrlpriv->pdev = pdev;
nprop = pdev->dev.of_node;
/* Get configuration properties from device tree */
/* First, get register page */
ctrl = of_iomap(nprop, 0);
if (ctrl == NULL) {
dev_err(dev, "caam: of_iomap() failed\n");
return -ENOMEM;
}
ctrlpriv->ctrl = (struct caam_ctrl __force *)ctrl;
/* topregs used to derive pointers to CAAM sub-blocks only */
topregs = (struct caam_full __iomem *)ctrl;
/* Get the IRQ of the controller (for security violations only) */
ctrlpriv->secvio_irq = of_irq_to_resource(nprop, 0, NULL);
/*
* Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
* 36-bit pointers in master configuration register
*/
setbits32(&topregs->ctrl.mcr, MCFGR_WDENABLE |
(sizeof(dma_addr_t) == sizeof(u64) ? MCFGR_LONG_PTR : 0));
if (sizeof(dma_addr_t) == sizeof(u64))
dma_set_mask(dev, DMA_BIT_MASK(36));
/* Find out how many DECOs are present */
deconum = (rd_reg64(&topregs->ctrl.perfmon.cha_num) &
CHA_NUM_DECONUM_MASK) >> CHA_NUM_DECONUM_SHIFT;
ctrlpriv->deco = kmalloc(deconum * sizeof(struct caam_deco *),
GFP_KERNEL);
deco = (struct caam_deco __force **)&topregs->deco;
for (d = 0; d < deconum; d++)
ctrlpriv->deco[d] = deco[d];
/*
* Detect and enable JobRs
* First, find out how many ring spec'ed, allocate references
* for all, then go probe each one.
*/
rspec = 0;
for_each_compatible_node(np, NULL, "fsl,sec-v4.0-job-ring")
rspec++;
ctrlpriv->jrdev = kzalloc(sizeof(struct device *) * rspec, GFP_KERNEL);
if (ctrlpriv->jrdev == NULL) {
iounmap(&topregs->ctrl);
return -ENOMEM;
}
ring = 0;
ctrlpriv->total_jobrs = 0;
for_each_compatible_node(np, NULL, "fsl,sec-v4.0-job-ring") {
caam_jr_probe(pdev, np, ring);
ctrlpriv->total_jobrs++;
ring++;
}
/* Check to see if QI present. If so, enable */
ctrlpriv->qi_present = !!(rd_reg64(&topregs->ctrl.perfmon.comp_parms) &
CTPR_QI_MASK);
if (ctrlpriv->qi_present) {
ctrlpriv->qi = (struct caam_queue_if __force *)&topregs->qi;
/* This is all that's required to physically enable QI */
wr_reg32(&topregs->qi.qi_control_lo, QICTL_DQEN);
}
/* If no QI and no rings specified, quit and go home */
if ((!ctrlpriv->qi_present) && (!ctrlpriv->total_jobrs)) {
dev_err(dev, "no queues configured, terminating\n");
caam_remove(pdev);
return -ENOMEM;
}
/* NOTE: RTIC detection ought to go here, around Si time */
/* Initialize queue allocator lock */
spin_lock_init(&ctrlpriv->jr_alloc_lock);
/* Report "alive" for developer to see */
dev_info(dev, "device ID = 0x%016llx\n",
rd_reg64(&topregs->ctrl.perfmon.caam_id));
dev_info(dev, "job rings = %d, qi = %d\n",
ctrlpriv->total_jobrs, ctrlpriv->qi_present);
#ifdef CONFIG_DEBUG_FS
/*
* FIXME: needs better naming distinction, as some amalgamation of
* "caam" and nprop->full_name. The OF name isn't distinctive,
* but does separate instances
*/
perfmon = (struct caam_perfmon __force *)&ctrl->perfmon;
ctrlpriv->dfs_root = debugfs_create_dir("caam", NULL);
ctrlpriv->ctl = debugfs_create_dir("ctl", ctrlpriv->dfs_root);
/* Controller-level - performance monitor counters */
ctrlpriv->ctl_rq_dequeued =
debugfs_create_u64("rq_dequeued",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->req_dequeued);
ctrlpriv->ctl_ob_enc_req =
debugfs_create_u64("ob_rq_encrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_req);
ctrlpriv->ctl_ib_dec_req =
debugfs_create_u64("ib_rq_decrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_req);
ctrlpriv->ctl_ob_enc_bytes =
debugfs_create_u64("ob_bytes_encrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_bytes);
ctrlpriv->ctl_ob_prot_bytes =
debugfs_create_u64("ob_bytes_protected",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_prot_bytes);
ctrlpriv->ctl_ib_dec_bytes =
debugfs_create_u64("ib_bytes_decrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_bytes);
ctrlpriv->ctl_ib_valid_bytes =
debugfs_create_u64("ib_bytes_validated",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_valid_bytes);
/* Controller level - global status values */
ctrlpriv->ctl_faultaddr =
debugfs_create_u64("fault_addr",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultaddr);
ctrlpriv->ctl_faultdetail =
debugfs_create_u32("fault_detail",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultdetail);
ctrlpriv->ctl_faultstatus =
debugfs_create_u32("fault_status",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->status);
/* Internal covering keys (useful in non-secure mode only) */
ctrlpriv->ctl_kek_wrap.data = &ctrlpriv->ctrl->kek[0];
ctrlpriv->ctl_kek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_kek = debugfs_create_blob("kek",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_kek_wrap);
ctrlpriv->ctl_tkek_wrap.data = &ctrlpriv->ctrl->tkek[0];
ctrlpriv->ctl_tkek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tkek = debugfs_create_blob("tkek",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tkek_wrap);
ctrlpriv->ctl_tdsk_wrap.data = &ctrlpriv->ctrl->tdsk[0];
ctrlpriv->ctl_tdsk_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tdsk = debugfs_create_blob("tdsk",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tdsk_wrap);
#endif
return 0;
}
static struct of_device_id caam_match[] = {
{
.compatible = "fsl,sec-v4.0",
},
{},
};
MODULE_DEVICE_TABLE(of, caam_match);
static struct platform_driver caam_driver = {
.driver = {
.name = "caam",
.owner = THIS_MODULE,
.of_match_table = caam_match,
},
.probe = caam_probe,
.remove = __devexit_p(caam_remove),
};
static int __init caam_base_init(void)
{
return platform_driver_register(&caam_driver);
}
static void __exit caam_base_exit(void)
{
return platform_driver_unregister(&caam_driver);
}
module_init(caam_base_init);
module_exit(caam_base_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM request backend");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");

1605
drivers/crypto/caam/desc.h Normal file

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,205 @@
/*
* caam descriptor construction helper functions
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "desc.h"
#define IMMEDIATE (1 << 23)
#define CAAM_CMD_SZ sizeof(u32)
#define CAAM_PTR_SZ sizeof(dma_addr_t)
#define CAAM_DESC_BYTES_MAX (CAAM_CMD_SZ * 64)
#ifdef DEBUG
#define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\
&__func__[sizeof("append")]); } while (0)
#else
#define PRINT_POS
#endif
#define DISABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_DISABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
#define ENABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_ENABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
static inline int desc_len(u32 *desc)
{
return *desc & HDR_DESCLEN_MASK;
}
static inline int desc_bytes(void *desc)
{
return desc_len(desc) * CAAM_CMD_SZ;
}
static inline u32 *desc_end(u32 *desc)
{
return desc + desc_len(desc);
}
static inline void *sh_desc_pdb(u32 *desc)
{
return desc + 1;
}
static inline void init_desc(u32 *desc, u32 options)
{
*desc = options | HDR_ONE | 1;
}
static inline void init_sh_desc(u32 *desc, u32 options)
{
PRINT_POS;
init_desc(desc, CMD_SHARED_DESC_HDR | options);
}
static inline void init_sh_desc_pdb(u32 *desc, u32 options, size_t pdb_bytes)
{
u32 pdb_len = pdb_bytes / CAAM_CMD_SZ + 1;
init_sh_desc(desc, ((pdb_len << HDR_START_IDX_SHIFT) + pdb_len) |
options);
}
static inline void init_job_desc(u32 *desc, u32 options)
{
init_desc(desc, CMD_DESC_HDR | options);
}
static inline void append_ptr(u32 *desc, dma_addr_t ptr)
{
dma_addr_t *offset = (dma_addr_t *)desc_end(desc);
*offset = ptr;
(*desc) += CAAM_PTR_SZ / CAAM_CMD_SZ;
}
static inline void init_job_desc_shared(u32 *desc, dma_addr_t ptr, int len,
u32 options)
{
PRINT_POS;
init_job_desc(desc, HDR_SHARED | options |
(len << HDR_START_IDX_SHIFT));
append_ptr(desc, ptr);
}
static inline void append_data(u32 *desc, void *data, int len)
{
u32 *offset = desc_end(desc);
if (len) /* avoid sparse warning: memcpy with byte count of 0 */
memcpy(offset, data, len);
(*desc) += (len + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
}
static inline void append_cmd(u32 *desc, u32 command)
{
u32 *cmd = desc_end(desc);
*cmd = command;
(*desc)++;
}
static inline void append_cmd_ptr(u32 *desc, dma_addr_t ptr, int len,
u32 command)
{
append_cmd(desc, command | len);
append_ptr(desc, ptr);
}
static inline void append_cmd_data(u32 *desc, void *data, int len,
u32 command)
{
append_cmd(desc, command | IMMEDIATE | len);
append_data(desc, data, len);
}
static inline u32 *append_jump(u32 *desc, u32 options)
{
u32 *cmd = desc_end(desc);
PRINT_POS;
append_cmd(desc, CMD_JUMP | options);
return cmd;
}
static inline void set_jump_tgt_here(u32 *desc, u32 *jump_cmd)
{
*jump_cmd = *jump_cmd | (desc_len(desc) - (jump_cmd - desc));
}
#define APPEND_CMD(cmd, op) \
static inline void append_##cmd(u32 *desc, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
}
APPEND_CMD(operation, OPERATION)
APPEND_CMD(move, MOVE)
#define APPEND_CMD_LEN(cmd, op) \
static inline void append_##cmd(u32 *desc, unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | len | options); \
}
APPEND_CMD_LEN(seq_store, SEQ_STORE)
APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD)
APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE)
#define APPEND_CMD_PTR(cmd, op) \
static inline void append_##cmd(u32 *desc, dma_addr_t ptr, unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr(desc, ptr, len, CMD_##op | options); \
}
APPEND_CMD_PTR(key, KEY)
APPEND_CMD_PTR(seq_in_ptr, SEQ_IN_PTR)
APPEND_CMD_PTR(seq_out_ptr, SEQ_OUT_PTR)
APPEND_CMD_PTR(load, LOAD)
APPEND_CMD_PTR(store, STORE)
APPEND_CMD_PTR(fifo_load, FIFO_LOAD)
APPEND_CMD_PTR(fifo_store, FIFO_STORE)
#define APPEND_CMD_PTR_TO_IMM(cmd, op) \
static inline void append_##cmd##_as_imm(u32 *desc, void *data, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_data(desc, data, len, CMD_##op | options); \
}
APPEND_CMD_PTR_TO_IMM(load, LOAD);
APPEND_CMD_PTR_TO_IMM(fifo_load, FIFO_LOAD);
/*
* 2nd variant for commands whose specified immediate length differs
* from length of immediate data provided, e.g., split keys
*/
#define APPEND_CMD_PTR_TO_IMM2(cmd, op) \
static inline void append_##cmd##_as_imm(u32 *desc, void *data, \
unsigned int data_len, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | len | options); \
append_data(desc, data, data_len); \
}
APPEND_CMD_PTR_TO_IMM2(key, KEY);
#define APPEND_CMD_RAW_IMM(cmd, op, type) \
static inline void append_##cmd##_imm_##type(u32 *desc, type immediate, \
u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | options | sizeof(type)); \
append_cmd(desc, immediate); \
}
APPEND_CMD_RAW_IMM(load, LOAD, u32);

248
drivers/crypto/caam/error.c Normal file
Просмотреть файл

@ -0,0 +1,248 @@
/*
* CAAM Error Reporting
*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc.h"
#include "jr.h"
#include "error.h"
#define SPRINTFCAT(str, format, param, max_alloc) \
{ \
char *tmp; \
\
tmp = kmalloc(sizeof(format) + max_alloc, GFP_ATOMIC); \
sprintf(tmp, format, param); \
strcat(str, tmp); \
kfree(tmp); \
}
static void report_jump_idx(u32 status, char *outstr)
{
u8 idx = (status & JRSTA_DECOERR_INDEX_MASK) >>
JRSTA_DECOERR_INDEX_SHIFT;
if (status & JRSTA_DECOERR_JUMP)
strcat(outstr, "jump tgt desc idx ");
else
strcat(outstr, "desc idx ");
SPRINTFCAT(outstr, "%d: ", idx, sizeof("255"));
}
static void report_ccb_status(u32 status, char *outstr)
{
char *cha_id_list[] = {
"",
"AES",
"DES, 3DES",
"ARC4",
"MD5, SHA-1, SH-224, SHA-256, SHA-384, SHA-512",
"RNG",
"SNOW f8",
"Kasumi f8, f9",
"All Public Key Algorithms",
"CRC",
"SNOW f9",
};
char *err_id_list[] = {
"None. No error.",
"Mode error.",
"Data size error.",
"Key size error.",
"PKHA A memory size error.",
"PKHA B memory size error.",
"Data arrived out of sequence error.",
"PKHA divide-by-zero error.",
"PKHA modulus even error.",
"DES key parity error.",
"ICV check failed.",
"Hardware error.",
"Unsupported CCM AAD size.",
"Class 1 CHA is not reset",
"Invalid CHA combination was selected",
"Invalid CHA selected.",
};
u8 cha_id = (status & JRSTA_CCBERR_CHAID_MASK) >>
JRSTA_CCBERR_CHAID_SHIFT;
u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
report_jump_idx(status, outstr);
if (cha_id < ARRAY_SIZE(cha_id_list)) {
SPRINTFCAT(outstr, "%s: ", cha_id_list[cha_id],
strlen(cha_id_list[cha_id]));
} else {
SPRINTFCAT(outstr, "unidentified cha_id value 0x%02x: ",
cha_id, sizeof("ff"));
}
if (err_id < ARRAY_SIZE(err_id_list)) {
SPRINTFCAT(outstr, "%s", err_id_list[err_id],
strlen(err_id_list[err_id]));
} else {
SPRINTFCAT(outstr, "unidentified err_id value 0x%02x",
err_id, sizeof("ff"));
}
}
static void report_jump_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
static void report_deco_status(u32 status, char *outstr)
{
const struct {
u8 value;
char *error_text;
} desc_error_list[] = {
{ 0x00, "None. No error." },
{ 0x01, "SGT Length Error. The descriptor is trying to read "
"more data than is contained in the SGT table." },
{ 0x02, "Reserved." },
{ 0x03, "Job Ring Control Error. There is a bad value in the "
"Job Ring Control register." },
{ 0x04, "Invalid Descriptor Command. The Descriptor Command "
"field is invalid." },
{ 0x05, "Reserved." },
{ 0x06, "Invalid KEY Command" },
{ 0x07, "Invalid LOAD Command" },
{ 0x08, "Invalid STORE Command" },
{ 0x09, "Invalid OPERATION Command" },
{ 0x0A, "Invalid FIFO LOAD Command" },
{ 0x0B, "Invalid FIFO STORE Command" },
{ 0x0C, "Invalid MOVE Command" },
{ 0x0D, "Invalid JUMP Command. A nonlocal JUMP Command is "
"invalid because the target is not a Job Header "
"Command, or the jump is from a Trusted Descriptor to "
"a Job Descriptor, or because the target Descriptor "
"contains a Shared Descriptor." },
{ 0x0E, "Invalid MATH Command" },
{ 0x0F, "Invalid SIGNATURE Command" },
{ 0x10, "Invalid Sequence Command. A SEQ IN PTR OR SEQ OUT PTR "
"Command is invalid or a SEQ KEY, SEQ LOAD, SEQ FIFO "
"LOAD, or SEQ FIFO STORE decremented the input or "
"output sequence length below 0. This error may result "
"if a built-in PROTOCOL Command has encountered a "
"malformed PDU." },
{ 0x11, "Skip data type invalid. The type must be 0xE or 0xF."},
{ 0x12, "Shared Descriptor Header Error" },
{ 0x13, "Header Error. Invalid length or parity, or certain "
"other problems." },
{ 0x14, "Burster Error. Burster has gotten to an illegal "
"state" },
{ 0x15, "Context Register Length Error. The descriptor is "
"trying to read or write past the end of the Context "
"Register. A SEQ LOAD or SEQ STORE with the VLF bit "
"set was executed with too large a length in the "
"variable length register (VSOL for SEQ STORE or VSIL "
"for SEQ LOAD)." },
{ 0x16, "DMA Error" },
{ 0x17, "Reserved." },
{ 0x1A, "Job failed due to JR reset" },
{ 0x1B, "Job failed due to Fail Mode" },
{ 0x1C, "DECO Watchdog timer timeout error" },
{ 0x1D, "DECO tried to copy a key from another DECO but the "
"other DECO's Key Registers were locked" },
{ 0x1E, "DECO attempted to copy data from a DECO that had an "
"unmasked Descriptor error" },
{ 0x1F, "LIODN error. DECO was trying to share from itself or "
"from another DECO but the two Non-SEQ LIODN values "
"didn't match or the 'shared from' DECO's Descriptor "
"required that the SEQ LIODNs be the same and they "
"aren't." },
{ 0x20, "DECO has completed a reset initiated via the DRR "
"register" },
{ 0x21, "Nonce error. When using EKT (CCM) key encryption "
"option in the FIFO STORE Command, the Nonce counter "
"reached its maximum value and this encryption mode "
"can no longer be used." },
{ 0x22, "Meta data is too large (> 511 bytes) for TLS decap "
"(input frame; block ciphers) and IPsec decap (output "
"frame, when doing the next header byte update) and "
"DCRC (output frame)." },
{ 0x80, "DNR (do not run) error" },
{ 0x81, "undefined protocol command" },
{ 0x82, "invalid setting in PDB" },
{ 0x83, "Anti-replay LATE error" },
{ 0x84, "Anti-replay REPLAY error" },
{ 0x85, "Sequence number overflow" },
{ 0x86, "Sigver invalid signature" },
{ 0x87, "DSA Sign Illegal test descriptor" },
{ 0x88, "Protocol Format Error - A protocol has seen an error "
"in the format of data received. When running RSA, "
"this means that formatting with random padding was "
"used, and did not follow the form: 0x00, 0x02, 8-to-N "
"bytes of non-zero pad, 0x00, F data." },
{ 0x89, "Protocol Size Error - A protocol has seen an error in "
"size. When running RSA, pdb size N < (size of F) when "
"no formatting is used; or pdb size N < (F + 11) when "
"formatting is used." },
{ 0xC1, "Blob Command error: Undefined mode" },
{ 0xC2, "Blob Command error: Secure Memory Blob mode error" },
{ 0xC4, "Blob Command error: Black Blob key or input size "
"error" },
{ 0xC5, "Blob Command error: Invalid key destination" },
{ 0xC8, "Blob Command error: Trusted/Secure mode error" },
{ 0xF0, "IPsec TTL or hop limit field either came in as 0, "
"or was decremented to 0" },
{ 0xF1, "3GPP HFN matches or exceeds the Threshold" },
};
u8 desc_error = status & JRSTA_DECOERR_ERROR_MASK;
int i;
report_jump_idx(status, outstr);
for (i = 0; i < ARRAY_SIZE(desc_error_list); i++)
if (desc_error_list[i].value == desc_error)
break;
if (i != ARRAY_SIZE(desc_error_list) && desc_error_list[i].error_text) {
SPRINTFCAT(outstr, "%s", desc_error_list[i].error_text,
strlen(desc_error_list[i].error_text));
} else {
SPRINTFCAT(outstr, "unidentified error value 0x%02x",
desc_error, sizeof("ff"));
}
}
static void report_jr_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
static void report_cond_code_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
char *caam_jr_strstatus(char *outstr, u32 status)
{
struct stat_src {
void (*report_ssed)(u32 status, char *outstr);
char *error;
} status_src[] = {
{ NULL, "No error" },
{ NULL, NULL },
{ report_ccb_status, "CCB" },
{ report_jump_status, "Jump" },
{ report_deco_status, "DECO" },
{ NULL, NULL },
{ report_jr_status, "Job Ring" },
{ report_cond_code_status, "Condition Code" },
};
u32 ssrc = status >> JRSTA_SSRC_SHIFT;
sprintf(outstr, "%s: ", status_src[ssrc].error);
if (status_src[ssrc].report_ssed)
status_src[ssrc].report_ssed(status, outstr);
return outstr;
}
EXPORT_SYMBOL(caam_jr_strstatus);

Просмотреть файл

@ -0,0 +1,11 @@
/*
* CAAM Error Reporting code header
*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#ifndef CAAM_ERROR_H
#define CAAM_ERROR_H
#define CAAM_ERROR_STR_MAX 302
extern char *caam_jr_strstatus(char *outstr, u32 status);
#endif /* CAAM_ERROR_H */

Просмотреть файл

@ -0,0 +1,113 @@
/*
* CAAM/SEC 4.x driver backend
* Private/internal definitions between modules
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
*/
#ifndef INTERN_H
#define INTERN_H
#define JOBR_UNASSIGNED 0
#define JOBR_ASSIGNED 1
/* Currently comes from Kconfig param as a ^2 (driver-required) */
#define JOBR_DEPTH (1 << CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE)
/* Kconfig params for interrupt coalescing if selected (else zero) */
#ifdef CONFIG_CRYPTO_DEV_FSL_CAAM_INTC
#define JOBR_INTC JRCFG_ICEN
#define JOBR_INTC_TIME_THLD CONFIG_CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD
#define JOBR_INTC_COUNT_THLD CONFIG_CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD
#else
#define JOBR_INTC 0
#define JOBR_INTC_TIME_THLD 0
#define JOBR_INTC_COUNT_THLD 0
#endif
/*
* Storage for tracking each in-process entry moving across a ring
* Each entry on an output ring needs one of these
*/
struct caam_jrentry_info {
void (*callbk)(struct device *dev, u32 *desc, u32 status, void *arg);
void *cbkarg; /* Argument per ring entry */
u32 *desc_addr_virt; /* Stored virt addr for postprocessing */
dma_addr_t desc_addr_dma; /* Stored bus addr for done matching */
u32 desc_size; /* Stored size for postprocessing, header derived */
};
/* Private sub-storage for a single JobR */
struct caam_drv_private_jr {
struct device *parentdev; /* points back to controller dev */
int ridx;
struct caam_job_ring __iomem *rregs; /* JobR's register space */
struct tasklet_struct irqtask[NR_CPUS];
int irq; /* One per queue */
int assign; /* busy/free */
/* Job ring info */
int ringsize; /* Size of rings (assume input = output) */
struct caam_jrentry_info *entinfo; /* Alloc'ed 1 per ring entry */
spinlock_t inplock ____cacheline_aligned; /* Input ring index lock */
int inp_ring_write_index; /* Input index "tail" */
int head; /* entinfo (s/w ring) head index */
dma_addr_t *inpring; /* Base of input ring, alloc DMA-safe */
spinlock_t outlock ____cacheline_aligned; /* Output ring index lock */
int out_ring_read_index; /* Output index "tail" */
int tail; /* entinfo (s/w ring) tail index */
struct jr_outentry *outring; /* Base of output ring, DMA-safe */
};
/*
* Driver-private storage for a single CAAM block instance
*/
struct caam_drv_private {
struct device *dev;
struct device **jrdev; /* Alloc'ed array per sub-device */
spinlock_t jr_alloc_lock;
struct platform_device *pdev;
/* Physical-presence section */
struct caam_ctrl *ctrl; /* controller region */
struct caam_deco **deco; /* DECO/CCB views */
struct caam_assurance *ac;
struct caam_queue_if *qi; /* QI control region */
/*
* Detected geometry block. Filled in from device tree if powerpc,
* or from register-based version detection code
*/
u8 total_jobrs; /* Total Job Rings in device */
u8 qi_present; /* Nonzero if QI present in device */
int secvio_irq; /* Security violation interrupt number */
/* which jr allocated to scatterlist crypto */
atomic_t tfm_count ____cacheline_aligned;
int num_jrs_for_algapi;
struct device **algapi_jr;
/* list of registered crypto algorithms (mk generic context handle?) */
struct list_head alg_list;
/*
* debugfs entries for developer view into driver/device
* variables at runtime.
*/
#ifdef CONFIG_DEBUG_FS
struct dentry *dfs_root;
struct dentry *ctl; /* controller dir */
struct dentry *ctl_rq_dequeued, *ctl_ob_enc_req, *ctl_ib_dec_req;
struct dentry *ctl_ob_enc_bytes, *ctl_ob_prot_bytes;
struct dentry *ctl_ib_dec_bytes, *ctl_ib_valid_bytes;
struct dentry *ctl_faultaddr, *ctl_faultdetail, *ctl_faultstatus;
struct debugfs_blob_wrapper ctl_kek_wrap, ctl_tkek_wrap, ctl_tdsk_wrap;
struct dentry *ctl_kek, *ctl_tkek, *ctl_tdsk;
#endif
};
void caam_jr_algapi_init(struct device *dev);
void caam_jr_algapi_remove(struct device *dev);
#endif /* INTERN_H */

517
drivers/crypto/caam/jr.c Normal file
Просмотреть файл

@ -0,0 +1,517 @@
/*
* CAAM/SEC 4.x transport/backend driver
* JobR backend functionality
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "jr.h"
#include "desc.h"
#include "intern.h"
/* Main per-ring interrupt handler */
static irqreturn_t caam_jr_interrupt(int irq, void *st_dev)
{
struct device *dev = st_dev;
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
u32 irqstate;
/*
* Check the output ring for ready responses, kick
* tasklet if jobs done.
*/
irqstate = rd_reg32(&jrp->rregs->jrintstatus);
if (!irqstate)
return IRQ_NONE;
/*
* If JobR error, we got more development work to do
* Flag a bug now, but we really need to shut down and
* restart the queue (and fix code).
*/
if (irqstate & JRINT_JR_ERROR) {
dev_err(dev, "job ring error: irqstate: %08x\n", irqstate);
BUG();
}
/* mask valid interrupts */
setbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
/* Have valid interrupt at this point, just ACK and trigger */
wr_reg32(&jrp->rregs->jrintstatus, irqstate);
preempt_disable();
tasklet_schedule(&jrp->irqtask[smp_processor_id()]);
preempt_enable();
return IRQ_HANDLED;
}
/* Deferred service handler, run as interrupt-fired tasklet */
static void caam_jr_dequeue(unsigned long devarg)
{
int hw_idx, sw_idx, i, head, tail;
struct device *dev = (struct device *)devarg;
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
void (*usercall)(struct device *dev, u32 *desc, u32 status, void *arg);
u32 *userdesc, userstatus;
void *userarg;
unsigned long flags;
spin_lock_irqsave(&jrp->outlock, flags);
head = ACCESS_ONCE(jrp->head);
sw_idx = tail = jrp->tail;
while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 &&
rd_reg32(&jrp->rregs->outring_used)) {
hw_idx = jrp->out_ring_read_index;
for (i = 0; CIRC_CNT(head, tail + i, JOBR_DEPTH) >= 1; i++) {
sw_idx = (tail + i) & (JOBR_DEPTH - 1);
smp_read_barrier_depends();
if (jrp->outring[hw_idx].desc ==
jrp->entinfo[sw_idx].desc_addr_dma)
break; /* found */
}
/* we should never fail to find a matching descriptor */
BUG_ON(CIRC_CNT(head, tail + i, JOBR_DEPTH) <= 0);
/* Unmap just-run descriptor so we can post-process */
dma_unmap_single(dev, jrp->outring[hw_idx].desc,
jrp->entinfo[sw_idx].desc_size,
DMA_TO_DEVICE);
/* mark completed, avoid matching on a recycled desc addr */
jrp->entinfo[sw_idx].desc_addr_dma = 0;
/* Stash callback params for use outside of lock */
usercall = jrp->entinfo[sw_idx].callbk;
userarg = jrp->entinfo[sw_idx].cbkarg;
userdesc = jrp->entinfo[sw_idx].desc_addr_virt;
userstatus = jrp->outring[hw_idx].jrstatus;
smp_mb();
jrp->out_ring_read_index = (jrp->out_ring_read_index + 1) &
(JOBR_DEPTH - 1);
/*
* if this job completed out-of-order, do not increment
* the tail. Otherwise, increment tail by 1 plus the
* number of subsequent jobs already completed out-of-order
*/
if (sw_idx == tail) {
do {
tail = (tail + 1) & (JOBR_DEPTH - 1);
smp_read_barrier_depends();
} while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 &&
jrp->entinfo[tail].desc_addr_dma == 0);
jrp->tail = tail;
}
/* set done */
wr_reg32(&jrp->rregs->outring_rmvd, 1);
spin_unlock_irqrestore(&jrp->outlock, flags);
/* Finally, execute user's callback */
usercall(dev, userdesc, userstatus, userarg);
spin_lock_irqsave(&jrp->outlock, flags);
head = ACCESS_ONCE(jrp->head);
sw_idx = tail = jrp->tail;
}
spin_unlock_irqrestore(&jrp->outlock, flags);
/* reenable / unmask IRQs */
clrbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
}
/**
* caam_jr_register() - Alloc a ring for someone to use as needed. Returns
* an ordinal of the rings allocated, else returns -ENODEV if no rings
* are available.
* @ctrldev: points to the controller level dev (parent) that
* owns rings available for use.
* @dev: points to where a pointer to the newly allocated queue's
* dev can be written to if successful.
**/
int caam_jr_register(struct device *ctrldev, struct device **rdev)
{
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_drv_private_jr *jrpriv = NULL;
unsigned long flags;
int ring;
/* Lock, if free ring - assign, unlock */
spin_lock_irqsave(&ctrlpriv->jr_alloc_lock, flags);
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
if (jrpriv->assign == JOBR_UNASSIGNED) {
jrpriv->assign = JOBR_ASSIGNED;
*rdev = ctrlpriv->jrdev[ring];
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
return ring;
}
}
/* If assigned, write dev where caller needs it */
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
*rdev = NULL;
return -ENODEV;
}
EXPORT_SYMBOL(caam_jr_register);
/**
* caam_jr_deregister() - Deregister an API and release the queue.
* Returns 0 if OK, -EBUSY if queue still contains pending entries
* or unprocessed results at the time of the call
* @dev - points to the dev that identifies the queue to
* be released.
**/
int caam_jr_deregister(struct device *rdev)
{
struct caam_drv_private_jr *jrpriv = dev_get_drvdata(rdev);
struct caam_drv_private *ctrlpriv;
unsigned long flags;
/* Get the owning controller's private space */
ctrlpriv = dev_get_drvdata(jrpriv->parentdev);
/*
* Make sure ring empty before release
*/
if (rd_reg32(&jrpriv->rregs->outring_used) ||
(rd_reg32(&jrpriv->rregs->inpring_avail) != JOBR_DEPTH))
return -EBUSY;
/* Release ring */
spin_lock_irqsave(&ctrlpriv->jr_alloc_lock, flags);
jrpriv->assign = JOBR_UNASSIGNED;
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
return 0;
}
EXPORT_SYMBOL(caam_jr_deregister);
/**
* caam_jr_enqueue() - Enqueue a job descriptor head. Returns 0 if OK,
* -EBUSY if the queue is full, -EIO if it cannot map the caller's
* descriptor.
* @dev: device of the job ring to be used. This device should have
* been assigned prior by caam_jr_register().
* @desc: points to a job descriptor that execute our request. All
* descriptors (and all referenced data) must be in a DMAable
* region, and all data references must be physical addresses
* accessible to CAAM (i.e. within a PAMU window granted
* to it).
* @cbk: pointer to a callback function to be invoked upon completion
* of this request. This has the form:
* callback(struct device *dev, u32 *desc, u32 stat, void *arg)
* where:
* @dev: contains the job ring device that processed this
* response.
* @desc: descriptor that initiated the request, same as
* "desc" being argued to caam_jr_enqueue().
* @status: untranslated status received from CAAM. See the
* reference manual for a detailed description of
* error meaning, or see the JRSTA definitions in the
* register header file
* @areq: optional pointer to an argument passed with the
* original request
* @areq: optional pointer to a user argument for use at callback
* time.
**/
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc,
u32 status, void *areq),
void *areq)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
struct caam_jrentry_info *head_entry;
unsigned long flags;
int head, tail, desc_size;
dma_addr_t desc_dma;
desc_size = (*desc & HDR_JD_LENGTH_MASK) * sizeof(u32);
desc_dma = dma_map_single(dev, desc, desc_size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, desc_dma)) {
dev_err(dev, "caam_jr_enqueue(): can't map jobdesc\n");
return -EIO;
}
spin_lock_irqsave(&jrp->inplock, flags);
head = jrp->head;
tail = ACCESS_ONCE(jrp->tail);
if (!rd_reg32(&jrp->rregs->inpring_avail) ||
CIRC_SPACE(head, tail, JOBR_DEPTH) <= 0) {
spin_unlock_irqrestore(&jrp->inplock, flags);
dma_unmap_single(dev, desc_dma, desc_size, DMA_TO_DEVICE);
return -EBUSY;
}
head_entry = &jrp->entinfo[head];
head_entry->desc_addr_virt = desc;
head_entry->desc_size = desc_size;
head_entry->callbk = (void *)cbk;
head_entry->cbkarg = areq;
head_entry->desc_addr_dma = desc_dma;
jrp->inpring[jrp->inp_ring_write_index] = desc_dma;
smp_wmb();
jrp->inp_ring_write_index = (jrp->inp_ring_write_index + 1) &
(JOBR_DEPTH - 1);
jrp->head = (head + 1) & (JOBR_DEPTH - 1);
wmb();
wr_reg32(&jrp->rregs->inpring_jobadd, 1);
spin_unlock_irqrestore(&jrp->inplock, flags);
return 0;
}
EXPORT_SYMBOL(caam_jr_enqueue);
static int caam_reset_hw_jr(struct device *dev)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
unsigned int timeout = 100000;
/*
* mask interrupts since we are going to poll
* for reset completion status
*/
setbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
/* initiate flush (required prior to reset) */
wr_reg32(&jrp->rregs->jrcommand, JRCR_RESET);
while (((rd_reg32(&jrp->rregs->jrintstatus) & JRINT_ERR_HALT_MASK) ==
JRINT_ERR_HALT_INPROGRESS) && --timeout)
cpu_relax();
if ((rd_reg32(&jrp->rregs->jrintstatus) & JRINT_ERR_HALT_MASK) !=
JRINT_ERR_HALT_COMPLETE || timeout == 0) {
dev_err(dev, "failed to flush job ring %d\n", jrp->ridx);
return -EIO;
}
/* initiate reset */
timeout = 100000;
wr_reg32(&jrp->rregs->jrcommand, JRCR_RESET);
while ((rd_reg32(&jrp->rregs->jrcommand) & JRCR_RESET) && --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset job ring %d\n", jrp->ridx);
return -EIO;
}
/* unmask interrupts */
clrbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
return 0;
}
/*
* Init JobR independent of platform property detection
*/
static int caam_jr_init(struct device *dev)
{
struct caam_drv_private_jr *jrp;
dma_addr_t inpbusaddr, outbusaddr;
int i, error;
jrp = dev_get_drvdata(dev);
/* Connect job ring interrupt handler. */
for_each_possible_cpu(i)
tasklet_init(&jrp->irqtask[i], caam_jr_dequeue,
(unsigned long)dev);
error = request_irq(jrp->irq, caam_jr_interrupt, IRQF_SHARED,
"caam-jobr", dev);
if (error) {
dev_err(dev, "can't connect JobR %d interrupt (%d)\n",
jrp->ridx, jrp->irq);
irq_dispose_mapping(jrp->irq);
jrp->irq = 0;
return -EINVAL;
}
error = caam_reset_hw_jr(dev);
if (error)
return error;
jrp->inpring = kzalloc(sizeof(dma_addr_t) * JOBR_DEPTH,
GFP_KERNEL | GFP_DMA);
jrp->outring = kzalloc(sizeof(struct jr_outentry) *
JOBR_DEPTH, GFP_KERNEL | GFP_DMA);
jrp->entinfo = kzalloc(sizeof(struct caam_jrentry_info) * JOBR_DEPTH,
GFP_KERNEL);
if ((jrp->inpring == NULL) || (jrp->outring == NULL) ||
(jrp->entinfo == NULL)) {
dev_err(dev, "can't allocate job rings for %d\n",
jrp->ridx);
return -ENOMEM;
}
for (i = 0; i < JOBR_DEPTH; i++)
jrp->entinfo[i].desc_addr_dma = !0;
/* Setup rings */
inpbusaddr = dma_map_single(dev, jrp->inpring,
sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, inpbusaddr)) {
dev_err(dev, "caam_jr_init(): can't map input ring\n");
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EIO;
}
outbusaddr = dma_map_single(dev, jrp->outring,
sizeof(struct jr_outentry) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, outbusaddr)) {
dev_err(dev, "caam_jr_init(): can't map output ring\n");
dma_unmap_single(dev, inpbusaddr,
sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EIO;
}
jrp->inp_ring_write_index = 0;
jrp->out_ring_read_index = 0;
jrp->head = 0;
jrp->tail = 0;
wr_reg64(&jrp->rregs->inpring_base, inpbusaddr);
wr_reg64(&jrp->rregs->outring_base, outbusaddr);
wr_reg32(&jrp->rregs->inpring_size, JOBR_DEPTH);
wr_reg32(&jrp->rregs->outring_size, JOBR_DEPTH);
jrp->ringsize = JOBR_DEPTH;
spin_lock_init(&jrp->inplock);
spin_lock_init(&jrp->outlock);
/* Select interrupt coalescing parameters */
setbits32(&jrp->rregs->rconfig_lo, JOBR_INTC |
(JOBR_INTC_COUNT_THLD << JRCFG_ICDCT_SHIFT) |
(JOBR_INTC_TIME_THLD << JRCFG_ICTT_SHIFT));
jrp->assign = JOBR_UNASSIGNED;
return 0;
}
/*
* Shutdown JobR independent of platform property code
*/
int caam_jr_shutdown(struct device *dev)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
dma_addr_t inpbusaddr, outbusaddr;
int ret, i;
ret = caam_reset_hw_jr(dev);
for_each_possible_cpu(i)
tasklet_kill(&jrp->irqtask[i]);
/* Release interrupt */
free_irq(jrp->irq, dev);
/* Free rings */
inpbusaddr = rd_reg64(&jrp->rregs->inpring_base);
outbusaddr = rd_reg64(&jrp->rregs->outring_base);
dma_unmap_single(dev, outbusaddr,
sizeof(struct jr_outentry) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
dma_unmap_single(dev, inpbusaddr, sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->outring);
kfree(jrp->inpring);
kfree(jrp->entinfo);
return ret;
}
/*
* Probe routine for each detected JobR subsystem. It assumes that
* property detection was picked up externally.
*/
int caam_jr_probe(struct platform_device *pdev, struct device_node *np,
int ring)
{
struct device *ctrldev, *jrdev;
struct platform_device *jr_pdev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_jr *jrpriv;
u32 *jroffset;
int error;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
jrpriv = kmalloc(sizeof(struct caam_drv_private_jr),
GFP_KERNEL);
if (jrpriv == NULL) {
dev_err(ctrldev, "can't alloc private mem for job ring %d\n",
ring);
return -ENOMEM;
}
jrpriv->parentdev = ctrldev; /* point back to parent */
jrpriv->ridx = ring; /* save ring identity relative to detection */
/*
* Derive a pointer to the detected JobRs regs
* Driver has already iomapped the entire space, we just
* need to add in the offset to this JobR. Don't know if I
* like this long-term, but it'll run
*/
jroffset = (u32 *)of_get_property(np, "reg", NULL);
jrpriv->rregs = (struct caam_job_ring __iomem *)((void *)ctrlpriv->ctrl
+ *jroffset);
/* Build a local dev for each detected queue */
jr_pdev = of_platform_device_create(np, NULL, ctrldev);
if (jr_pdev == NULL) {
kfree(jrpriv);
return -EINVAL;
}
jrdev = &jr_pdev->dev;
dev_set_drvdata(jrdev, jrpriv);
ctrlpriv->jrdev[ring] = jrdev;
/* Identify the interrupt */
jrpriv->irq = of_irq_to_resource(np, 0, NULL);
/* Now do the platform independent part */
error = caam_jr_init(jrdev); /* now turn on hardware */
if (error) {
kfree(jrpriv);
return error;
}
return error;
}

21
drivers/crypto/caam/jr.h Normal file
Просмотреть файл

@ -0,0 +1,21 @@
/*
* CAAM public-level include definitions for the JobR backend
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef JR_H
#define JR_H
/* Prototypes for backend-level services exposed to APIs */
int caam_jr_register(struct device *ctrldev, struct device **rdev);
int caam_jr_deregister(struct device *rdev);
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc, u32 status,
void *areq),
void *areq);
extern int caam_jr_probe(struct platform_device *pdev, struct device_node *np,
int ring);
extern int caam_jr_shutdown(struct device *dev);
#endif /* JR_H */

663
drivers/crypto/caam/regs.h Normal file
Просмотреть файл

@ -0,0 +1,663 @@
/*
* CAAM hardware register-level view
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef REGS_H
#define REGS_H
#include <linux/types.h>
#include <linux/io.h>
/*
* Architecture-specific register access methods
*
* CAAM's bus-addressable registers are 64 bits internally.
* They have been wired to be safely accessible on 32-bit
* architectures, however. Registers were organized such
* that (a) they can be contained in 32 bits, (b) if not, then they
* can be treated as two 32-bit entities, or finally (c) if they
* must be treated as a single 64-bit value, then this can safely
* be done with two 32-bit cycles.
*
* For 32-bit operations on 64-bit values, CAAM follows the same
* 64-bit register access conventions as it's predecessors, in that
* writes are "triggered" by a write to the register at the numerically
* higher address, thus, a full 64-bit write cycle requires a write
* to the lower address, followed by a write to the higher address,
* which will latch/execute the write cycle.
*
* For example, let's assume a SW reset of CAAM through the master
* configuration register.
* - SWRST is in bit 31 of MCFG.
* - MCFG begins at base+0x0000.
* - Bits 63-32 are a 32-bit word at base+0x0000 (numerically-lower)
* - Bits 31-0 are a 32-bit word at base+0x0004 (numerically-higher)
*
* (and on Power, the convention is 0-31, 32-63, I know...)
*
* Assuming a 64-bit write to this MCFG to perform a software reset
* would then require a write of 0 to base+0x0000, followed by a
* write of 0x80000000 to base+0x0004, which would "execute" the
* reset.
*
* Of course, since MCFG 63-32 is all zero, we could cheat and simply
* write 0x8000000 to base+0x0004, and the reset would work fine.
* However, since CAAM does contain some write-and-read-intended
* 64-bit registers, this code defines 64-bit access methods for
* the sake of internal consistency and simplicity, and so that a
* clean transition to 64-bit is possible when it becomes necessary.
*
* There are limitations to this that the developer must recognize.
* 32-bit architectures cannot enforce an atomic-64 operation,
* Therefore:
*
* - On writes, since the HW is assumed to latch the cycle on the
* write of the higher-numeric-address word, then ordered
* writes work OK.
*
* - For reads, where a register contains a relevant value of more
* that 32 bits, the hardware employs logic to latch the other
* "half" of the data until read, ensuring an accurate value.
* This is of particular relevance when dealing with CAAM's
* performance counters.
*
*/
#ifdef __BIG_ENDIAN
#define wr_reg32(reg, data) out_be32(reg, data)
#define rd_reg32(reg) in_be32(reg)
#ifdef CONFIG_64BIT
#define wr_reg64(reg, data) out_be64(reg, data)
#define rd_reg64(reg) in_be64(reg)
#endif
#else
#ifdef __LITTLE_ENDIAN
#define wr_reg32(reg, data) __raw_writel(reg, data)
#define rd_reg32(reg) __raw_readl(reg)
#ifdef CONFIG_64BIT
#define wr_reg64(reg, data) __raw_writeq(reg, data)
#define rd_reg64(reg) __raw_readq(reg)
#endif
#endif
#endif
#ifndef CONFIG_64BIT
static inline void wr_reg64(u64 __iomem *reg, u64 data)
{
wr_reg32((u32 __iomem *)reg, (data & 0xffffffff00000000ull) >> 32);
wr_reg32((u32 __iomem *)reg + 1, data & 0x00000000ffffffffull);
}
static inline u64 rd_reg64(u64 __iomem *reg)
{
return (((u64)rd_reg32((u32 __iomem *)reg)) << 32) |
((u64)rd_reg32((u32 __iomem *)reg + 1));
}
#endif
/*
* jr_outentry
* Represents each entry in a JobR output ring
*/
struct jr_outentry {
dma_addr_t desc;/* Pointer to completed descriptor */
u32 jrstatus; /* Status for completed descriptor */
} __packed;
/*
* caam_perfmon - Performance Monitor/Secure Memory Status/
* CAAM Global Status/Component Version IDs
*
* Spans f00-fff wherever instantiated
*/
/* Number of DECOs */
#define CHA_NUM_DECONUM_SHIFT 56
#define CHA_NUM_DECONUM_MASK (0xfull << CHA_NUM_DECONUM_SHIFT)
struct caam_perfmon {
/* Performance Monitor Registers f00-f9f */
u64 req_dequeued; /* PC_REQ_DEQ - Dequeued Requests */
u64 ob_enc_req; /* PC_OB_ENC_REQ - Outbound Encrypt Requests */
u64 ib_dec_req; /* PC_IB_DEC_REQ - Inbound Decrypt Requests */
u64 ob_enc_bytes; /* PC_OB_ENCRYPT - Outbound Bytes Encrypted */
u64 ob_prot_bytes; /* PC_OB_PROTECT - Outbound Bytes Protected */
u64 ib_dec_bytes; /* PC_IB_DECRYPT - Inbound Bytes Decrypted */
u64 ib_valid_bytes; /* PC_IB_VALIDATED Inbound Bytes Validated */
u64 rsvd[13];
/* CAAM Hardware Instantiation Parameters fa0-fbf */
u64 cha_rev; /* CRNR - CHA Revision Number */
#define CTPR_QI_SHIFT 57
#define CTPR_QI_MASK (0x1ull << CTPR_QI_SHIFT)
u64 comp_parms; /* CTPR - Compile Parameters Register */
u64 rsvd1[2];
/* CAAM Global Status fc0-fdf */
u64 faultaddr; /* FAR - Fault Address */
u32 faultliodn; /* FALR - Fault Address LIODN */
u32 faultdetail; /* FADR - Fault Addr Detail */
u32 rsvd2;
u32 status; /* CSTA - CAAM Status */
u64 rsvd3;
/* Component Instantiation Parameters fe0-fff */
u32 rtic_id; /* RVID - RTIC Version ID */
u32 ccb_id; /* CCBVID - CCB Version ID */
u64 cha_id; /* CHAVID - CHA Version ID */
u64 cha_num; /* CHANUM - CHA Number */
u64 caam_id; /* CAAMVID - CAAM Version ID */
};
/* LIODN programming for DMA configuration */
#define MSTRID_LOCK_LIODN 0x80000000
#define MSTRID_LOCK_MAKETRUSTED 0x00010000 /* only for JR masterid */
#define MSTRID_LIODN_MASK 0x0fff
struct masterid {
u32 liodn_ms; /* lock and make-trusted control bits */
u32 liodn_ls; /* LIODN for non-sequence and seq access */
};
/* Partition ID for DMA configuration */
struct partid {
u32 rsvd1;
u32 pidr; /* partition ID, DECO */
};
/* RNG test mode (replicated twice in some configurations) */
/* Padded out to 0x100 */
struct rngtst {
u32 mode; /* RTSTMODEx - Test mode */
u32 rsvd1[3];
u32 reset; /* RTSTRESETx - Test reset control */
u32 rsvd2[3];
u32 status; /* RTSTSSTATUSx - Test status */
u32 rsvd3;
u32 errstat; /* RTSTERRSTATx - Test error status */
u32 rsvd4;
u32 errctl; /* RTSTERRCTLx - Test error control */
u32 rsvd5;
u32 entropy; /* RTSTENTROPYx - Test entropy */
u32 rsvd6[15];
u32 verifctl; /* RTSTVERIFCTLx - Test verification control */
u32 rsvd7;
u32 verifstat; /* RTSTVERIFSTATx - Test verification status */
u32 rsvd8;
u32 verifdata; /* RTSTVERIFDx - Test verification data */
u32 rsvd9;
u32 xkey; /* RTSTXKEYx - Test XKEY */
u32 rsvd10;
u32 oscctctl; /* RTSTOSCCTCTLx - Test osc. counter control */
u32 rsvd11;
u32 oscct; /* RTSTOSCCTx - Test oscillator counter */
u32 rsvd12;
u32 oscctstat; /* RTSTODCCTSTATx - Test osc counter status */
u32 rsvd13[2];
u32 ofifo[4]; /* RTSTOFIFOx - Test output FIFO */
u32 rsvd14[15];
};
/*
* caam_ctrl - basic core configuration
* starts base + 0x0000 padded out to 0x1000
*/
#define KEK_KEY_SIZE 8
#define TKEK_KEY_SIZE 8
#define TDSK_KEY_SIZE 8
#define DECO_RESET 1 /* Use with DECO reset/availability regs */
#define DECO_RESET_0 (DECO_RESET << 0)
#define DECO_RESET_1 (DECO_RESET << 1)
#define DECO_RESET_2 (DECO_RESET << 2)
#define DECO_RESET_3 (DECO_RESET << 3)
#define DECO_RESET_4 (DECO_RESET << 4)
struct caam_ctrl {
/* Basic Configuration Section 000-01f */
/* Read/Writable */
u32 rsvd1;
u32 mcr; /* MCFG Master Config Register */
u32 rsvd2[2];
/* Bus Access Configuration Section 010-11f */
/* Read/Writable */
struct masterid jr_mid[4]; /* JRxLIODNR - JobR LIODN setup */
u32 rsvd3[12];
struct masterid rtic_mid[4]; /* RTICxLIODNR - RTIC LIODN setup */
u32 rsvd4[7];
u32 deco_rq; /* DECORR - DECO Request */
struct partid deco_mid[5]; /* DECOxLIODNR - 1 per DECO */
u32 rsvd5[22];
/* DECO Availability/Reset Section 120-3ff */
u32 deco_avail; /* DAR - DECO availability */
u32 deco_reset; /* DRR - DECO reset */
u32 rsvd6[182];
/* Key Encryption/Decryption Configuration 400-5ff */
/* Read/Writable only while in Non-secure mode */
u32 kek[KEK_KEY_SIZE]; /* JDKEKR - Key Encryption Key */
u32 tkek[TKEK_KEY_SIZE]; /* TDKEKR - Trusted Desc KEK */
u32 tdsk[TDSK_KEY_SIZE]; /* TDSKR - Trusted Desc Signing Key */
u32 rsvd7[32];
u64 sknonce; /* SKNR - Secure Key Nonce */
u32 rsvd8[70];
/* RNG Test/Verification/Debug Access 600-7ff */
/* (Useful in Test/Debug modes only...) */
struct rngtst rtst[2];
u32 rsvd9[448];
/* Performance Monitor f00-fff */
struct caam_perfmon perfmon;
};
/*
* Controller master config register defs
*/
#define MCFGR_SWRESET 0x80000000 /* software reset */
#define MCFGR_WDENABLE 0x40000000 /* DECO watchdog enable */
#define MCFGR_WDFAIL 0x20000000 /* DECO watchdog force-fail */
#define MCFGR_DMA_RESET 0x10000000
#define MCFGR_LONG_PTR 0x00010000 /* Use >32-bit desc addressing */
/* AXI read cache control */
#define MCFGR_ARCACHE_SHIFT 12
#define MCFGR_ARCACHE_MASK (0xf << MCFGR_ARCACHE_SHIFT)
/* AXI write cache control */
#define MCFGR_AWCACHE_SHIFT 8
#define MCFGR_AWCACHE_MASK (0xf << MCFGR_AWCACHE_SHIFT)
/* AXI pipeline depth */
#define MCFGR_AXIPIPE_SHIFT 4
#define MCFGR_AXIPIPE_MASK (0xf << MCFGR_AXIPIPE_SHIFT)
#define MCFGR_AXIPRI 0x00000008 /* Assert AXI priority sideband */
#define MCFGR_BURST_64 0x00000001 /* Max burst size */
/*
* caam_job_ring - direct job ring setup
* 1-4 possible per instantiation, base + 1000/2000/3000/4000
* Padded out to 0x1000
*/
struct caam_job_ring {
/* Input ring */
u64 inpring_base; /* IRBAx - Input desc ring baseaddr */
u32 rsvd1;
u32 inpring_size; /* IRSx - Input ring size */
u32 rsvd2;
u32 inpring_avail; /* IRSAx - Input ring room remaining */
u32 rsvd3;
u32 inpring_jobadd; /* IRJAx - Input ring jobs added */
/* Output Ring */
u64 outring_base; /* ORBAx - Output status ring base addr */
u32 rsvd4;
u32 outring_size; /* ORSx - Output ring size */
u32 rsvd5;
u32 outring_rmvd; /* ORJRx - Output ring jobs removed */
u32 rsvd6;
u32 outring_used; /* ORSFx - Output ring slots full */
/* Status/Configuration */
u32 rsvd7;
u32 jroutstatus; /* JRSTAx - JobR output status */
u32 rsvd8;
u32 jrintstatus; /* JRINTx - JobR interrupt status */
u32 rconfig_hi; /* JRxCFG - Ring configuration */
u32 rconfig_lo;
/* Indices. CAAM maintains as "heads" of each queue */
u32 rsvd9;
u32 inp_rdidx; /* IRRIx - Input ring read index */
u32 rsvd10;
u32 out_wtidx; /* ORWIx - Output ring write index */
/* Command/control */
u32 rsvd11;
u32 jrcommand; /* JRCRx - JobR command */
u32 rsvd12[932];
/* Performance Monitor f00-fff */
struct caam_perfmon perfmon;
};
#define JR_RINGSIZE_MASK 0x03ff
/*
* jrstatus - Job Ring Output Status
* All values in lo word
* Also note, same values written out as status through QI
* in the command/status field of a frame descriptor
*/
#define JRSTA_SSRC_SHIFT 28
#define JRSTA_SSRC_MASK 0xf0000000
#define JRSTA_SSRC_NONE 0x00000000
#define JRSTA_SSRC_CCB_ERROR 0x20000000
#define JRSTA_SSRC_JUMP_HALT_USER 0x30000000
#define JRSTA_SSRC_DECO 0x40000000
#define JRSTA_SSRC_JRERROR 0x60000000
#define JRSTA_SSRC_JUMP_HALT_CC 0x70000000
#define JRSTA_DECOERR_JUMP 0x08000000
#define JRSTA_DECOERR_INDEX_SHIFT 8
#define JRSTA_DECOERR_INDEX_MASK 0xff00
#define JRSTA_DECOERR_ERROR_MASK 0x00ff
#define JRSTA_DECOERR_NONE 0x00
#define JRSTA_DECOERR_LINKLEN 0x01
#define JRSTA_DECOERR_LINKPTR 0x02
#define JRSTA_DECOERR_JRCTRL 0x03
#define JRSTA_DECOERR_DESCCMD 0x04
#define JRSTA_DECOERR_ORDER 0x05
#define JRSTA_DECOERR_KEYCMD 0x06
#define JRSTA_DECOERR_LOADCMD 0x07
#define JRSTA_DECOERR_STORECMD 0x08
#define JRSTA_DECOERR_OPCMD 0x09
#define JRSTA_DECOERR_FIFOLDCMD 0x0a
#define JRSTA_DECOERR_FIFOSTCMD 0x0b
#define JRSTA_DECOERR_MOVECMD 0x0c
#define JRSTA_DECOERR_JUMPCMD 0x0d
#define JRSTA_DECOERR_MATHCMD 0x0e
#define JRSTA_DECOERR_SHASHCMD 0x0f
#define JRSTA_DECOERR_SEQCMD 0x10
#define JRSTA_DECOERR_DECOINTERNAL 0x11
#define JRSTA_DECOERR_SHDESCHDR 0x12
#define JRSTA_DECOERR_HDRLEN 0x13
#define JRSTA_DECOERR_BURSTER 0x14
#define JRSTA_DECOERR_DESCSIGNATURE 0x15
#define JRSTA_DECOERR_DMA 0x16
#define JRSTA_DECOERR_BURSTFIFO 0x17
#define JRSTA_DECOERR_JRRESET 0x1a
#define JRSTA_DECOERR_JOBFAIL 0x1b
#define JRSTA_DECOERR_DNRERR 0x80
#define JRSTA_DECOERR_UNDEFPCL 0x81
#define JRSTA_DECOERR_PDBERR 0x82
#define JRSTA_DECOERR_ANRPLY_LATE 0x83
#define JRSTA_DECOERR_ANRPLY_REPLAY 0x84
#define JRSTA_DECOERR_SEQOVF 0x85
#define JRSTA_DECOERR_INVSIGN 0x86
#define JRSTA_DECOERR_DSASIGN 0x87
#define JRSTA_CCBERR_JUMP 0x08000000
#define JRSTA_CCBERR_INDEX_MASK 0xff00
#define JRSTA_CCBERR_INDEX_SHIFT 8
#define JRSTA_CCBERR_CHAID_MASK 0x00f0
#define JRSTA_CCBERR_CHAID_SHIFT 4
#define JRSTA_CCBERR_ERRID_MASK 0x000f
#define JRSTA_CCBERR_CHAID_AES (0x01 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_DES (0x02 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_ARC4 (0x03 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_MD (0x04 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_RNG (0x05 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_SNOW (0x06 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_KASUMI (0x07 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_PK (0x08 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_CRC (0x09 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_ERRID_NONE 0x00
#define JRSTA_CCBERR_ERRID_MODE 0x01
#define JRSTA_CCBERR_ERRID_DATASIZ 0x02
#define JRSTA_CCBERR_ERRID_KEYSIZ 0x03
#define JRSTA_CCBERR_ERRID_PKAMEMSZ 0x04
#define JRSTA_CCBERR_ERRID_PKBMEMSZ 0x05
#define JRSTA_CCBERR_ERRID_SEQUENCE 0x06
#define JRSTA_CCBERR_ERRID_PKDIVZRO 0x07
#define JRSTA_CCBERR_ERRID_PKMODEVN 0x08
#define JRSTA_CCBERR_ERRID_KEYPARIT 0x09
#define JRSTA_CCBERR_ERRID_ICVCHK 0x0a
#define JRSTA_CCBERR_ERRID_HARDWARE 0x0b
#define JRSTA_CCBERR_ERRID_CCMAAD 0x0c
#define JRSTA_CCBERR_ERRID_INVCHA 0x0f
#define JRINT_ERR_INDEX_MASK 0x3fff0000
#define JRINT_ERR_INDEX_SHIFT 16
#define JRINT_ERR_TYPE_MASK 0xf00
#define JRINT_ERR_TYPE_SHIFT 8
#define JRINT_ERR_HALT_MASK 0xc
#define JRINT_ERR_HALT_SHIFT 2
#define JRINT_ERR_HALT_INPROGRESS 0x4
#define JRINT_ERR_HALT_COMPLETE 0x8
#define JRINT_JR_ERROR 0x02
#define JRINT_JR_INT 0x01
#define JRINT_ERR_TYPE_WRITE 1
#define JRINT_ERR_TYPE_BAD_INPADDR 3
#define JRINT_ERR_TYPE_BAD_OUTADDR 4
#define JRINT_ERR_TYPE_INV_INPWRT 5
#define JRINT_ERR_TYPE_INV_OUTWRT 6
#define JRINT_ERR_TYPE_RESET 7
#define JRINT_ERR_TYPE_REMOVE_OFL 8
#define JRINT_ERR_TYPE_ADD_OFL 9
#define JRCFG_SOE 0x04
#define JRCFG_ICEN 0x02
#define JRCFG_IMSK 0x01
#define JRCFG_ICDCT_SHIFT 8
#define JRCFG_ICTT_SHIFT 16
#define JRCR_RESET 0x01
/*
* caam_assurance - Assurance Controller View
* base + 0x6000 padded out to 0x1000
*/
struct rtic_element {
u64 address;
u32 rsvd;
u32 length;
};
struct rtic_block {
struct rtic_element element[2];
};
struct rtic_memhash {
u32 memhash_be[32];
u32 memhash_le[32];
};
struct caam_assurance {
/* Status/Command/Watchdog */
u32 rsvd1;
u32 status; /* RSTA - Status */
u32 rsvd2;
u32 cmd; /* RCMD - Command */
u32 rsvd3;
u32 ctrl; /* RCTL - Control */
u32 rsvd4;
u32 throttle; /* RTHR - Throttle */
u32 rsvd5[2];
u64 watchdog; /* RWDOG - Watchdog Timer */
u32 rsvd6;
u32 rend; /* REND - Endian corrections */
u32 rsvd7[50];
/* Block access/configuration @ 100/110/120/130 */
struct rtic_block memblk[4]; /* Memory Blocks A-D */
u32 rsvd8[32];
/* Block hashes @ 200/300/400/500 */
struct rtic_memhash hash[4]; /* Block hash values A-D */
u32 rsvd_3[640];
};
/*
* caam_queue_if - QI configuration and control
* starts base + 0x7000, padded out to 0x1000 long
*/
struct caam_queue_if {
u32 qi_control_hi; /* QICTL - QI Control */
u32 qi_control_lo;
u32 rsvd1;
u32 qi_status; /* QISTA - QI Status */
u32 qi_deq_cfg_hi; /* QIDQC - QI Dequeue Configuration */
u32 qi_deq_cfg_lo;
u32 qi_enq_cfg_hi; /* QISEQC - QI Enqueue Command */
u32 qi_enq_cfg_lo;
u32 rsvd2[1016];
};
/* QI control bits - low word */
#define QICTL_DQEN 0x01 /* Enable frame pop */
#define QICTL_STOP 0x02 /* Stop dequeue/enqueue */
#define QICTL_SOE 0x04 /* Stop on error */
/* QI control bits - high word */
#define QICTL_MBSI 0x01
#define QICTL_MHWSI 0x02
#define QICTL_MWSI 0x04
#define QICTL_MDWSI 0x08
#define QICTL_CBSI 0x10 /* CtrlDataByteSwapInput */
#define QICTL_CHWSI 0x20 /* CtrlDataHalfSwapInput */
#define QICTL_CWSI 0x40 /* CtrlDataWordSwapInput */
#define QICTL_CDWSI 0x80 /* CtrlDataDWordSwapInput */
#define QICTL_MBSO 0x0100
#define QICTL_MHWSO 0x0200
#define QICTL_MWSO 0x0400
#define QICTL_MDWSO 0x0800
#define QICTL_CBSO 0x1000 /* CtrlDataByteSwapOutput */
#define QICTL_CHWSO 0x2000 /* CtrlDataHalfSwapOutput */
#define QICTL_CWSO 0x4000 /* CtrlDataWordSwapOutput */
#define QICTL_CDWSO 0x8000 /* CtrlDataDWordSwapOutput */
#define QICTL_DMBS 0x010000
#define QICTL_EPO 0x020000
/* QI status bits */
#define QISTA_PHRDERR 0x01 /* PreHeader Read Error */
#define QISTA_CFRDERR 0x02 /* Compound Frame Read Error */
#define QISTA_OFWRERR 0x04 /* Output Frame Read Error */
#define QISTA_BPDERR 0x08 /* Buffer Pool Depleted */
#define QISTA_BTSERR 0x10 /* Buffer Undersize */
#define QISTA_CFWRERR 0x20 /* Compound Frame Write Err */
#define QISTA_STOPD 0x80000000 /* QI Stopped (see QICTL) */
/* deco_sg_table - DECO view of scatter/gather table */
struct deco_sg_table {
u64 addr; /* Segment Address */
u32 elen; /* E, F bits + 30-bit length */
u32 bpid_offset; /* Buffer Pool ID + 16-bit length */
};
/*
* caam_deco - descriptor controller - CHA cluster block
*
* Only accessible when direct DECO access is turned on
* (done in DECORR, via MID programmed in DECOxMID
*
* 5 typical, base + 0x8000/9000/a000/b000
* Padded out to 0x1000 long
*/
struct caam_deco {
u32 rsvd1;
u32 cls1_mode; /* CxC1MR - Class 1 Mode */
u32 rsvd2;
u32 cls1_keysize; /* CxC1KSR - Class 1 Key Size */
u32 cls1_datasize_hi; /* CxC1DSR - Class 1 Data Size */
u32 cls1_datasize_lo;
u32 rsvd3;
u32 cls1_icvsize; /* CxC1ICVSR - Class 1 ICV size */
u32 rsvd4[5];
u32 cha_ctrl; /* CCTLR - CHA control */
u32 rsvd5;
u32 irq_crtl; /* CxCIRQ - CCB interrupt done/error/clear */
u32 rsvd6;
u32 clr_written; /* CxCWR - Clear-Written */
u32 ccb_status_hi; /* CxCSTA - CCB Status/Error */
u32 ccb_status_lo;
u32 rsvd7[3];
u32 aad_size; /* CxAADSZR - Current AAD Size */
u32 rsvd8;
u32 cls1_iv_size; /* CxC1IVSZR - Current Class 1 IV Size */
u32 rsvd9[7];
u32 pkha_a_size; /* PKASZRx - Size of PKHA A */
u32 rsvd10;
u32 pkha_b_size; /* PKBSZRx - Size of PKHA B */
u32 rsvd11;
u32 pkha_n_size; /* PKNSZRx - Size of PKHA N */
u32 rsvd12;
u32 pkha_e_size; /* PKESZRx - Size of PKHA E */
u32 rsvd13[24];
u32 cls1_ctx[16]; /* CxC1CTXR - Class 1 Context @100 */
u32 rsvd14[48];
u32 cls1_key[8]; /* CxC1KEYR - Class 1 Key @200 */
u32 rsvd15[121];
u32 cls2_mode; /* CxC2MR - Class 2 Mode */
u32 rsvd16;
u32 cls2_keysize; /* CxX2KSR - Class 2 Key Size */
u32 cls2_datasize_hi; /* CxC2DSR - Class 2 Data Size */
u32 cls2_datasize_lo;
u32 rsvd17;
u32 cls2_icvsize; /* CxC2ICVSZR - Class 2 ICV Size */
u32 rsvd18[56];
u32 cls2_ctx[18]; /* CxC2CTXR - Class 2 Context @500 */
u32 rsvd19[46];
u32 cls2_key[32]; /* CxC2KEYR - Class2 Key @600 */
u32 rsvd20[84];
u32 inp_infofifo_hi; /* CxIFIFO - Input Info FIFO @7d0 */
u32 inp_infofifo_lo;
u32 rsvd21[2];
u64 inp_datafifo; /* CxDFIFO - Input Data FIFO */
u32 rsvd22[2];
u64 out_datafifo; /* CxOFIFO - Output Data FIFO */
u32 rsvd23[2];
u32 jr_ctl_hi; /* CxJRR - JobR Control Register @800 */
u32 jr_ctl_lo;
u64 jr_descaddr; /* CxDADR - JobR Descriptor Address */
u32 op_status_hi; /* DxOPSTA - DECO Operation Status */
u32 op_status_lo;
u32 rsvd24[2];
u32 liodn; /* DxLSR - DECO LIODN Status - non-seq */
u32 td_liodn; /* DxLSR - DECO LIODN Status - trustdesc */
u32 rsvd26[6];
u64 math[4]; /* DxMTH - Math register */
u32 rsvd27[8];
struct deco_sg_table gthr_tbl[4]; /* DxGTR - Gather Tables */
u32 rsvd28[16];
struct deco_sg_table sctr_tbl[4]; /* DxSTR - Scatter Tables */
u32 rsvd29[48];
u32 descbuf[64]; /* DxDESB - Descriptor buffer */
u32 rsvd30[320];
};
/*
* Current top-level view of memory map is:
*
* 0x0000 - 0x0fff - CAAM Top-Level Control
* 0x1000 - 0x1fff - Job Ring 0
* 0x2000 - 0x2fff - Job Ring 1
* 0x3000 - 0x3fff - Job Ring 2
* 0x4000 - 0x4fff - Job Ring 3
* 0x5000 - 0x5fff - (unused)
* 0x6000 - 0x6fff - Assurance Controller
* 0x7000 - 0x7fff - Queue Interface
* 0x8000 - 0x8fff - DECO-CCB 0
* 0x9000 - 0x9fff - DECO-CCB 1
* 0xa000 - 0xafff - DECO-CCB 2
* 0xb000 - 0xbfff - DECO-CCB 3
* 0xc000 - 0xcfff - DECO-CCB 4
*
* caam_full describes the full register view of CAAM if useful,
* although many configurations may choose to implement parts of
* the register map separately, in differing privilege regions
*/
struct caam_full {
struct caam_ctrl __iomem ctrl;
struct caam_job_ring jr[4];
u64 rsvd[512];
struct caam_assurance assure;
struct caam_queue_if qi;
struct caam_deco *deco;
};
#endif /* REGS_H */

Просмотреть файл

@ -133,7 +133,6 @@ struct mv_req_hash_ctx {
int extra_bytes; /* unprocessed bytes in buffer */
enum hash_op op;
int count_add;
struct scatterlist dummysg;
};
static void compute_aes_dec_key(struct mv_ctx *ctx)
@ -187,9 +186,9 @@ static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
{
int ret;
void *sbuf;
int copied = 0;
int copy_len;
while (1) {
while (len) {
if (!p->sg_src_left) {
ret = sg_miter_next(&p->src_sg_it);
BUG_ON(!ret);
@ -199,19 +198,14 @@ static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
sbuf = p->src_sg_it.addr + p->src_start;
if (p->sg_src_left <= len - copied) {
memcpy(dbuf + copied, sbuf, p->sg_src_left);
copied += p->sg_src_left;
p->sg_src_left = 0;
if (copied >= len)
break;
} else {
int copy_len = len - copied;
memcpy(dbuf + copied, sbuf, copy_len);
p->src_start += copy_len;
p->sg_src_left -= copy_len;
break;
}
copy_len = min(p->sg_src_left, len);
memcpy(dbuf, sbuf, copy_len);
p->src_start += copy_len;
p->sg_src_left -= copy_len;
len -= copy_len;
dbuf += copy_len;
}
}
@ -275,7 +269,6 @@ static void mv_process_current_q(int first_block)
memcpy(cpg->sram + SRAM_CONFIG, &op,
sizeof(struct sec_accel_config));
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
/* GO */
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
@ -302,6 +295,7 @@ static void mv_crypto_algo_completion(void)
static void mv_process_hash_current(int first_block)
{
struct ahash_request *req = ahash_request_cast(cpg->cur_req);
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
struct req_progress *p = &cpg->p;
struct sec_accel_config op = { 0 };
@ -314,6 +308,8 @@ static void mv_process_hash_current(int first_block)
break;
case COP_HMAC_SHA1:
op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
memcpy(cpg->sram + SRAM_HMAC_IV_IN,
tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
break;
}
@ -345,11 +341,16 @@ static void mv_process_hash_current(int first_block)
op.config |= CFG_LAST_FRAG;
else
op.config |= CFG_MID_FRAG;
writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
}
memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
/* GO */
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
@ -409,12 +410,6 @@ static void mv_hash_algo_completion(void)
copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
sg_miter_stop(&cpg->p.src_sg_it);
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
if (likely(ctx->last_chunk)) {
if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
@ -422,6 +417,12 @@ static void mv_hash_algo_completion(void)
(req)));
} else
mv_hash_final_fallback(req);
} else {
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
}
}
@ -480,7 +481,7 @@ static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
int i = 0;
size_t cur_len;
while (1) {
while (sl) {
cur_len = sl[i].length;
++i;
if (total_bytes > cur_len)
@ -517,29 +518,12 @@ static void mv_start_new_hash_req(struct ahash_request *req)
{
struct req_progress *p = &cpg->p;
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
int num_sgs, hw_bytes, old_extra_bytes, rc;
cpg->cur_req = &req->base;
memset(p, 0, sizeof(struct req_progress));
hw_bytes = req->nbytes + ctx->extra_bytes;
old_extra_bytes = ctx->extra_bytes;
if (unlikely(ctx->extra_bytes)) {
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
ctx->extra_bytes);
p->crypt_len = ctx->extra_bytes;
}
memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
if (unlikely(!ctx->first_hash)) {
writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
}
ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
if (ctx->extra_bytes != 0
&& (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
@ -555,6 +539,12 @@ static void mv_start_new_hash_req(struct ahash_request *req)
p->complete = mv_hash_algo_completion;
p->process = mv_process_hash_current;
if (unlikely(old_extra_bytes)) {
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
old_extra_bytes);
p->crypt_len = old_extra_bytes;
}
mv_process_hash_current(1);
} else {
copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
@ -603,9 +593,7 @@ static int queue_manag(void *data)
if (async_req->tfm->__crt_alg->cra_type !=
&crypto_ahash_type) {
struct ablkcipher_request *req =
container_of(async_req,
struct ablkcipher_request,
base);
ablkcipher_request_cast(async_req);
mv_start_new_crypt_req(req);
} else {
struct ahash_request *req =
@ -722,19 +710,13 @@ static int mv_hash_update(struct ahash_request *req)
static int mv_hash_final(struct ahash_request *req)
{
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
/* dummy buffer of 4 bytes */
sg_init_one(&ctx->dummysg, ctx->buffer, 4);
/* I think I'm allowed to do that... */
ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
mv_update_hash_req_ctx(ctx, 1, 0);
return mv_handle_req(&req->base);
}
static int mv_hash_finup(struct ahash_request *req)
{
if (!req->nbytes)
return mv_hash_final(req);
mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
return mv_handle_req(&req->base);
}
@ -1065,14 +1047,21 @@ static int mv_probe(struct platform_device *pdev)
writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
ret = crypto_register_alg(&mv_aes_alg_ecb);
if (ret)
if (ret) {
printk(KERN_WARNING MV_CESA
"Could not register aes-ecb driver\n");
goto err_irq;
}
ret = crypto_register_alg(&mv_aes_alg_cbc);
if (ret)
if (ret) {
printk(KERN_WARNING MV_CESA
"Could not register aes-cbc driver\n");
goto err_unreg_ecb;
}
ret = crypto_register_ahash(&mv_sha1_alg);
if (ret == 0)

Просмотреть файл

@ -78,7 +78,6 @@
#define FLAGS_SHA1 0x0010
#define FLAGS_DMA_ACTIVE 0x0020
#define FLAGS_OUTPUT_READY 0x0040
#define FLAGS_CLEAN 0x0080
#define FLAGS_INIT 0x0100
#define FLAGS_CPU 0x0200
#define FLAGS_HMAC 0x0400
@ -511,26 +510,6 @@ static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
return 0;
}
static void omap_sham_cleanup(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
unsigned long flags;
spin_lock_irqsave(&dd->lock, flags);
if (ctx->flags & FLAGS_CLEAN) {
spin_unlock_irqrestore(&dd->lock, flags);
return;
}
ctx->flags |= FLAGS_CLEAN;
spin_unlock_irqrestore(&dd->lock, flags);
if (ctx->digcnt)
omap_sham_copy_ready_hash(req);
dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
}
static int omap_sham_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
@ -618,9 +597,8 @@ static int omap_sham_final_req(struct omap_sham_dev *dd)
return err;
}
static int omap_sham_finish_req_hmac(struct ahash_request *req)
static int omap_sham_finish_hmac(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs = crypto_shash_blocksize(bctx->shash);
@ -635,7 +613,24 @@ static int omap_sham_finish_req_hmac(struct ahash_request *req)
return crypto_shash_init(&desc.shash) ?:
crypto_shash_update(&desc.shash, bctx->opad, bs) ?:
crypto_shash_finup(&desc.shash, ctx->digest, ds, ctx->digest);
crypto_shash_finup(&desc.shash, req->result, ds, req->result);
}
static int omap_sham_finish(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int err = 0;
if (ctx->digcnt) {
omap_sham_copy_ready_hash(req);
if (ctx->flags & FLAGS_HMAC)
err = omap_sham_finish_hmac(req);
}
dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
return err;
}
static void omap_sham_finish_req(struct ahash_request *req, int err)
@ -645,15 +640,12 @@ static void omap_sham_finish_req(struct ahash_request *req, int err)
if (!err) {
omap_sham_copy_hash(ctx->dd->req, 1);
if (ctx->flags & FLAGS_HMAC)
err = omap_sham_finish_req_hmac(req);
if (ctx->flags & FLAGS_FINAL)
err = omap_sham_finish(req);
} else {
ctx->flags |= FLAGS_ERROR;
}
if ((ctx->flags & FLAGS_FINAL) || err)
omap_sham_cleanup(req);
clk_disable(dd->iclk);
dd->flags &= ~FLAGS_BUSY;
@ -809,22 +801,21 @@ static int omap_sham_final_shash(struct ahash_request *req)
static int omap_sham_final(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err = 0;
ctx->flags |= FLAGS_FINUP;
if (!(ctx->flags & FLAGS_ERROR)) {
/* OMAP HW accel works only with buffers >= 9 */
/* HMAC is always >= 9 because of ipad */
if ((ctx->digcnt + ctx->bufcnt) < 9)
err = omap_sham_final_shash(req);
else if (ctx->bufcnt)
return omap_sham_enqueue(req, OP_FINAL);
}
if (ctx->flags & FLAGS_ERROR)
return 0; /* uncompleted hash is not needed */
omap_sham_cleanup(req);
/* OMAP HW accel works only with buffers >= 9 */
/* HMAC is always >= 9 because ipad == block size */
if ((ctx->digcnt + ctx->bufcnt) < 9)
return omap_sham_final_shash(req);
else if (ctx->bufcnt)
return omap_sham_enqueue(req, OP_FINAL);
return err;
/* copy ready hash (+ finalize hmac) */
return omap_sham_finish(req);
}
static int omap_sham_finup(struct ahash_request *req)
@ -835,7 +826,7 @@ static int omap_sham_finup(struct ahash_request *req)
ctx->flags |= FLAGS_FINUP;
err1 = omap_sham_update(req);
if (err1 == -EINPROGRESS)
if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1;
/*
* final() has to be always called to cleanup resources
@ -890,8 +881,6 @@ static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm);
pr_info("enter\n");
/* Allocate a fallback and abort if it failed. */
tctx->fallback = crypto_alloc_shash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
@ -1297,7 +1286,8 @@ static int __init omap_sham_mod_init(void)
pr_info("loading %s driver\n", "omap-sham");
if (!cpu_class_is_omap2() ||
omap_type() != OMAP2_DEVICE_TYPE_SEC) {
(omap_type() != OMAP2_DEVICE_TYPE_SEC &&
omap_type() != OMAP2_DEVICE_TYPE_EMU)) {
pr_err("Unsupported cpu\n");
return -ENODEV;
}

Просмотреть файл

@ -288,9 +288,250 @@ static struct shash_alg sha256_alg = {
}
};
/* Add two shash_alg instance for hardware-implemented *
* multiple-parts hash supported by VIA Nano Processor.*/
static int padlock_sha1_init_nano(struct shash_desc *desc)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha1_state){
.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
};
return 0;
}
static int padlock_sha1_update_nano(struct shash_desc *desc,
const u8 *data, unsigned int len)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
int ts_state;
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
if ((partial + len) >= SHA1_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buffer + partial, data,
done + SHA1_BLOCK_SIZE);
src = sctx->buffer;
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst) \
: "a"((long)-1), "c"((unsigned long)1));
irq_ts_restore(ts_state);
done += SHA1_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from the input data */
if (len - done >= SHA1_BLOCK_SIZE) {
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
irq_ts_restore(ts_state);
done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
memcpy(sctx->buffer + partial, src, len - done);
return 0;
}
static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha1_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
return 0;
}
static int padlock_sha256_init_nano(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha256_state){
.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
};
return 0;
}
static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
int ts_state;
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
if ((partial + len) >= SHA256_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buf + partial, data,
done + SHA256_BLOCK_SIZE);
src = sctx->buf;
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1), "c"((unsigned long)1));
irq_ts_restore(ts_state);
done += SHA256_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from input data*/
if (len - done >= SHA256_BLOCK_SIZE) {
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / 64)));
irq_ts_restore(ts_state);
done += ((len - done) - (len - done) % 64);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
memcpy(sctx->buf + partial, src, len - done);
return 0;
}
static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha256_state *state =
(struct sha256_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha256_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
return 0;
}
static int padlock_sha_export_nano(struct shash_desc *desc,
void *out)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, statesize);
return 0;
}
static int padlock_sha_import_nano(struct shash_desc *desc,
const void *in)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, statesize);
return 0;
}
static struct shash_alg sha1_alg_nano = {
.digestsize = SHA1_DIGEST_SIZE,
.init = padlock_sha1_init_nano,
.update = padlock_sha1_update_nano,
.final = padlock_sha1_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha1_state),
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha256_alg_nano = {
.digestsize = SHA256_DIGEST_SIZE,
.init = padlock_sha256_init_nano,
.update = padlock_sha256_update_nano,
.final = padlock_sha256_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int __init padlock_init(void)
{
int rc = -ENODEV;
struct cpuinfo_x86 *c = &cpu_data(0);
struct shash_alg *sha1;
struct shash_alg *sha256;
if (!cpu_has_phe) {
printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n");
@ -302,11 +543,21 @@ static int __init padlock_init(void)
return -ENODEV;
}
rc = crypto_register_shash(&sha1_alg);
/* Register the newly added algorithm module if on *
* VIA Nano processor, or else just do as before */
if (c->x86_model < 0x0f) {
sha1 = &sha1_alg;
sha256 = &sha256_alg;
} else {
sha1 = &sha1_alg_nano;
sha256 = &sha256_alg_nano;
}
rc = crypto_register_shash(sha1);
if (rc)
goto out;
rc = crypto_register_shash(&sha256_alg);
rc = crypto_register_shash(sha256);
if (rc)
goto out_unreg1;
@ -315,7 +566,8 @@ static int __init padlock_init(void)
return 0;
out_unreg1:
crypto_unregister_shash(&sha1_alg);
crypto_unregister_shash(sha1);
out:
printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
return rc;
@ -323,8 +575,15 @@ out:
static void __exit padlock_fini(void)
{
crypto_unregister_shash(&sha1_alg);
crypto_unregister_shash(&sha256_alg);
struct cpuinfo_x86 *c = &cpu_data(0);
if (c->x86_model >= 0x0f) {
crypto_unregister_shash(&sha1_alg_nano);
crypto_unregister_shash(&sha256_alg_nano);
} else {
crypto_unregister_shash(&sha1_alg);
crypto_unregister_shash(&sha256_alg);
}
}
module_init(padlock_init);

Просмотреть файл

@ -176,6 +176,8 @@ struct spacc_aead_ctx {
u8 salt[AES_BLOCK_SIZE];
};
static int spacc_ablk_submit(struct spacc_req *req);
static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
{
return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
@ -666,6 +668,24 @@ static int spacc_aead_submit(struct spacc_req *req)
return -EINPROGRESS;
}
static int spacc_req_submit(struct spacc_req *req);
static void spacc_push(struct spacc_engine *engine)
{
struct spacc_req *req;
while (!list_empty(&engine->pending) &&
engine->in_flight + 1 <= engine->fifo_sz) {
++engine->in_flight;
req = list_first_entry(&engine->pending, struct spacc_req,
list);
list_move_tail(&req->list, &engine->in_progress);
req->result = spacc_req_submit(req);
}
}
/*
* Setup an AEAD request for processing. This will configure the engine, load
* the context and then start the packet processing.
@ -698,7 +718,8 @@ static int spacc_aead_setup(struct aead_request *req, u8 *giv,
err = -EINPROGRESS;
spin_lock_irqsave(&engine->hw_lock, flags);
if (unlikely(spacc_fifo_cmd_full(engine))) {
if (unlikely(spacc_fifo_cmd_full(engine)) ||
engine->in_flight + 1 > engine->fifo_sz) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY;
spin_unlock_irqrestore(&engine->hw_lock, flags);
@ -706,9 +727,8 @@ static int spacc_aead_setup(struct aead_request *req, u8 *giv,
}
list_add_tail(&dev_req->list, &engine->pending);
} else {
++engine->in_flight;
list_add_tail(&dev_req->list, &engine->in_progress);
spacc_aead_submit(dev_req);
list_add_tail(&dev_req->list, &engine->pending);
spacc_push(engine);
}
spin_unlock_irqrestore(&engine->hw_lock, flags);
@ -1041,7 +1061,8 @@ static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
* we either stick it on the end of a pending list if we can backlog,
* or bailout with an error if not.
*/
if (unlikely(spacc_fifo_cmd_full(engine))) {
if (unlikely(spacc_fifo_cmd_full(engine)) ||
engine->in_flight + 1 > engine->fifo_sz) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY;
spin_unlock_irqrestore(&engine->hw_lock, flags);
@ -1049,9 +1070,8 @@ static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
}
list_add_tail(&dev_req->list, &engine->pending);
} else {
++engine->in_flight;
list_add_tail(&dev_req->list, &engine->in_progress);
spacc_ablk_submit(dev_req);
list_add_tail(&dev_req->list, &engine->pending);
spacc_push(engine);
}
spin_unlock_irqrestore(&engine->hw_lock, flags);
@ -1139,6 +1159,7 @@ static void spacc_process_done(struct spacc_engine *engine)
req = list_first_entry(&engine->in_progress, struct spacc_req,
list);
list_move_tail(&req->list, &engine->completed);
--engine->in_flight;
/* POP the status register. */
writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
@ -1208,36 +1229,21 @@ static void spacc_spacc_complete(unsigned long data)
struct spacc_engine *engine = (struct spacc_engine *)data;
struct spacc_req *req, *tmp;
unsigned long flags;
int num_removed = 0;
LIST_HEAD(completed);
spin_lock_irqsave(&engine->hw_lock, flags);
list_splice_init(&engine->completed, &completed);
spin_unlock_irqrestore(&engine->hw_lock, flags);
list_for_each_entry_safe(req, tmp, &completed, list) {
++num_removed;
req->complete(req);
}
/* Try and fill the engine back up again. */
spin_lock_irqsave(&engine->hw_lock, flags);
engine->in_flight -= num_removed;
list_for_each_entry_safe(req, tmp, &engine->pending, list) {
if (spacc_fifo_cmd_full(engine))
break;
list_move_tail(&req->list, &engine->in_progress);
++engine->in_flight;
req->result = spacc_req_submit(req);
}
spacc_push(engine);
if (engine->in_flight)
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
spin_unlock_irqrestore(&engine->hw_lock, flags);
list_for_each_entry_safe(req, tmp, &completed, list) {
req->complete(req);
list_del(&req->list);
}
}
#ifdef CONFIG_PM

701
drivers/crypto/s5p-sss.c Normal file
Просмотреть файл

@ -0,0 +1,701 @@
/*
* Cryptographic API.
*
* Support for Samsung S5PV210 HW acceleration.
*
* Copyright (C) 2011 NetUP Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <plat/cpu.h>
#include <plat/dma.h>
#define _SBF(s, v) ((v) << (s))
#define _BIT(b) _SBF(b, 1)
/* Feed control registers */
#define SSS_REG_FCINTSTAT 0x0000
#define SSS_FCINTSTAT_BRDMAINT _BIT(3)
#define SSS_FCINTSTAT_BTDMAINT _BIT(2)
#define SSS_FCINTSTAT_HRDMAINT _BIT(1)
#define SSS_FCINTSTAT_PKDMAINT _BIT(0)
#define SSS_REG_FCINTENSET 0x0004
#define SSS_FCINTENSET_BRDMAINTENSET _BIT(3)
#define SSS_FCINTENSET_BTDMAINTENSET _BIT(2)
#define SSS_FCINTENSET_HRDMAINTENSET _BIT(1)
#define SSS_FCINTENSET_PKDMAINTENSET _BIT(0)
#define SSS_REG_FCINTENCLR 0x0008
#define SSS_FCINTENCLR_BRDMAINTENCLR _BIT(3)
#define SSS_FCINTENCLR_BTDMAINTENCLR _BIT(2)
#define SSS_FCINTENCLR_HRDMAINTENCLR _BIT(1)
#define SSS_FCINTENCLR_PKDMAINTENCLR _BIT(0)
#define SSS_REG_FCINTPEND 0x000C
#define SSS_FCINTPEND_BRDMAINTP _BIT(3)
#define SSS_FCINTPEND_BTDMAINTP _BIT(2)
#define SSS_FCINTPEND_HRDMAINTP _BIT(1)
#define SSS_FCINTPEND_PKDMAINTP _BIT(0)
#define SSS_REG_FCFIFOSTAT 0x0010
#define SSS_FCFIFOSTAT_BRFIFOFUL _BIT(7)
#define SSS_FCFIFOSTAT_BRFIFOEMP _BIT(6)
#define SSS_FCFIFOSTAT_BTFIFOFUL _BIT(5)
#define SSS_FCFIFOSTAT_BTFIFOEMP _BIT(4)
#define SSS_FCFIFOSTAT_HRFIFOFUL _BIT(3)
#define SSS_FCFIFOSTAT_HRFIFOEMP _BIT(2)
#define SSS_FCFIFOSTAT_PKFIFOFUL _BIT(1)
#define SSS_FCFIFOSTAT_PKFIFOEMP _BIT(0)
#define SSS_REG_FCFIFOCTRL 0x0014
#define SSS_FCFIFOCTRL_DESSEL _BIT(2)
#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
#define SSS_REG_FCBRDMAS 0x0020
#define SSS_REG_FCBRDMAL 0x0024
#define SSS_REG_FCBRDMAC 0x0028
#define SSS_FCBRDMAC_BYTESWAP _BIT(1)
#define SSS_FCBRDMAC_FLUSH _BIT(0)
#define SSS_REG_FCBTDMAS 0x0030
#define SSS_REG_FCBTDMAL 0x0034
#define SSS_REG_FCBTDMAC 0x0038
#define SSS_FCBTDMAC_BYTESWAP _BIT(1)
#define SSS_FCBTDMAC_FLUSH _BIT(0)
#define SSS_REG_FCHRDMAS 0x0040
#define SSS_REG_FCHRDMAL 0x0044
#define SSS_REG_FCHRDMAC 0x0048
#define SSS_FCHRDMAC_BYTESWAP _BIT(1)
#define SSS_FCHRDMAC_FLUSH _BIT(0)
#define SSS_REG_FCPKDMAS 0x0050
#define SSS_REG_FCPKDMAL 0x0054
#define SSS_REG_FCPKDMAC 0x0058
#define SSS_FCPKDMAC_BYTESWAP _BIT(3)
#define SSS_FCPKDMAC_DESCEND _BIT(2)
#define SSS_FCPKDMAC_TRANSMIT _BIT(1)
#define SSS_FCPKDMAC_FLUSH _BIT(0)
#define SSS_REG_FCPKDMAO 0x005C
/* AES registers */
#define SSS_REG_AES_CONTROL 0x4000
#define SSS_AES_BYTESWAP_DI _BIT(11)
#define SSS_AES_BYTESWAP_DO _BIT(10)
#define SSS_AES_BYTESWAP_IV _BIT(9)
#define SSS_AES_BYTESWAP_CNT _BIT(8)
#define SSS_AES_BYTESWAP_KEY _BIT(7)
#define SSS_AES_KEY_CHANGE_MODE _BIT(6)
#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
#define SSS_AES_FIFO_MODE _BIT(3)
#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
#define SSS_AES_MODE_DECRYPT _BIT(0)
#define SSS_REG_AES_STATUS 0x4004
#define SSS_AES_BUSY _BIT(2)
#define SSS_AES_INPUT_READY _BIT(1)
#define SSS_AES_OUTPUT_READY _BIT(0)
#define SSS_REG_AES_IN_DATA(s) (0x4010 + (s << 2))
#define SSS_REG_AES_OUT_DATA(s) (0x4020 + (s << 2))
#define SSS_REG_AES_IV_DATA(s) (0x4030 + (s << 2))
#define SSS_REG_AES_CNT_DATA(s) (0x4040 + (s << 2))
#define SSS_REG_AES_KEY_DATA(s) (0x4080 + (s << 2))
#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
/* HW engine modes */
#define FLAGS_AES_DECRYPT _BIT(0)
#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
#define FLAGS_AES_CBC _SBF(1, 0x01)
#define FLAGS_AES_CTR _SBF(1, 0x02)
#define AES_KEY_LEN 16
#define CRYPTO_QUEUE_LEN 1
struct s5p_aes_reqctx {
unsigned long mode;
};
struct s5p_aes_ctx {
struct s5p_aes_dev *dev;
uint8_t aes_key[AES_MAX_KEY_SIZE];
uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
int keylen;
};
struct s5p_aes_dev {
struct device *dev;
struct clk *clk;
void __iomem *ioaddr;
int irq_hash;
int irq_fc;
struct ablkcipher_request *req;
struct s5p_aes_ctx *ctx;
struct scatterlist *sg_src;
struct scatterlist *sg_dst;
struct tasklet_struct tasklet;
struct crypto_queue queue;
bool busy;
spinlock_t lock;
};
static struct s5p_aes_dev *s5p_dev;
static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
}
static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
}
static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
{
/* holding a lock outside */
dev->req->base.complete(&dev->req->base, err);
dev->busy = false;
}
static void s5p_unset_outdata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
}
static void s5p_unset_indata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
}
static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
int err;
if (!IS_ALIGNED(sg_dma_len(sg), AES_BLOCK_SIZE)) {
err = -EINVAL;
goto exit;
}
if (!sg_dma_len(sg)) {
err = -EINVAL;
goto exit;
}
err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
if (!err) {
err = -ENOMEM;
goto exit;
}
dev->sg_dst = sg;
err = 0;
exit:
return err;
}
static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
int err;
if (!IS_ALIGNED(sg_dma_len(sg), AES_BLOCK_SIZE)) {
err = -EINVAL;
goto exit;
}
if (!sg_dma_len(sg)) {
err = -EINVAL;
goto exit;
}
err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
if (!err) {
err = -ENOMEM;
goto exit;
}
dev->sg_src = sg;
err = 0;
exit:
return err;
}
static void s5p_aes_tx(struct s5p_aes_dev *dev)
{
int err = 0;
s5p_unset_outdata(dev);
if (!sg_is_last(dev->sg_dst)) {
err = s5p_set_outdata(dev, sg_next(dev->sg_dst));
if (err) {
s5p_aes_complete(dev, err);
return;
}
s5p_set_dma_outdata(dev, dev->sg_dst);
} else
s5p_aes_complete(dev, err);
}
static void s5p_aes_rx(struct s5p_aes_dev *dev)
{
int err;
s5p_unset_indata(dev);
if (!sg_is_last(dev->sg_src)) {
err = s5p_set_indata(dev, sg_next(dev->sg_src));
if (err) {
s5p_aes_complete(dev, err);
return;
}
s5p_set_dma_indata(dev, dev->sg_src);
}
}
static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
uint32_t status;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (irq == dev->irq_fc) {
status = SSS_READ(dev, FCINTSTAT);
if (status & SSS_FCINTSTAT_BRDMAINT)
s5p_aes_rx(dev);
if (status & SSS_FCINTSTAT_BTDMAINT)
s5p_aes_tx(dev);
SSS_WRITE(dev, FCINTPEND, status);
}
spin_unlock_irqrestore(&dev->lock, flags);
return IRQ_HANDLED;
}
static void s5p_set_aes(struct s5p_aes_dev *dev,
uint8_t *key, uint8_t *iv, unsigned int keylen)
{
void __iomem *keystart;
memcpy(dev->ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
if (keylen == AES_KEYSIZE_256)
keystart = dev->ioaddr + SSS_REG_AES_KEY_DATA(0);
else if (keylen == AES_KEYSIZE_192)
keystart = dev->ioaddr + SSS_REG_AES_KEY_DATA(2);
else
keystart = dev->ioaddr + SSS_REG_AES_KEY_DATA(4);
memcpy(keystart, key, keylen);
}
static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
{
struct ablkcipher_request *req = dev->req;
uint32_t aes_control;
int err;
unsigned long flags;
aes_control = SSS_AES_KEY_CHANGE_MODE;
if (mode & FLAGS_AES_DECRYPT)
aes_control |= SSS_AES_MODE_DECRYPT;
if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
aes_control |= SSS_AES_CHAIN_MODE_CBC;
else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
aes_control |= SSS_AES_CHAIN_MODE_CTR;
if (dev->ctx->keylen == AES_KEYSIZE_192)
aes_control |= SSS_AES_KEY_SIZE_192;
else if (dev->ctx->keylen == AES_KEYSIZE_256)
aes_control |= SSS_AES_KEY_SIZE_256;
aes_control |= SSS_AES_FIFO_MODE;
/* as a variant it is possible to use byte swapping on DMA side */
aes_control |= SSS_AES_BYTESWAP_DI
| SSS_AES_BYTESWAP_DO
| SSS_AES_BYTESWAP_IV
| SSS_AES_BYTESWAP_KEY
| SSS_AES_BYTESWAP_CNT;
spin_lock_irqsave(&dev->lock, flags);
SSS_WRITE(dev, FCINTENCLR,
SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
SSS_WRITE(dev, FCFIFOCTRL, 0x00);
err = s5p_set_indata(dev, req->src);
if (err)
goto indata_error;
err = s5p_set_outdata(dev, req->dst);
if (err)
goto outdata_error;
SSS_WRITE(dev, AES_CONTROL, aes_control);
s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
s5p_set_dma_indata(dev, req->src);
s5p_set_dma_outdata(dev, req->dst);
SSS_WRITE(dev, FCINTENSET,
SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
spin_unlock_irqrestore(&dev->lock, flags);
return;
outdata_error:
s5p_unset_indata(dev);
indata_error:
s5p_aes_complete(dev, err);
spin_unlock_irqrestore(&dev->lock, flags);
}
static void s5p_tasklet_cb(unsigned long data)
{
struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
struct crypto_async_request *async_req, *backlog;
struct s5p_aes_reqctx *reqctx;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->lock, flags);
if (!async_req)
return;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
dev->req = ablkcipher_request_cast(async_req);
dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
reqctx = ablkcipher_request_ctx(dev->req);
s5p_aes_crypt_start(dev, reqctx->mode);
}
static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
struct ablkcipher_request *req)
{
unsigned long flags;
int err;
spin_lock_irqsave(&dev->lock, flags);
if (dev->busy) {
err = -EAGAIN;
spin_unlock_irqrestore(&dev->lock, flags);
goto exit;
}
dev->busy = true;
err = ablkcipher_enqueue_request(&dev->queue, req);
spin_unlock_irqrestore(&dev->lock, flags);
tasklet_schedule(&dev->tasklet);
exit:
return err;
}
static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
struct s5p_aes_dev *dev = ctx->dev;
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
reqctx->mode = mode;
return s5p_aes_handle_req(dev, req);
}
static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
const uint8_t *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (keylen != AES_KEYSIZE_128 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->aes_key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, 0);
}
static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
}
static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_CBC);
}
static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
}
static int s5p_aes_cra_init(struct crypto_tfm *tfm)
{
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->dev = s5p_dev;
tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
return 0;
}
static struct crypto_alg algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-s5p",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.cra_alignmask = 0x0f,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = s5p_aes_cra_init,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_ecb_encrypt,
.decrypt = s5p_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-s5p",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.cra_alignmask = 0x0f,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = s5p_aes_cra_init,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_cbc_encrypt,
.decrypt = s5p_aes_cbc_decrypt,
}
},
};
static int s5p_aes_probe(struct platform_device *pdev)
{
int i, j, err = -ENODEV;
struct s5p_aes_dev *pdata;
struct device *dev = &pdev->dev;
struct resource *res;
if (s5p_dev)
return -EEXIST;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
if (!devm_request_mem_region(dev, res->start,
resource_size(res), pdev->name))
return -EBUSY;
pdata->clk = clk_get(dev, "secss");
if (IS_ERR(pdata->clk)) {
dev_err(dev, "failed to find secss clock source\n");
return -ENOENT;
}
clk_enable(pdata->clk);
spin_lock_init(&pdata->lock);
pdata->ioaddr = devm_ioremap(dev, res->start,
resource_size(res));
pdata->irq_hash = platform_get_irq_byname(pdev, "hash");
if (pdata->irq_hash < 0) {
err = pdata->irq_hash;
dev_warn(dev, "hash interrupt is not available.\n");
goto err_irq;
}
err = devm_request_irq(dev, pdata->irq_hash, s5p_aes_interrupt,
IRQF_SHARED, pdev->name, pdev);
if (err < 0) {
dev_warn(dev, "hash interrupt is not available.\n");
goto err_irq;
}
pdata->irq_fc = platform_get_irq_byname(pdev, "feed control");
if (pdata->irq_fc < 0) {
err = pdata->irq_fc;
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
err = devm_request_irq(dev, pdata->irq_fc, s5p_aes_interrupt,
IRQF_SHARED, pdev->name, pdev);
if (err < 0) {
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
pdata->dev = dev;
platform_set_drvdata(pdev, pdata);
s5p_dev = pdata;
tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
for (i = 0; i < ARRAY_SIZE(algs); i++) {
INIT_LIST_HEAD(&algs[i].cra_list);
err = crypto_register_alg(&algs[i]);
if (err)
goto err_algs;
}
pr_info("s5p-sss driver registered\n");
return 0;
err_algs:
dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
for (j = 0; j < i; j++)
crypto_unregister_alg(&algs[j]);
tasklet_kill(&pdata->tasklet);
err_irq:
clk_disable(pdata->clk);
clk_put(pdata->clk);
s5p_dev = NULL;
platform_set_drvdata(pdev, NULL);
return err;
}
static int s5p_aes_remove(struct platform_device *pdev)
{
struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
int i;
if (!pdata)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(algs); i++)
crypto_unregister_alg(&algs[i]);
tasklet_kill(&pdata->tasklet);
clk_disable(pdata->clk);
clk_put(pdata->clk);
s5p_dev = NULL;
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver s5p_aes_crypto = {
.probe = s5p_aes_probe,
.remove = s5p_aes_remove,
.driver = {
.owner = THIS_MODULE,
.name = "s5p-secss",
},
};
static int __init s5p_aes_mod_init(void)
{
return platform_driver_register(&s5p_aes_crypto);
}
static void __exit s5p_aes_mod_exit(void)
{
platform_driver_unregister(&s5p_aes_crypto);
}
module_init(s5p_aes_mod_init);
module_exit(s5p_aes_mod_exit);
MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");