crypto: hisilicon/hpre - add 'ECDH' algorithm

1. Enable 'ECDH' algorithm in Kunpeng 930;
2. HPRE ECDH Support: ecdh-nist-p192, ecdh-nist-p256.

Signed-off-by: Meng Yu <yumeng18@huawei.com>
Reviewed-by: Zaibo Xu <xuzaibo@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Meng Yu 2021-03-04 14:35:48 +08:00 коммит произвёл Herbert Xu
Родитель 14bb767682
Коммит 05e7b906aa
3 изменённых файлов: 513 добавлений и 5 удалений

Просмотреть файл

@ -83,6 +83,7 @@ enum hpre_alg_type {
HPRE_ALG_KG_CRT = 0x3,
HPRE_ALG_DH_G2 = 0x4,
HPRE_ALG_DH = 0x5,
HPRE_ALG_ECC_MUL = 0xD,
};
struct hpre_sqe {
@ -104,5 +105,4 @@ struct hisi_qp *hpre_create_qp(u8 type);
int hpre_algs_register(struct hisi_qm *qm);
void hpre_algs_unregister(struct hisi_qm *qm);
#endif

Просмотреть файл

@ -2,6 +2,8 @@
/* Copyright (c) 2019 HiSilicon Limited. */
#include <crypto/akcipher.h>
#include <crypto/dh.h>
#include <crypto/ecc_curve.h>
#include <crypto/ecdh.h>
#include <crypto/internal/akcipher.h>
#include <crypto/internal/kpp.h>
#include <crypto/internal/rsa.h>
@ -36,6 +38,13 @@ struct hpre_ctx;
#define HPRE_DFX_SEC_TO_US 1000000
#define HPRE_DFX_US_TO_NS 1000
/* size in bytes of the n prime */
#define HPRE_ECC_NIST_P192_N_SIZE 24
#define HPRE_ECC_NIST_P256_N_SIZE 32
/* size in bytes */
#define HPRE_ECC_HW256_KSZ_B 32
typedef void (*hpre_cb)(struct hpre_ctx *ctx, void *sqe);
struct hpre_rsa_ctx {
@ -61,14 +70,25 @@ struct hpre_dh_ctx {
* else if base if the counterpart public key we
* compute the shared secret
* ZZ = yb^xa mod p; [RFC2631 sec 2.1.1]
* low address: d--->n, please refer to Hisilicon HPRE UM
*/
char *xa_p; /* low address: d--->n, please refer to Hisilicon HPRE UM */
char *xa_p;
dma_addr_t dma_xa_p;
char *g; /* m */
dma_addr_t dma_g;
};
struct hpre_ecdh_ctx {
/* low address: p->a->k->b */
unsigned char *p;
dma_addr_t dma_p;
/* low address: x->y */
unsigned char *g;
dma_addr_t dma_g;
};
struct hpre_ctx {
struct hisi_qp *qp;
struct hpre_asym_request **req_list;
@ -80,7 +100,10 @@ struct hpre_ctx {
union {
struct hpre_rsa_ctx rsa;
struct hpre_dh_ctx dh;
struct hpre_ecdh_ctx ecdh;
};
/* for ecc algorithms */
unsigned int curve_id;
};
struct hpre_asym_request {
@ -91,6 +114,7 @@ struct hpre_asym_request {
union {
struct akcipher_request *rsa;
struct kpp_request *dh;
struct kpp_request *ecdh;
} areq;
int err;
int req_id;
@ -1115,6 +1139,416 @@ static void hpre_rsa_exit_tfm(struct crypto_akcipher *tfm)
crypto_free_akcipher(ctx->rsa.soft_tfm);
}
static void hpre_key_to_big_end(u8 *data, int len)
{
int i, j;
u8 tmp;
for (i = 0; i < len / 2; i++) {
j = len - i - 1;
tmp = data[j];
data[j] = data[i];
data[i] = tmp;
}
}
static void hpre_ecc_clear_ctx(struct hpre_ctx *ctx, bool is_clear_all,
bool is_ecdh)
{
struct device *dev = HPRE_DEV(ctx);
unsigned int sz = ctx->key_sz;
unsigned int shift = sz << 1;
if (is_clear_all)
hisi_qm_stop_qp(ctx->qp);
if (is_ecdh && ctx->ecdh.p) {
/* ecdh: p->a->k->b */
memzero_explicit(ctx->ecdh.p + shift, sz);
dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
ctx->ecdh.p = NULL;
}
hpre_ctx_clear(ctx, is_clear_all);
}
static unsigned int hpre_ecdh_supported_curve(unsigned short id)
{
switch (id) {
case ECC_CURVE_NIST_P192:
case ECC_CURVE_NIST_P256:
return HPRE_ECC_HW256_KSZ_B;
default:
break;
}
return 0;
}
static void fill_curve_param(void *addr, u64 *param, unsigned int cur_sz, u8 ndigits)
{
unsigned int sz = cur_sz - (ndigits - 1) * sizeof(u64);
u8 i = 0;
while (i < ndigits - 1) {
memcpy(addr + sizeof(u64) * i, &param[i], sizeof(u64));
i++;
}
memcpy(addr + sizeof(u64) * i, &param[ndigits - 1], sz);
hpre_key_to_big_end((u8 *)addr, cur_sz);
}
static int hpre_ecdh_fill_curve(struct hpre_ctx *ctx, struct ecdh *params,
unsigned int cur_sz)
{
unsigned int shifta = ctx->key_sz << 1;
unsigned int shiftb = ctx->key_sz << 2;
void *p = ctx->ecdh.p + ctx->key_sz - cur_sz;
void *a = ctx->ecdh.p + shifta - cur_sz;
void *b = ctx->ecdh.p + shiftb - cur_sz;
void *x = ctx->ecdh.g + ctx->key_sz - cur_sz;
void *y = ctx->ecdh.g + shifta - cur_sz;
const struct ecc_curve *curve = ecc_get_curve(ctx->curve_id);
char *n;
if (unlikely(!curve))
return -EINVAL;
n = kzalloc(ctx->key_sz, GFP_KERNEL);
if (!n)
return -ENOMEM;
fill_curve_param(p, curve->p, cur_sz, curve->g.ndigits);
fill_curve_param(a, curve->a, cur_sz, curve->g.ndigits);
fill_curve_param(b, curve->b, cur_sz, curve->g.ndigits);
fill_curve_param(x, curve->g.x, cur_sz, curve->g.ndigits);
fill_curve_param(y, curve->g.y, cur_sz, curve->g.ndigits);
fill_curve_param(n, curve->n, cur_sz, curve->g.ndigits);
if (params->key_size == cur_sz && memcmp(params->key, n, cur_sz) >= 0) {
kfree(n);
return -EINVAL;
}
kfree(n);
return 0;
}
static unsigned int hpre_ecdh_get_curvesz(unsigned short id)
{
switch (id) {
case ECC_CURVE_NIST_P192:
return HPRE_ECC_NIST_P192_N_SIZE;
case ECC_CURVE_NIST_P256:
return HPRE_ECC_NIST_P256_N_SIZE;
default:
break;
}
return 0;
}
static int hpre_ecdh_set_param(struct hpre_ctx *ctx, struct ecdh *params)
{
struct device *dev = HPRE_DEV(ctx);
unsigned int sz, shift, curve_sz;
int ret;
ctx->key_sz = hpre_ecdh_supported_curve(ctx->curve_id);
if (!ctx->key_sz)
return -EINVAL;
curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
if (!curve_sz || params->key_size > curve_sz)
return -EINVAL;
sz = ctx->key_sz;
if (!ctx->ecdh.p) {
ctx->ecdh.p = dma_alloc_coherent(dev, sz << 3, &ctx->ecdh.dma_p,
GFP_KERNEL);
if (!ctx->ecdh.p)
return -ENOMEM;
}
shift = sz << 2;
ctx->ecdh.g = ctx->ecdh.p + shift;
ctx->ecdh.dma_g = ctx->ecdh.dma_p + shift;
ret = hpre_ecdh_fill_curve(ctx, params, curve_sz);
if (ret) {
dev_err(dev, "failed to fill curve_param, ret = %d!\n", ret);
dma_free_coherent(dev, sz << 3, ctx->ecdh.p, ctx->ecdh.dma_p);
ctx->ecdh.p = NULL;
return ret;
}
return 0;
}
static bool hpre_key_is_zero(char *key, unsigned short key_sz)
{
int i;
for (i = 0; i < key_sz; i++)
if (key[i])
return false;
return true;
}
static int hpre_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
unsigned int len)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
struct device *dev = HPRE_DEV(ctx);
unsigned int sz, sz_shift;
struct ecdh params;
int ret;
if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
dev_err(dev, "failed to decode ecdh key!\n");
return -EINVAL;
}
if (hpre_key_is_zero(params.key, params.key_size)) {
dev_err(dev, "Invalid hpre key!\n");
return -EINVAL;
}
hpre_ecc_clear_ctx(ctx, false, true);
ret = hpre_ecdh_set_param(ctx, &params);
if (ret < 0) {
dev_err(dev, "failed to set hpre param, ret = %d!\n", ret);
return ret;
}
sz = ctx->key_sz;
sz_shift = (sz << 1) + sz - params.key_size;
memcpy(ctx->ecdh.p + sz_shift, params.key, params.key_size);
return 0;
}
static void hpre_ecdh_hw_data_clr_all(struct hpre_ctx *ctx,
struct hpre_asym_request *req,
struct scatterlist *dst,
struct scatterlist *src)
{
struct device *dev = HPRE_DEV(ctx);
struct hpre_sqe *sqe = &req->req;
dma_addr_t dma;
dma = le64_to_cpu(sqe->in);
if (unlikely(!dma))
return;
if (src && req->src)
dma_free_coherent(dev, ctx->key_sz << 2, req->src, dma);
dma = le64_to_cpu(sqe->out);
if (unlikely(!dma))
return;
if (req->dst)
dma_free_coherent(dev, ctx->key_sz << 1, req->dst, dma);
if (dst)
dma_unmap_single(dev, dma, ctx->key_sz << 1, DMA_FROM_DEVICE);
}
static void hpre_ecdh_cb(struct hpre_ctx *ctx, void *resp)
{
unsigned int curve_sz = hpre_ecdh_get_curvesz(ctx->curve_id);
struct hpre_dfx *dfx = ctx->hpre->debug.dfx;
struct hpre_asym_request *req = NULL;
struct kpp_request *areq;
u64 overtime_thrhld;
char *p;
int ret;
ret = hpre_alg_res_post_hf(ctx, resp, (void **)&req);
areq = req->areq.ecdh;
areq->dst_len = ctx->key_sz << 1;
overtime_thrhld = atomic64_read(&dfx[HPRE_OVERTIME_THRHLD].value);
if (overtime_thrhld && hpre_is_bd_timeout(req, overtime_thrhld))
atomic64_inc(&dfx[HPRE_OVER_THRHLD_CNT].value);
p = sg_virt(areq->dst);
memmove(p, p + ctx->key_sz - curve_sz, curve_sz);
memmove(p + curve_sz, p + areq->dst_len - curve_sz, curve_sz);
hpre_ecdh_hw_data_clr_all(ctx, req, areq->dst, areq->src);
kpp_request_complete(areq, ret);
atomic64_inc(&dfx[HPRE_RECV_CNT].value);
}
static int hpre_ecdh_msg_request_set(struct hpre_ctx *ctx,
struct kpp_request *req)
{
struct hpre_asym_request *h_req;
struct hpre_sqe *msg;
int req_id;
void *tmp;
if (req->dst_len < ctx->key_sz << 1) {
req->dst_len = ctx->key_sz << 1;
return -EINVAL;
}
tmp = kpp_request_ctx(req);
h_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
h_req->cb = hpre_ecdh_cb;
h_req->areq.ecdh = req;
msg = &h_req->req;
memset(msg, 0, sizeof(*msg));
msg->key = cpu_to_le64(ctx->ecdh.dma_p);
msg->dw0 |= cpu_to_le32(0x1U << HPRE_SQE_DONE_SHIFT);
msg->task_len1 = (ctx->key_sz >> HPRE_BITS_2_BYTES_SHIFT) - 1;
h_req->ctx = ctx;
req_id = hpre_add_req_to_ctx(h_req);
if (req_id < 0)
return -EBUSY;
msg->tag = cpu_to_le16((u16)req_id);
return 0;
}
static int hpre_ecdh_src_data_init(struct hpre_asym_request *hpre_req,
struct scatterlist *data, unsigned int len)
{
struct hpre_sqe *msg = &hpre_req->req;
struct hpre_ctx *ctx = hpre_req->ctx;
struct device *dev = HPRE_DEV(ctx);
unsigned int tmpshift;
dma_addr_t dma = 0;
void *ptr;
int shift;
/* Src_data include gx and gy. */
shift = ctx->key_sz - (len >> 1);
if (unlikely(shift < 0))
return -EINVAL;
ptr = dma_alloc_coherent(dev, ctx->key_sz << 2, &dma, GFP_KERNEL);
if (unlikely(!ptr))
return -ENOMEM;
tmpshift = ctx->key_sz << 1;
scatterwalk_map_and_copy(ptr + tmpshift, data, 0, len, 0);
memcpy(ptr + shift, ptr + tmpshift, len >> 1);
memcpy(ptr + ctx->key_sz + shift, ptr + tmpshift + (len >> 1), len >> 1);
hpre_req->src = ptr;
msg->in = cpu_to_le64(dma);
return 0;
}
static int hpre_ecdh_dst_data_init(struct hpre_asym_request *hpre_req,
struct scatterlist *data, unsigned int len)
{
struct hpre_sqe *msg = &hpre_req->req;
struct hpre_ctx *ctx = hpre_req->ctx;
struct device *dev = HPRE_DEV(ctx);
dma_addr_t dma = 0;
if (unlikely(!data || !sg_is_last(data) || len != ctx->key_sz << 1)) {
dev_err(dev, "data or data length is illegal!\n");
return -EINVAL;
}
hpre_req->dst = NULL;
dma = dma_map_single(dev, sg_virt(data), len, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev, dma))) {
dev_err(dev, "dma map data err!\n");
return -ENOMEM;
}
msg->out = cpu_to_le64(dma);
return 0;
}
static int hpre_ecdh_compute_value(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
struct device *dev = HPRE_DEV(ctx);
void *tmp = kpp_request_ctx(req);
struct hpre_asym_request *hpre_req = PTR_ALIGN(tmp, HPRE_ALIGN_SZ);
struct hpre_sqe *msg = &hpre_req->req;
int ret;
ret = hpre_ecdh_msg_request_set(ctx, req);
if (unlikely(ret)) {
dev_err(dev, "failed to set ecdh request, ret = %d!\n", ret);
return ret;
}
if (req->src) {
ret = hpre_ecdh_src_data_init(hpre_req, req->src, req->src_len);
if (unlikely(ret)) {
dev_err(dev, "failed to init src data, ret = %d!\n", ret);
goto clear_all;
}
} else {
msg->in = cpu_to_le64(ctx->ecdh.dma_g);
}
ret = hpre_ecdh_dst_data_init(hpre_req, req->dst, req->dst_len);
if (unlikely(ret)) {
dev_err(dev, "failed to init dst data, ret = %d!\n", ret);
goto clear_all;
}
msg->dw0 = cpu_to_le32(le32_to_cpu(msg->dw0) | HPRE_ALG_ECC_MUL);
ret = hpre_send(ctx, msg);
if (likely(!ret))
return -EINPROGRESS;
clear_all:
hpre_rm_req_from_ctx(hpre_req);
hpre_ecdh_hw_data_clr_all(ctx, hpre_req, req->dst, req->src);
return ret;
}
static unsigned int hpre_ecdh_max_size(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
/* max size is the pub_key_size, include x and y */
return ctx->key_sz << 1;
}
static int hpre_ecdh_nist_p192_init_tfm(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
ctx->curve_id = ECC_CURVE_NIST_P192;
return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
}
static int hpre_ecdh_nist_p256_init_tfm(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
ctx->curve_id = ECC_CURVE_NIST_P256;
return hpre_ctx_init(ctx, HPRE_V3_ECC_ALG_TYPE);
}
static void hpre_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
struct hpre_ctx *ctx = kpp_tfm_ctx(tfm);
hpre_ecc_clear_ctx(ctx, true, true);
}
static struct akcipher_alg rsa = {
.sign = hpre_rsa_dec,
.verify = hpre_rsa_enc,
@ -1154,6 +1588,63 @@ static struct kpp_alg dh = {
};
#endif
static struct kpp_alg ecdh_nist_p192 = {
.set_secret = hpre_ecdh_set_secret,
.generate_public_key = hpre_ecdh_compute_value,
.compute_shared_secret = hpre_ecdh_compute_value,
.max_size = hpre_ecdh_max_size,
.init = hpre_ecdh_nist_p192_init_tfm,
.exit = hpre_ecdh_exit_tfm,
.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
.base = {
.cra_ctxsize = sizeof(struct hpre_ctx),
.cra_priority = HPRE_CRYPTO_ALG_PRI,
.cra_name = "ecdh-nist-p192",
.cra_driver_name = "hpre-ecdh",
.cra_module = THIS_MODULE,
},
};
static struct kpp_alg ecdh_nist_p256 = {
.set_secret = hpre_ecdh_set_secret,
.generate_public_key = hpre_ecdh_compute_value,
.compute_shared_secret = hpre_ecdh_compute_value,
.max_size = hpre_ecdh_max_size,
.init = hpre_ecdh_nist_p256_init_tfm,
.exit = hpre_ecdh_exit_tfm,
.reqsize = sizeof(struct hpre_asym_request) + HPRE_ALIGN_SZ,
.base = {
.cra_ctxsize = sizeof(struct hpre_ctx),
.cra_priority = HPRE_CRYPTO_ALG_PRI,
.cra_name = "ecdh-nist-p256",
.cra_driver_name = "hpre-ecdh",
.cra_module = THIS_MODULE,
},
};
static int hpre_register_ecdh(void)
{
int ret;
ret = crypto_register_kpp(&ecdh_nist_p192);
if (ret)
return ret;
ret = crypto_register_kpp(&ecdh_nist_p256);
if (ret) {
crypto_unregister_kpp(&ecdh_nist_p192);
return ret;
}
return 0;
}
static void hpre_unregister_ecdh(void)
{
crypto_unregister_kpp(&ecdh_nist_p256);
crypto_unregister_kpp(&ecdh_nist_p192);
}
int hpre_algs_register(struct hisi_qm *qm)
{
int ret;
@ -1164,17 +1655,33 @@ int hpre_algs_register(struct hisi_qm *qm)
return ret;
#ifdef CONFIG_CRYPTO_DH
ret = crypto_register_kpp(&dh);
if (ret)
if (ret) {
crypto_unregister_akcipher(&rsa);
return ret;
}
#endif
return ret;
if (qm->ver >= QM_HW_V3) {
ret = hpre_register_ecdh();
if (ret) {
#ifdef CONFIG_CRYPTO_DH
crypto_unregister_kpp(&dh);
#endif
crypto_unregister_akcipher(&rsa);
return ret;
}
}
return 0;
}
void hpre_algs_unregister(struct hisi_qm *qm)
{
crypto_unregister_akcipher(&rsa);
if (qm->ver >= QM_HW_V3)
hpre_unregister_ecdh();
#ifdef CONFIG_CRYPTO_DH
crypto_unregister_kpp(&dh);
#endif
crypto_unregister_akcipher(&rsa);
}

Просмотреть файл

@ -1082,4 +1082,5 @@ module_exit(hpre_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Zaibo Xu <xuzaibo@huawei.com>");
MODULE_AUTHOR("Meng Yu <yumeng18@huawei.com>");
MODULE_DESCRIPTION("Driver for HiSilicon HPRE accelerator");