Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6

* master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6:
  [SPARC64]: Use alloc_pci_dev() in PCI bus probes.
  [SPARC64]: Bump PROMINTR_MAX to 32.
  [SPARC64]: Fix recursion in PROM tree building.
  [SERIAL] sunzilog: Interrupt enable before ISR handler installed
  [SPARC64] PCI: Consolidate PCI access code into pci_common.c
This commit is contained in:
Linus Torvalds 2007-05-10 13:32:05 -07:00
Родитель b526ca438b 26e6385f14
Коммит 0ab598099c
12 изменённых файлов: 349 добавлений и 781 удалений

Просмотреть файл

@ -377,7 +377,7 @@ struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
const char *type; const char *type;
u32 class; u32 class;
dev = kzalloc(sizeof(struct pci_dev), GFP_KERNEL); dev = alloc_pci_dev();
if (!dev) if (!dev)
return NULL; return NULL;

Просмотреть файл

@ -14,6 +14,200 @@
#include <asm/oplib.h> #include <asm/oplib.h>
#include "pci_impl.h" #include "pci_impl.h"
#include "pci_sun4v.h"
static int config_out_of_range(struct pci_pbm_info *pbm,
unsigned long bus,
unsigned long devfn,
unsigned long reg)
{
if (bus < pbm->pci_first_busno ||
bus > pbm->pci_last_busno)
return 1;
return 0;
}
static void *sun4u_config_mkaddr(struct pci_pbm_info *pbm,
unsigned long bus,
unsigned long devfn,
unsigned long reg)
{
unsigned long rbits = pbm->config_space_reg_bits;
if (config_out_of_range(pbm, bus, devfn, reg))
return NULL;
reg = (reg & ((1 << rbits) - 1));
devfn <<= rbits;
bus <<= rbits + 8;
return (void *) (pbm->config_space | bus | devfn | reg);
}
static int sun4u_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus_dev, devfn, where,
size, value);
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = sun4u_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *)addr, &tmp8);
*value = (u32) tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *)addr, &tmp16);
*value = (u32) tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sun4u_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus_dev, devfn, where,
size, value);
addr = sun4u_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *)addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *)addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops sun4u_pci_ops = {
.read = sun4u_read_pci_cfg,
.write = sun4u_write_pci_cfg,
};
static int sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus_dev, devfn, where,
size, value);
if (config_out_of_range(pbm, bus, devfn, where)) {
ret = ~0UL;
} else {
ret = pci_sun4v_config_get(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size);
}
switch (size) {
case 1:
*value = ret & 0xff;
break;
case 2:
*value = ret & 0xffff;
break;
case 4:
*value = ret & 0xffffffff;
break;
};
return PCIBIOS_SUCCESSFUL;
}
static int sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus_dev, devfn, where,
size, value);
if (config_out_of_range(pbm, bus, devfn, where)) {
/* Do nothing. */
} else {
ret = pci_sun4v_config_put(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value);
}
return PCIBIOS_SUCCESSFUL;
}
struct pci_ops sun4v_pci_ops = {
.read = sun4v_read_pci_cfg,
.write = sun4v_write_pci_cfg,
};
void pci_get_pbm_props(struct pci_pbm_info *pbm) void pci_get_pbm_props(struct pci_pbm_info *pbm)
{ {

Просмотреть файл

@ -27,138 +27,6 @@
"i" (ASI_PHYS_BYPASS_EC_E) \ "i" (ASI_PHYS_BYPASS_EC_E) \
: "memory") : "memory")
/* Fire config space address format is nearly identical to
* that of SCHIZO and PSYCHO, except that in order to accomodate
* PCI-E extended config space the encoding can handle 12 bits
* of register address:
*
* 32 28 27 20 19 15 14 12 11 2 1 0
* -------------------------------------------------
* |0 0 0 0 0| bus | device | function | reg | 0 0 |
* -------------------------------------------------
*/
#define FIRE_CONFIG_BASE(PBM) ((PBM)->config_space)
#define FIRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
(((unsigned long)(BUS) << 20) | \
((unsigned long)(DEVFN) << 12) | \
((unsigned long)(REG)))
static void *fire_pci_config_mkaddr(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned int devfn,
int where)
{
if (!pbm)
return NULL;
return (void *)
(FIRE_CONFIG_BASE(pbm) |
FIRE_CONFIG_ENCODE(bus, devfn, where));
}
/* FIRE PCI configuration space accessors. */
static int fire_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus_dev, devfn, where,
size, value);
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = fire_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *)addr, &tmp8);
*value = tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *)addr, &tmp16);
*value = tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int fire_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus_dev, devfn, where,
size, value);
addr = fire_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *)addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *)addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops pci_fire_ops = {
.read = fire_read_pci_cfg,
.write = fire_write_pci_cfg,
};
static void pci_fire_scan_bus(struct pci_pbm_info *pbm) static void pci_fire_scan_bus(struct pci_pbm_info *pbm)
{ {
pbm->pci_bus = pci_scan_one_pbm(pbm); pbm->pci_bus = pci_scan_one_pbm(pbm);
@ -314,7 +182,8 @@ static void pci_fire_pbm_init(struct pci_controller_info *p,
pci_pbm_root = pbm; pci_pbm_root = pbm;
pbm->scan_bus = pci_fire_scan_bus; pbm->scan_bus = pci_fire_scan_bus;
pbm->pci_ops = &pci_fire_ops; pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 12;
pbm->index = pci_num_pbms++; pbm->index = pci_num_pbms++;

Просмотреть файл

@ -77,6 +77,9 @@ struct pci_pbm_info {
/* Base of PCI Config space, can be per-PBM or shared. */ /* Base of PCI Config space, can be per-PBM or shared. */
unsigned long config_space; unsigned long config_space;
/* This will be 12 on PCI-E controllers, 8 elsewhere. */
unsigned long config_space_reg_bits;
/* State of 66MHz capabilities on this PBM. */ /* State of 66MHz capabilities on this PBM. */
int is_66mhz_capable; int is_66mhz_capable;
int all_devs_66mhz; int all_devs_66mhz;
@ -156,4 +159,7 @@ extern void pci_config_write8(u8 *addr, u8 val);
extern void pci_config_write16(u16 *addr, u16 val); extern void pci_config_write16(u16 *addr, u16 val);
extern void pci_config_write32(u32 *addr, u32 val); extern void pci_config_write32(u32 *addr, u32 val);
extern struct pci_ops sun4u_pci_ops;
extern struct pci_ops sun4v_pci_ops;
#endif /* !(PCI_IMPL_H) */ #endif /* !(PCI_IMPL_H) */

Просмотреть файл

@ -94,122 +94,6 @@ static void *psycho_pci_config_mkaddr(struct pci_pbm_info *pbm,
PSYCHO_CONFIG_ENCODE(bus, devfn, where)); PSYCHO_CONFIG_ENCODE(bus, devfn, where));
} }
static int psycho_out_of_range(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned char devfn)
{
return ((bus == pbm->pci_first_busno) &&
PCI_SLOT(devfn) > 8);
}
/* PSYCHO PCI configuration space accessors. */
static int psycho_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus_dev, devfn, where,
size, value);
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = psycho_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (psycho_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *)addr, &tmp8);
*value = (u32) tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *)addr, &tmp16);
*value = (u32) tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int psycho_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus_dev, devfn, where,
size, value);
addr = psycho_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (psycho_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *)addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *)addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops psycho_ops = {
.read = psycho_read_pci_cfg,
.write = psycho_write_pci_cfg,
};
/* PSYCHO error handling support. */ /* PSYCHO error handling support. */
enum psycho_error_type { enum psycho_error_type {
UE_ERR, CE_ERR, PCI_ERR UE_ERR, CE_ERR, PCI_ERR
@ -1089,7 +973,8 @@ static void psycho_pbm_init(struct pci_controller_info *p,
pci_pbm_root = pbm; pci_pbm_root = pbm;
pbm->scan_bus = psycho_scan_bus; pbm->scan_bus = psycho_scan_bus;
pbm->pci_ops = &psycho_ops; pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 8;
pbm->index = pci_num_pbms++; pbm->index = pci_num_pbms++;

Просмотреть файл

@ -205,294 +205,9 @@
#define SABRE_MEMSPACE 0x100000000UL #define SABRE_MEMSPACE 0x100000000UL
#define SABRE_MEMSPACE_SIZE 0x07fffffffUL #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
/* UltraSparc-IIi Programmer's Manual, page 325, PCI
* configuration space address format:
*
* 32 24 23 16 15 11 10 8 7 2 1 0
* ---------------------------------------------------------
* |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
* ---------------------------------------------------------
*/
#define SABRE_CONFIG_BASE(PBM) \
((PBM)->config_space | (1UL << 24))
#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
(((unsigned long)(BUS) << 16) | \
((unsigned long)(DEVFN) << 8) | \
((unsigned long)(REG)))
static int hummingbird_p; static int hummingbird_p;
static struct pci_bus *sabre_root_bus; static struct pci_bus *sabre_root_bus;
static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned int devfn,
int where)
{
if (!pbm)
return NULL;
return (void *)
(SABRE_CONFIG_BASE(pbm) |
SABRE_CONFIG_ENCODE(bus, devfn, where));
}
static int sabre_out_of_range(unsigned char devfn)
{
if (hummingbird_p)
return 0;
return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
(PCI_SLOT(devfn) > 1));
}
static int __sabre_out_of_range(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned char devfn)
{
if (hummingbird_p)
return 0;
return ((pbm->parent == 0) ||
((pbm == &pbm->parent->pbm_A) &&
(bus == pbm->pci_first_busno) &&
PCI_SLOT(devfn) > 8));
}
static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (__sabre_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *) addr, &tmp8);
*value = tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *) addr, &tmp16);
*value = tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus->sysdata;
if (bus == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus, devfn, where,
size, value);
if (!bus->number && sabre_out_of_range(devfn)) {
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
return PCIBIOS_SUCCESSFUL;
}
if (bus->number || PCI_SLOT(devfn))
return __sabre_read_pci_cfg(bus, devfn, where, size, value);
/* When accessing PCI config space of the PCI controller itself (bus
* 0, device slot 0, function 0) there are restrictions. Each
* register must be accessed as it's natural size. Thus, for example
* the Vendor ID must be accessed as a 16-bit quantity.
*/
switch (size) {
case 1:
if (where < 8) {
u32 tmp32;
u16 tmp16;
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
tmp16 = (u16) tmp32;
if (where & 1)
*value = tmp16 >> 8;
else
*value = tmp16 & 0xff;
} else
return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
break;
case 2:
if (where < 8)
return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
else {
u32 tmp32;
u8 tmp8;
__sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
tmp8 = (u8) tmp32;
*value = tmp8;
__sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
tmp8 = (u8) tmp32;
*value |= tmp8 << 8;
}
break;
case 4: {
u32 tmp32;
u16 tmp16;
sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
tmp16 = (u16) tmp32;
*value = tmp16;
sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
tmp16 = (u16) tmp32;
*value |= tmp16 << 16;
break;
}
}
return PCIBIOS_SUCCESSFUL;
}
static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (__sabre_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *) addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *) addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus->sysdata;
if (bus == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus, devfn, where,
size, value);
if (bus->number)
return __sabre_write_pci_cfg(bus, devfn, where, size, value);
if (sabre_out_of_range(devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
if (where < 8) {
u32 tmp32;
u16 tmp16;
__sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
tmp16 = (u16) tmp32;
if (where & 1) {
value &= 0x00ff;
value |= tmp16 << 8;
} else {
value &= 0xff00;
value |= tmp16;
}
tmp32 = (u32) tmp16;
return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
} else
return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
break;
case 2:
if (where < 8)
return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
else {
__sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
__sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
}
break;
case 4:
sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops sabre_ops = {
.read = sabre_read_pci_cfg,
.write = sabre_write_pci_cfg,
};
/* SABRE error handling support. */ /* SABRE error handling support. */
static void sabre_check_iommu_error(struct pci_pbm_info *pbm, static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
unsigned long afsr, unsigned long afsr,
@ -1010,7 +725,8 @@ static void sabre_pbm_init(struct pci_controller_info *p, struct pci_pbm_info *p
printk("%s: SABRE PCI Bus Module\n", pbm->name); printk("%s: SABRE PCI Bus Module\n", pbm->name);
pbm->scan_bus = sabre_scan_bus; pbm->scan_bus = sabre_scan_bus;
pbm->pci_ops = &sabre_ops; pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 8;
pbm->index = pci_num_pbms++; pbm->index = pci_num_pbms++;

Просмотреть файл

@ -104,125 +104,6 @@ static void *schizo_pci_config_mkaddr(struct pci_pbm_info *pbm,
SCHIZO_CONFIG_ENCODE(bus, devfn, where)); SCHIZO_CONFIG_ENCODE(bus, devfn, where));
} }
/* Just make sure the bus number is in range. */
static int schizo_out_of_range(struct pci_pbm_info *pbm,
unsigned char bus,
unsigned char devfn)
{
if (bus < pbm->pci_first_busno ||
bus > pbm->pci_last_busno)
return 1;
return 0;
}
/* SCHIZO PCI configuration space accessors. */
static int schizo_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
u16 tmp16;
u8 tmp8;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus_dev, devfn, where,
size, value);
switch (size) {
case 1:
*value = 0xff;
break;
case 2:
*value = 0xffff;
break;
case 4:
*value = 0xffffffff;
break;
}
addr = schizo_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (schizo_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_read8((u8 *)addr, &tmp8);
*value = tmp8;
break;
case 2:
if (where & 0x01) {
printk("pci_read_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read16((u16 *)addr, &tmp16);
*value = tmp16;
break;
case 4:
if (where & 0x03) {
printk("pci_read_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_read32(addr, value);
break;
}
return PCIBIOS_SUCCESSFUL;
}
static int schizo_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
unsigned char bus = bus_dev->number;
u32 *addr;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus_dev, devfn, where,
size, value);
addr = schizo_pci_config_mkaddr(pbm, bus, devfn, where);
if (!addr)
return PCIBIOS_SUCCESSFUL;
if (schizo_out_of_range(pbm, bus, devfn))
return PCIBIOS_SUCCESSFUL;
switch (size) {
case 1:
pci_config_write8((u8 *)addr, value);
break;
case 2:
if (where & 0x01) {
printk("pci_write_config_word: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write16((u16 *)addr, value);
break;
case 4:
if (where & 0x03) {
printk("pci_write_config_dword: misaligned reg [%x]\n",
where);
return PCIBIOS_SUCCESSFUL;
}
pci_config_write32(addr, value);
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops schizo_ops = {
.read = schizo_read_pci_cfg,
.write = schizo_write_pci_cfg,
};
/* SCHIZO error handling support. */ /* SCHIZO error handling support. */
enum schizo_error_type { enum schizo_error_type {
UE_ERR, CE_ERR, PCI_ERR, SAFARI_ERR UE_ERR, CE_ERR, PCI_ERR, SAFARI_ERR
@ -1494,7 +1375,8 @@ static void schizo_pbm_init(struct pci_controller_info *p,
pci_pbm_root = pbm; pci_pbm_root = pbm;
pbm->scan_bus = schizo_scan_bus; pbm->scan_bus = schizo_scan_bus;
pbm->pci_ops = &schizo_ops; pbm->pci_ops = &sun4u_pci_ops;
pbm->config_space_reg_bits = 8;
pbm->index = pci_num_pbms++; pbm->index = pci_num_pbms++;

Просмотреть файл

@ -593,89 +593,6 @@ const struct pci_iommu_ops pci_sun4v_iommu_ops = {
.dma_sync_sg_for_cpu = pci_4v_dma_sync_sg_for_cpu, .dma_sync_sg_for_cpu = pci_4v_dma_sync_sg_for_cpu,
}; };
static inline int pci_sun4v_out_of_range(struct pci_pbm_info *pbm, unsigned int bus, unsigned int device, unsigned int func)
{
if (bus < pbm->pci_first_busno ||
bus > pbm->pci_last_busno)
return 1;
return 0;
}
static int pci_sun4v_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 *value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_read_pci_cfg(bus_dev, devfn, where,
size, value);
if (pci_sun4v_out_of_range(pbm, bus, device, func)) {
ret = ~0UL;
} else {
ret = pci_sun4v_config_get(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size);
#if 0
printk("rcfg: [%x:%x:%x:%d]=[%lx]\n",
devhandle, HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, ret);
#endif
}
switch (size) {
case 1:
*value = ret & 0xff;
break;
case 2:
*value = ret & 0xffff;
break;
case 4:
*value = ret & 0xffffffff;
break;
};
return PCIBIOS_SUCCESSFUL;
}
static int pci_sun4v_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
int where, int size, u32 value)
{
struct pci_pbm_info *pbm = bus_dev->sysdata;
u32 devhandle = pbm->devhandle;
unsigned int bus = bus_dev->number;
unsigned int device = PCI_SLOT(devfn);
unsigned int func = PCI_FUNC(devfn);
unsigned long ret;
if (bus_dev == pbm->pci_bus && devfn == 0x00)
return pci_host_bridge_write_pci_cfg(bus_dev, devfn, where,
size, value);
if (pci_sun4v_out_of_range(pbm, bus, device, func)) {
/* Do nothing. */
} else {
ret = pci_sun4v_config_put(devhandle,
HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value);
#if 0
printk("wcfg: [%x:%x:%x:%d] v[%x] == [%lx]\n",
devhandle, HV_PCI_DEVICE_BUILD(bus, device, func),
where, size, value, ret);
#endif
}
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops pci_sun4v_ops = {
.read = pci_sun4v_read_pci_cfg,
.write = pci_sun4v_write_pci_cfg,
};
static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm) static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
{ {
struct property *prop; struct property *prop;
@ -1238,7 +1155,8 @@ static void pci_sun4v_pbm_init(struct pci_controller_info *p, struct device_node
pci_pbm_root = pbm; pci_pbm_root = pbm;
pbm->scan_bus = pci_sun4v_scan_bus; pbm->scan_bus = pci_sun4v_scan_bus;
pbm->pci_ops = &pci_sun4v_ops; pbm->pci_ops = &sun4v_pci_ops;
pbm->config_space_reg_bits = 12;
pbm->index = pci_num_pbms++; pbm->index = pci_num_pbms++;

Просмотреть файл

@ -1636,10 +1636,21 @@ static struct device_node * __init create_node(phandle node, struct device_node
static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp) static struct device_node * __init build_tree(struct device_node *parent, phandle node, struct device_node ***nextp)
{ {
struct device_node *ret = NULL, *prev_sibling = NULL;
struct device_node *dp; struct device_node *dp;
dp = create_node(node, parent); while (1) {
if (dp) { dp = create_node(node, parent);
if (!dp)
break;
if (prev_sibling)
prev_sibling->sibling = dp;
if (!ret)
ret = dp;
prev_sibling = dp;
*(*nextp) = dp; *(*nextp) = dp;
*nextp = &dp->allnext; *nextp = &dp->allnext;
@ -1648,10 +1659,10 @@ static struct device_node * __init build_tree(struct device_node *parent, phandl
dp->child = build_tree(dp, prom_getchild(node), nextp); dp->child = build_tree(dp, prom_getchild(node), nextp);
dp->sibling = build_tree(parent, prom_getsibling(node), nextp); node = prom_getsibling(node);
} }
return dp; return ret;
} }
void __init prom_build_devicetree(void) void __init prom_build_devicetree(void)

Просмотреть файл

@ -92,6 +92,8 @@ struct uart_sunzilog_port {
#define SUNZILOG_FLAG_REGS_HELD 0x00000040 #define SUNZILOG_FLAG_REGS_HELD 0x00000040
#define SUNZILOG_FLAG_TX_STOPPED 0x00000080 #define SUNZILOG_FLAG_TX_STOPPED 0x00000080
#define SUNZILOG_FLAG_TX_ACTIVE 0x00000100 #define SUNZILOG_FLAG_TX_ACTIVE 0x00000100
#define SUNZILOG_FLAG_ESCC 0x00000200
#define SUNZILOG_FLAG_ISR_HANDLER 0x00000400
unsigned int cflag; unsigned int cflag;
@ -174,9 +176,11 @@ static void sunzilog_clear_fifo(struct zilog_channel __iomem *channel)
/* This function must only be called when the TX is not busy. The UART /* This function must only be called when the TX is not busy. The UART
* port lock must be held and local interrupts disabled. * port lock must be held and local interrupts disabled.
*/ */
static void __load_zsregs(struct zilog_channel __iomem *channel, unsigned char *regs) static int __load_zsregs(struct zilog_channel __iomem *channel, unsigned char *regs)
{ {
int i; int i;
int escc;
unsigned char r15;
/* Let pending transmits finish. */ /* Let pending transmits finish. */
for (i = 0; i < 1000; i++) { for (i = 0; i < 1000; i++) {
@ -229,11 +233,25 @@ static void __load_zsregs(struct zilog_channel __iomem *channel, unsigned char *
write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R14, regs[R14]);
/* External status interrupt control. */ /* External status interrupt control. */
write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R15, (regs[R15] | WR7pEN) & ~FIFOEN);
/* ESCC Extension Register */
r15 = read_zsreg(channel, R15);
if (r15 & 0x01) {
write_zsreg(channel, R7, regs[R7p]);
/* External status interrupt and FIFO control. */
write_zsreg(channel, R15, regs[R15] & ~WR7pEN);
escc = 1;
} else {
/* Clear FIFO bit case it is an issue */
regs[R15] &= ~FIFOEN;
escc = 0;
}
/* Reset external status interrupts. */ /* Reset external status interrupts. */
write_zsreg(channel, R0, RES_EXT_INT); write_zsreg(channel, R0, RES_EXT_INT); /* First Latch */
write_zsreg(channel, R0, RES_EXT_INT); write_zsreg(channel, R0, RES_EXT_INT); /* Second Latch */
/* Rewrite R3/R5, this time without enables masked. */ /* Rewrite R3/R5, this time without enables masked. */
write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R3, regs[R3]);
@ -241,6 +259,8 @@ static void __load_zsregs(struct zilog_channel __iomem *channel, unsigned char *
/* Rewrite R1, this time without IRQ enabled masked. */ /* Rewrite R1, this time without IRQ enabled masked. */
write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R1, regs[R1]);
return escc;
} }
/* Reprogram the Zilog channel HW registers with the copies found in the /* Reprogram the Zilog channel HW registers with the copies found in the
@ -731,7 +751,7 @@ static void sunzilog_enable_ms(struct uart_port *port)
up->curregs[R15] = new_reg; up->curregs[R15] = new_reg;
/* NOTE: Not subject to 'transmitter active' rule. */ /* NOTE: Not subject to 'transmitter active' rule. */
write_zsreg(channel, R15, up->curregs[R15]); write_zsreg(channel, R15, up->curregs[R15] & ~WR7pEN);
} }
} }
@ -861,44 +881,44 @@ sunzilog_convert_to_zs(struct uart_sunzilog_port *up, unsigned int cflag,
up->curregs[R14] = BRSRC | BRENAB; up->curregs[R14] = BRSRC | BRENAB;
/* Character size, stop bits, and parity. */ /* Character size, stop bits, and parity. */
up->curregs[3] &= ~RxN_MASK; up->curregs[R3] &= ~RxN_MASK;
up->curregs[5] &= ~TxN_MASK; up->curregs[R5] &= ~TxN_MASK;
switch (cflag & CSIZE) { switch (cflag & CSIZE) {
case CS5: case CS5:
up->curregs[3] |= Rx5; up->curregs[R3] |= Rx5;
up->curregs[5] |= Tx5; up->curregs[R5] |= Tx5;
up->parity_mask = 0x1f; up->parity_mask = 0x1f;
break; break;
case CS6: case CS6:
up->curregs[3] |= Rx6; up->curregs[R3] |= Rx6;
up->curregs[5] |= Tx6; up->curregs[R5] |= Tx6;
up->parity_mask = 0x3f; up->parity_mask = 0x3f;
break; break;
case CS7: case CS7:
up->curregs[3] |= Rx7; up->curregs[R3] |= Rx7;
up->curregs[5] |= Tx7; up->curregs[R5] |= Tx7;
up->parity_mask = 0x7f; up->parity_mask = 0x7f;
break; break;
case CS8: case CS8:
default: default:
up->curregs[3] |= Rx8; up->curregs[R3] |= Rx8;
up->curregs[5] |= Tx8; up->curregs[R5] |= Tx8;
up->parity_mask = 0xff; up->parity_mask = 0xff;
break; break;
}; };
up->curregs[4] &= ~0x0c; up->curregs[R4] &= ~0x0c;
if (cflag & CSTOPB) if (cflag & CSTOPB)
up->curregs[4] |= SB2; up->curregs[R4] |= SB2;
else else
up->curregs[4] |= SB1; up->curregs[R4] |= SB1;
if (cflag & PARENB) if (cflag & PARENB)
up->curregs[4] |= PAR_ENAB; up->curregs[R4] |= PAR_ENAB;
else else
up->curregs[4] &= ~PAR_ENAB; up->curregs[R4] &= ~PAR_ENAB;
if (!(cflag & PARODD)) if (!(cflag & PARODD))
up->curregs[4] |= PAR_EVEN; up->curregs[R4] |= PAR_EVEN;
else else
up->curregs[4] &= ~PAR_EVEN; up->curregs[R4] &= ~PAR_EVEN;
up->port.read_status_mask = Rx_OVR; up->port.read_status_mask = Rx_OVR;
if (iflag & INPCK) if (iflag & INPCK)
@ -952,7 +972,9 @@ sunzilog_set_termios(struct uart_port *port, struct ktermios *termios,
static const char *sunzilog_type(struct uart_port *port) static const char *sunzilog_type(struct uart_port *port)
{ {
return "zs"; struct uart_sunzilog_port *up = UART_ZILOG(port);
return (up->flags & SUNZILOG_FLAG_ESCC) ? "zs (ESCC)" : "zs";
} }
/* We do not request/release mappings of the registers here, this /* We do not request/release mappings of the registers here, this
@ -1170,7 +1192,7 @@ static int __init sunzilog_console_setup(struct console *con, char *options)
spin_lock_irqsave(&up->port.lock, flags); spin_lock_irqsave(&up->port.lock, flags);
up->curregs[R15] = BRKIE; up->curregs[R15] |= BRKIE;
sunzilog_convert_to_zs(up, con->cflag, 0, brg); sunzilog_convert_to_zs(up, con->cflag, 0, brg);
sunzilog_set_mctrl(&up->port, TIOCM_DTR | TIOCM_RTS); sunzilog_set_mctrl(&up->port, TIOCM_DTR | TIOCM_RTS);
@ -1229,7 +1251,7 @@ static void __init sunzilog_init_kbdms(struct uart_sunzilog_port *up, int channe
baud = 4800; baud = 4800;
} }
up->curregs[R15] = BRKIE; up->curregs[R15] |= BRKIE;
brg = BPS_TO_BRG(baud, ZS_CLOCK / ZS_CLOCK_DIVISOR); brg = BPS_TO_BRG(baud, ZS_CLOCK / ZS_CLOCK_DIVISOR);
sunzilog_convert_to_zs(up, up->cflag, 0, brg); sunzilog_convert_to_zs(up, up->cflag, 0, brg);
sunzilog_set_mctrl(&up->port, TIOCM_DTR | TIOCM_RTS); sunzilog_set_mctrl(&up->port, TIOCM_DTR | TIOCM_RTS);
@ -1283,8 +1305,18 @@ static void __devinit sunzilog_init_hw(struct uart_sunzilog_port *up)
if (up->flags & (SUNZILOG_FLAG_CONS_KEYB | if (up->flags & (SUNZILOG_FLAG_CONS_KEYB |
SUNZILOG_FLAG_CONS_MOUSE)) { SUNZILOG_FLAG_CONS_MOUSE)) {
up->curregs[R1] = EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB;
up->curregs[R4] = PAR_EVEN | X16CLK | SB1;
up->curregs[R3] = RxENAB | Rx8;
up->curregs[R5] = TxENAB | Tx8;
up->curregs[R6] = 0x00; /* SDLC Address */
up->curregs[R7] = 0x7E; /* SDLC Flag */
up->curregs[R9] = NV;
up->curregs[R7p] = 0x00;
sunzilog_init_kbdms(up, up->port.line); sunzilog_init_kbdms(up, up->port.line);
up->curregs[R9] |= (NV | MIE); /* Only enable interrupts if an ISR handler available */
if (up->flags & SUNZILOG_FLAG_ISR_HANDLER)
up->curregs[R9] |= MIE;
write_zsreg(channel, R9, up->curregs[R9]); write_zsreg(channel, R9, up->curregs[R9]);
} else { } else {
/* Normal serial TTY. */ /* Normal serial TTY. */
@ -1293,7 +1325,9 @@ static void __devinit sunzilog_init_hw(struct uart_sunzilog_port *up)
up->curregs[R4] = PAR_EVEN | X16CLK | SB1; up->curregs[R4] = PAR_EVEN | X16CLK | SB1;
up->curregs[R3] = RxENAB | Rx8; up->curregs[R3] = RxENAB | Rx8;
up->curregs[R5] = TxENAB | Tx8; up->curregs[R5] = TxENAB | Tx8;
up->curregs[R9] = NV | MIE; up->curregs[R6] = 0x00; /* SDLC Address */
up->curregs[R7] = 0x7E; /* SDLC Flag */
up->curregs[R9] = NV;
up->curregs[R10] = NRZ; up->curregs[R10] = NRZ;
up->curregs[R11] = TCBR | RCBR; up->curregs[R11] = TCBR | RCBR;
baud = 9600; baud = 9600;
@ -1301,7 +1335,14 @@ static void __devinit sunzilog_init_hw(struct uart_sunzilog_port *up)
up->curregs[R12] = (brg & 0xff); up->curregs[R12] = (brg & 0xff);
up->curregs[R13] = (brg >> 8) & 0xff; up->curregs[R13] = (brg >> 8) & 0xff;
up->curregs[R14] = BRSRC | BRENAB; up->curregs[R14] = BRSRC | BRENAB;
__load_zsregs(channel, up->curregs); up->curregs[R15] = FIFOEN; /* Use FIFO if on ESCC */
up->curregs[R7p] = TxFIFO_LVL | RxFIFO_LVL;
if (__load_zsregs(channel, up->curregs)) {
up->flags |= SUNZILOG_FLAG_ESCC;
}
/* Only enable interrupts if an ISR handler available */
if (up->flags & SUNZILOG_FLAG_ISR_HANDLER)
up->curregs[R9] |= MIE;
write_zsreg(channel, R9, up->curregs[R9]); write_zsreg(channel, R9, up->curregs[R9]);
} }
@ -1390,12 +1431,14 @@ static int __devinit zs_probe(struct of_device *op, const struct of_device_id *m
return err; return err;
} }
} else { } else {
printk(KERN_INFO "%s: Keyboard at MMIO %lx (irq = %d) " printk(KERN_INFO "%s: Keyboard at MMIO 0x%lx (irq = %d) "
"is a zs\n", "is a %s\n",
op->dev.bus_id, up[0].port.mapbase, op->irqs[0]); op->dev.bus_id, up[0].port.mapbase, op->irqs[0],
printk(KERN_INFO "%s: Mouse at MMIO %lx (irq = %d) " sunzilog_type (&up[0].port));
"is a zs\n", printk(KERN_INFO "%s: Mouse at MMIO 0x%lx (irq = %d) "
op->dev.bus_id, up[1].port.mapbase, op->irqs[0]); "is a %s\n",
op->dev.bus_id, up[1].port.mapbase, op->irqs[0],
sunzilog_type (&up[1].port));
} }
dev_set_drvdata(&op->dev, &up[0]); dev_set_drvdata(&op->dev, &up[0]);
@ -1487,10 +1530,23 @@ static int __init sunzilog_init(void)
goto out_unregister_uart; goto out_unregister_uart;
if (zilog_irq != -1) { if (zilog_irq != -1) {
struct uart_sunzilog_port *up = sunzilog_irq_chain;
err = request_irq(zilog_irq, sunzilog_interrupt, IRQF_SHARED, err = request_irq(zilog_irq, sunzilog_interrupt, IRQF_SHARED,
"zs", sunzilog_irq_chain); "zs", sunzilog_irq_chain);
if (err) if (err)
goto out_unregister_driver; goto out_unregister_driver;
/* Enable Interrupts */
while (up) {
struct zilog_channel __iomem *channel;
/* printk (KERN_INFO "Enable IRQ for ZILOG Hardware %p\n", up); */
channel = ZILOG_CHANNEL_FROM_PORT(&up->port);
up->flags |= SUNZILOG_FLAG_ISR_HANDLER;
up->curregs[R9] |= MIE;
write_zsreg(channel, R9, up->curregs[R9]);
up = up->next;
}
} }
out: out:
@ -1515,6 +1571,20 @@ static void __exit sunzilog_exit(void)
of_unregister_driver(&zs_driver); of_unregister_driver(&zs_driver);
if (zilog_irq != -1) { if (zilog_irq != -1) {
struct uart_sunzilog_port *up = sunzilog_irq_chain;
/* Disable Interrupts */
while (up) {
struct zilog_channel __iomem *channel;
/* printk (KERN_INFO "Disable IRQ for ZILOG Hardware %p\n", up); */
channel = ZILOG_CHANNEL_FROM_PORT(&up->port);
up->flags &= ~SUNZILOG_FLAG_ISR_HANDLER;
up->curregs[R9] &= ~MIE;
write_zsreg(channel, R9, up->curregs[R9]);
up = up->next;
}
free_irq(zilog_irq, sunzilog_irq_chain); free_irq(zilog_irq, sunzilog_irq_chain);
zilog_irq = -1; zilog_irq = -1;
} }

Просмотреть файл

@ -13,7 +13,8 @@ struct zilog_layout {
struct zilog_channel channelA; struct zilog_channel channelA;
}; };
#define NUM_ZSREGS 16 #define NUM_ZSREGS 17
#define R7p 16 /* Written as R7 with P15 bit 0 set */
/* Conversion routines to/from brg time constants from/to bits /* Conversion routines to/from brg time constants from/to bits
* per second. * per second.
@ -127,6 +128,15 @@ struct zilog_layout {
/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */ /* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
/* Write Register 7' (ESCC Only) */
#define AUTO_TxFLAG 1 /* Automatic Tx SDLC Flag */
#define AUTO_EOM_RST 2 /* Automatic EOM Reset */
#define AUTOnRTS 4 /* Automatic /RTS pin deactivation */
#define RxFIFO_LVL 8 /* Receive FIFO interrupt level */
#define nDTRnREQ 0x10 /* /DTR/REQ timing */
#define TxFIFO_LVL 0x20 /* Transmit FIFO interrupt level */
#define EXT_RD_EN 0x40 /* Extended read register enable */
/* Write Register 8 (transmit buffer) */ /* Write Register 8 (transmit buffer) */
/* Write Register 9 (Master interrupt control) */ /* Write Register 9 (Master interrupt control) */
@ -135,6 +145,7 @@ struct zilog_layout {
#define DLC 4 /* Disable Lower Chain */ #define DLC 4 /* Disable Lower Chain */
#define MIE 8 /* Master Interrupt Enable */ #define MIE 8 /* Master Interrupt Enable */
#define STATHI 0x10 /* Status high */ #define STATHI 0x10 /* Status high */
#define SWIACK 0x20 /* Software Interrupt Ack (not on NMOS) */
#define NORESET 0 /* No reset on write to R9 */ #define NORESET 0 /* No reset on write to R9 */
#define CHRB 0x40 /* Reset channel B */ #define CHRB 0x40 /* Reset channel B */
#define CHRA 0x80 /* Reset channel A */ #define CHRA 0x80 /* Reset channel A */
@ -187,7 +198,9 @@ struct zilog_layout {
#define SNRZI 0xe0 /* Set NRZI mode */ #define SNRZI 0xe0 /* Set NRZI mode */
/* Write Register 15 (external/status interrupt control) */ /* Write Register 15 (external/status interrupt control) */
#define WR7pEN 1 /* WR7' Enable (ESCC only) */
#define ZCIE 2 /* Zero count IE */ #define ZCIE 2 /* Zero count IE */
#define FIFOEN 4 /* FIFO Enable (ESCC only) */
#define DCDIE 8 /* DCD IE */ #define DCDIE 8 /* DCD IE */
#define SYNCIE 0x10 /* Sync/hunt IE */ #define SYNCIE 0x10 /* Sync/hunt IE */
#define CTSIE 0x20 /* CTS IE */ #define CTSIE 0x20 /* CTS IE */
@ -241,6 +254,10 @@ struct zilog_layout {
#define CHATxIP 0x10 /* Channel A Tx IP */ #define CHATxIP 0x10 /* Channel A Tx IP */
#define CHARxIP 0x20 /* Channel A Rx IP */ #define CHARxIP 0x20 /* Channel A Rx IP */
/* Read Register 6 (LSB frame byte count [Not on NMOS]) */
/* Read Register 7 (MSB frame byte count and FIFO status [Not on NMOS]) */
/* Read Register 8 (receive data register) */ /* Read Register 8 (receive data register) */
/* Read Register 10 (misc status bits) */ /* Read Register 10 (misc status bits) */

Просмотреть файл

@ -177,7 +177,7 @@ struct linux_nodeops {
/* More fun PROM structures for device probing. */ /* More fun PROM structures for device probing. */
#define PROMREG_MAX 24 #define PROMREG_MAX 24
#define PROMVADDR_MAX 16 #define PROMVADDR_MAX 16
#define PROMINTR_MAX 15 #define PROMINTR_MAX 32
struct linux_prom_registers { struct linux_prom_registers {
unsigned which_io; /* hi part of physical address */ unsigned which_io; /* hi part of physical address */