net: filter: BPF 'JIT' compiler for PPC64
An implementation of a code generator for BPF programs to speed up packet filtering on PPC64, inspired by Eric Dumazet's x86-64 version. Filter code is generated as an ABI-compliant function in module_alloc()'d mem with stackframe & prologue/epilogue generated if required (simple filters don't need anything more than an li/blr). The filter's local variables, M[], live in registers. Supports all BPF opcodes, although "complicated" loads from negative packet offsets (e.g. SKF_LL_OFF) are not yet supported. There are a couple of further optimisations left for future work; many-pass assembly with branch-reach reduction and a register allocator to push M[] variables into volatile registers would improve the code quality further. This currently supports big-endian 64-bit PowerPC only (but is fairly simple to port to PPC32 or LE!). Enabled in the same way as x86-64: echo 1 > /proc/sys/net/core/bpf_jit_enable Or, enabled with extra debug output: echo 2 > /proc/sys/net/core/bpf_jit_enable Signed-off-by: Matt Evans <matt@ozlabs.org> Acked-by: Eric Dumazet <eric.dumazet@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
3aeb7d2243
Коммит
0ca87f05ba
|
@ -134,6 +134,7 @@ config PPC
|
|||
select GENERIC_IRQ_SHOW_LEVEL
|
||||
select HAVE_RCU_TABLE_FREE if SMP
|
||||
select HAVE_SYSCALL_TRACEPOINTS
|
||||
select HAVE_BPF_JIT if PPC64
|
||||
|
||||
config EARLY_PRINTK
|
||||
bool
|
||||
|
|
|
@ -154,7 +154,8 @@ core-y += arch/powerpc/kernel/ \
|
|||
arch/powerpc/lib/ \
|
||||
arch/powerpc/sysdev/ \
|
||||
arch/powerpc/platforms/ \
|
||||
arch/powerpc/math-emu/
|
||||
arch/powerpc/math-emu/ \
|
||||
arch/powerpc/net/
|
||||
core-$(CONFIG_XMON) += arch/powerpc/xmon/
|
||||
core-$(CONFIG_KVM) += arch/powerpc/kvm/
|
||||
|
||||
|
|
|
@ -71,6 +71,42 @@
|
|||
#define PPC_INST_ERATSX 0x7c000126
|
||||
#define PPC_INST_ERATSX_DOT 0x7c000127
|
||||
|
||||
/* Misc instructions for BPF compiler */
|
||||
#define PPC_INST_LD 0xe8000000
|
||||
#define PPC_INST_LHZ 0xa0000000
|
||||
#define PPC_INST_LWZ 0x80000000
|
||||
#define PPC_INST_STD 0xf8000000
|
||||
#define PPC_INST_STDU 0xf8000001
|
||||
#define PPC_INST_MFLR 0x7c0802a6
|
||||
#define PPC_INST_MTLR 0x7c0803a6
|
||||
#define PPC_INST_CMPWI 0x2c000000
|
||||
#define PPC_INST_CMPDI 0x2c200000
|
||||
#define PPC_INST_CMPLW 0x7c000040
|
||||
#define PPC_INST_CMPLWI 0x28000000
|
||||
#define PPC_INST_ADDI 0x38000000
|
||||
#define PPC_INST_ADDIS 0x3c000000
|
||||
#define PPC_INST_ADD 0x7c000214
|
||||
#define PPC_INST_SUB 0x7c000050
|
||||
#define PPC_INST_BLR 0x4e800020
|
||||
#define PPC_INST_BLRL 0x4e800021
|
||||
#define PPC_INST_MULLW 0x7c0001d6
|
||||
#define PPC_INST_MULHWU 0x7c000016
|
||||
#define PPC_INST_MULLI 0x1c000000
|
||||
#define PPC_INST_DIVWU 0x7c0003d6
|
||||
#define PPC_INST_RLWINM 0x54000000
|
||||
#define PPC_INST_RLDICR 0x78000004
|
||||
#define PPC_INST_SLW 0x7c000030
|
||||
#define PPC_INST_SRW 0x7c000430
|
||||
#define PPC_INST_AND 0x7c000038
|
||||
#define PPC_INST_ANDDOT 0x7c000039
|
||||
#define PPC_INST_OR 0x7c000378
|
||||
#define PPC_INST_ANDI 0x70000000
|
||||
#define PPC_INST_ORI 0x60000000
|
||||
#define PPC_INST_ORIS 0x64000000
|
||||
#define PPC_INST_NEG 0x7c0000d0
|
||||
#define PPC_INST_BRANCH 0x48000000
|
||||
#define PPC_INST_BRANCH_COND 0x40800000
|
||||
|
||||
/* macros to insert fields into opcodes */
|
||||
#define __PPC_RA(a) (((a) & 0x1f) << 16)
|
||||
#define __PPC_RB(b) (((b) & 0x1f) << 11)
|
||||
|
@ -83,6 +119,10 @@
|
|||
#define __PPC_T_TLB(t) (((t) & 0x3) << 21)
|
||||
#define __PPC_WC(w) (((w) & 0x3) << 21)
|
||||
#define __PPC_WS(w) (((w) & 0x1f) << 11)
|
||||
#define __PPC_SH(s) __PPC_WS(s)
|
||||
#define __PPC_MB(s) (((s) & 0x1f) << 6)
|
||||
#define __PPC_ME(s) (((s) & 0x1f) << 1)
|
||||
#define __PPC_BI(s) (((s) & 0x1f) << 16)
|
||||
|
||||
/*
|
||||
* Only use the larx hint bit on 64bit CPUs. e500v1/v2 based CPUs will treat a
|
||||
|
|
|
@ -0,0 +1,4 @@
|
|||
#
|
||||
# Arch-specific network modules
|
||||
#
|
||||
obj-$(CONFIG_BPF_JIT) += bpf_jit_64.o bpf_jit_comp.o
|
|
@ -0,0 +1,227 @@
|
|||
/* bpf_jit.h: BPF JIT compiler for PPC64
|
||||
*
|
||||
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*/
|
||||
#ifndef _BPF_JIT_H
|
||||
#define _BPF_JIT_H
|
||||
|
||||
#define BPF_PPC_STACK_LOCALS 32
|
||||
#define BPF_PPC_STACK_BASIC (48+64)
|
||||
#define BPF_PPC_STACK_SAVE (18*8)
|
||||
#define BPF_PPC_STACKFRAME (BPF_PPC_STACK_BASIC+BPF_PPC_STACK_LOCALS+ \
|
||||
BPF_PPC_STACK_SAVE)
|
||||
#define BPF_PPC_SLOWPATH_FRAME (48+64)
|
||||
|
||||
/*
|
||||
* Generated code register usage:
|
||||
*
|
||||
* As normal PPC C ABI (e.g. r1=sp, r2=TOC), with:
|
||||
*
|
||||
* skb r3 (Entry parameter)
|
||||
* A register r4
|
||||
* X register r5
|
||||
* addr param r6
|
||||
* r7-r10 scratch
|
||||
* skb->data r14
|
||||
* skb headlen r15 (skb->len - skb->data_len)
|
||||
* m[0] r16
|
||||
* m[...] ...
|
||||
* m[15] r31
|
||||
*/
|
||||
#define r_skb 3
|
||||
#define r_ret 3
|
||||
#define r_A 4
|
||||
#define r_X 5
|
||||
#define r_addr 6
|
||||
#define r_scratch1 7
|
||||
#define r_D 14
|
||||
#define r_HL 15
|
||||
#define r_M 16
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
/*
|
||||
* Assembly helpers from arch/powerpc/net/bpf_jit.S:
|
||||
*/
|
||||
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
|
||||
|
||||
#define FUNCTION_DESCR_SIZE 24
|
||||
|
||||
/*
|
||||
* 16-bit immediate helper macros: HA() is for use with sign-extending instrs
|
||||
* (e.g. LD, ADDI). If the bottom 16 bits is "-ve", add another bit into the
|
||||
* top half to negate the effect (i.e. 0xffff + 1 = 0x(1)0000).
|
||||
*/
|
||||
#define IMM_H(i) ((uintptr_t)(i)>>16)
|
||||
#define IMM_HA(i) (((uintptr_t)(i)>>16) + \
|
||||
(((uintptr_t)(i) & 0x8000) >> 15))
|
||||
#define IMM_L(i) ((uintptr_t)(i) & 0xffff)
|
||||
|
||||
#define PLANT_INSTR(d, idx, instr) \
|
||||
do { if (d) { (d)[idx] = instr; } idx++; } while (0)
|
||||
#define EMIT(instr) PLANT_INSTR(image, ctx->idx, instr)
|
||||
|
||||
#define PPC_NOP() EMIT(PPC_INST_NOP)
|
||||
#define PPC_BLR() EMIT(PPC_INST_BLR)
|
||||
#define PPC_BLRL() EMIT(PPC_INST_BLRL)
|
||||
#define PPC_MTLR(r) EMIT(PPC_INST_MTLR | __PPC_RT(r))
|
||||
#define PPC_ADDI(d, a, i) EMIT(PPC_INST_ADDI | __PPC_RT(d) | \
|
||||
__PPC_RA(a) | IMM_L(i))
|
||||
#define PPC_MR(d, a) PPC_OR(d, a, a)
|
||||
#define PPC_LI(r, i) PPC_ADDI(r, 0, i)
|
||||
#define PPC_ADDIS(d, a, i) EMIT(PPC_INST_ADDIS | \
|
||||
__PPC_RS(d) | __PPC_RA(a) | IMM_L(i))
|
||||
#define PPC_LIS(r, i) PPC_ADDIS(r, 0, i)
|
||||
#define PPC_STD(r, base, i) EMIT(PPC_INST_STD | __PPC_RS(r) | \
|
||||
__PPC_RA(base) | ((i) & 0xfffc))
|
||||
|
||||
#define PPC_LD(r, base, i) EMIT(PPC_INST_LD | __PPC_RT(r) | \
|
||||
__PPC_RA(base) | IMM_L(i))
|
||||
#define PPC_LWZ(r, base, i) EMIT(PPC_INST_LWZ | __PPC_RT(r) | \
|
||||
__PPC_RA(base) | IMM_L(i))
|
||||
#define PPC_LHZ(r, base, i) EMIT(PPC_INST_LHZ | __PPC_RT(r) | \
|
||||
__PPC_RA(base) | IMM_L(i))
|
||||
/* Convenience helpers for the above with 'far' offsets: */
|
||||
#define PPC_LD_OFFS(r, base, i) do { if ((i) < 32768) PPC_LD(r, base, i); \
|
||||
else { PPC_ADDIS(r, base, IMM_HA(i)); \
|
||||
PPC_LD(r, r, IMM_L(i)); } } while(0)
|
||||
|
||||
#define PPC_LWZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LWZ(r, base, i); \
|
||||
else { PPC_ADDIS(r, base, IMM_HA(i)); \
|
||||
PPC_LWZ(r, r, IMM_L(i)); } } while(0)
|
||||
|
||||
#define PPC_LHZ_OFFS(r, base, i) do { if ((i) < 32768) PPC_LHZ(r, base, i); \
|
||||
else { PPC_ADDIS(r, base, IMM_HA(i)); \
|
||||
PPC_LHZ(r, r, IMM_L(i)); } } while(0)
|
||||
|
||||
#define PPC_CMPWI(a, i) EMIT(PPC_INST_CMPWI | __PPC_RA(a) | IMM_L(i))
|
||||
#define PPC_CMPDI(a, i) EMIT(PPC_INST_CMPDI | __PPC_RA(a) | IMM_L(i))
|
||||
#define PPC_CMPLWI(a, i) EMIT(PPC_INST_CMPLWI | __PPC_RA(a) | IMM_L(i))
|
||||
#define PPC_CMPLW(a, b) EMIT(PPC_INST_CMPLW | __PPC_RA(a) | __PPC_RB(b))
|
||||
|
||||
#define PPC_SUB(d, a, b) EMIT(PPC_INST_SUB | __PPC_RT(d) | \
|
||||
__PPC_RB(a) | __PPC_RA(b))
|
||||
#define PPC_ADD(d, a, b) EMIT(PPC_INST_ADD | __PPC_RT(d) | \
|
||||
__PPC_RA(a) | __PPC_RB(b))
|
||||
#define PPC_MUL(d, a, b) EMIT(PPC_INST_MULLW | __PPC_RT(d) | \
|
||||
__PPC_RA(a) | __PPC_RB(b))
|
||||
#define PPC_MULHWU(d, a, b) EMIT(PPC_INST_MULHWU | __PPC_RT(d) | \
|
||||
__PPC_RA(a) | __PPC_RB(b))
|
||||
#define PPC_MULI(d, a, i) EMIT(PPC_INST_MULLI | __PPC_RT(d) | \
|
||||
__PPC_RA(a) | IMM_L(i))
|
||||
#define PPC_DIVWU(d, a, b) EMIT(PPC_INST_DIVWU | __PPC_RT(d) | \
|
||||
__PPC_RA(a) | __PPC_RB(b))
|
||||
#define PPC_AND(d, a, b) EMIT(PPC_INST_AND | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_RB(b))
|
||||
#define PPC_ANDI(d, a, i) EMIT(PPC_INST_ANDI | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | IMM_L(i))
|
||||
#define PPC_AND_DOT(d, a, b) EMIT(PPC_INST_ANDDOT | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_RB(b))
|
||||
#define PPC_OR(d, a, b) EMIT(PPC_INST_OR | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_RB(b))
|
||||
#define PPC_ORI(d, a, i) EMIT(PPC_INST_ORI | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | IMM_L(i))
|
||||
#define PPC_ORIS(d, a, i) EMIT(PPC_INST_ORIS | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | IMM_L(i))
|
||||
#define PPC_SLW(d, a, s) EMIT(PPC_INST_SLW | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_RB(s))
|
||||
#define PPC_SRW(d, a, s) EMIT(PPC_INST_SRW | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_RB(s))
|
||||
/* slwi = rlwinm Rx, Ry, n, 0, 31-n */
|
||||
#define PPC_SLWI(d, a, i) EMIT(PPC_INST_RLWINM | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_SH(i) | \
|
||||
__PPC_MB(0) | __PPC_ME(31-(i)))
|
||||
/* srwi = rlwinm Rx, Ry, 32-n, n, 31 */
|
||||
#define PPC_SRWI(d, a, i) EMIT(PPC_INST_RLWINM | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_SH(32-(i)) | \
|
||||
__PPC_MB(i) | __PPC_ME(31))
|
||||
/* sldi = rldicr Rx, Ry, n, 63-n */
|
||||
#define PPC_SLDI(d, a, i) EMIT(PPC_INST_RLDICR | __PPC_RA(d) | \
|
||||
__PPC_RS(a) | __PPC_SH(i) | \
|
||||
__PPC_MB(63-(i)) | (((i) & 0x20) >> 4))
|
||||
#define PPC_NEG(d, a) EMIT(PPC_INST_NEG | __PPC_RT(d) | __PPC_RA(a))
|
||||
|
||||
/* Long jump; (unconditional 'branch') */
|
||||
#define PPC_JMP(dest) EMIT(PPC_INST_BRANCH | \
|
||||
(((dest) - (ctx->idx * 4)) & 0x03fffffc))
|
||||
/* "cond" here covers BO:BI fields. */
|
||||
#define PPC_BCC_SHORT(cond, dest) EMIT(PPC_INST_BRANCH_COND | \
|
||||
(((cond) & 0x3ff) << 16) | \
|
||||
(((dest) - (ctx->idx * 4)) & \
|
||||
0xfffc))
|
||||
#define PPC_LI32(d, i) do { PPC_LI(d, IMM_L(i)); \
|
||||
if ((u32)(uintptr_t)(i) >= 32768) { \
|
||||
PPC_ADDIS(d, d, IMM_HA(i)); \
|
||||
} } while(0)
|
||||
#define PPC_LI64(d, i) do { \
|
||||
if (!((uintptr_t)(i) & 0xffffffff00000000ULL)) \
|
||||
PPC_LI32(d, i); \
|
||||
else { \
|
||||
PPC_LIS(d, ((uintptr_t)(i) >> 48)); \
|
||||
if ((uintptr_t)(i) & 0x0000ffff00000000ULL) \
|
||||
PPC_ORI(d, d, \
|
||||
((uintptr_t)(i) >> 32) & 0xffff); \
|
||||
PPC_SLDI(d, d, 32); \
|
||||
if ((uintptr_t)(i) & 0x00000000ffff0000ULL) \
|
||||
PPC_ORIS(d, d, \
|
||||
((uintptr_t)(i) >> 16) & 0xffff); \
|
||||
if ((uintptr_t)(i) & 0x000000000000ffffULL) \
|
||||
PPC_ORI(d, d, (uintptr_t)(i) & 0xffff); \
|
||||
} } while (0);
|
||||
|
||||
static inline bool is_nearbranch(int offset)
|
||||
{
|
||||
return (offset < 32768) && (offset >= -32768);
|
||||
}
|
||||
|
||||
/*
|
||||
* The fly in the ointment of code size changing from pass to pass is
|
||||
* avoided by padding the short branch case with a NOP. If code size differs
|
||||
* with different branch reaches we will have the issue of code moving from
|
||||
* one pass to the next and will need a few passes to converge on a stable
|
||||
* state.
|
||||
*/
|
||||
#define PPC_BCC(cond, dest) do { \
|
||||
if (is_nearbranch((dest) - (ctx->idx * 4))) { \
|
||||
PPC_BCC_SHORT(cond, dest); \
|
||||
PPC_NOP(); \
|
||||
} else { \
|
||||
/* Flip the 'T or F' bit to invert comparison */ \
|
||||
PPC_BCC_SHORT(cond ^ COND_CMP_TRUE, (ctx->idx+2)*4); \
|
||||
PPC_JMP(dest); \
|
||||
} } while(0)
|
||||
|
||||
/* To create a branch condition, select a bit of cr0... */
|
||||
#define CR0_LT 0
|
||||
#define CR0_GT 1
|
||||
#define CR0_EQ 2
|
||||
/* ...and modify BO[3] */
|
||||
#define COND_CMP_TRUE 0x100
|
||||
#define COND_CMP_FALSE 0x000
|
||||
/* Together, they make all required comparisons: */
|
||||
#define COND_GT (CR0_GT | COND_CMP_TRUE)
|
||||
#define COND_GE (CR0_LT | COND_CMP_FALSE)
|
||||
#define COND_EQ (CR0_EQ | COND_CMP_TRUE)
|
||||
#define COND_NE (CR0_EQ | COND_CMP_FALSE)
|
||||
#define COND_LT (CR0_LT | COND_CMP_TRUE)
|
||||
|
||||
#define SEEN_DATAREF 0x10000 /* might call external helpers */
|
||||
#define SEEN_XREG 0x20000 /* X reg is used */
|
||||
#define SEEN_MEM 0x40000 /* SEEN_MEM+(1<<n) = use mem[n] for temporary
|
||||
* storage */
|
||||
#define SEEN_MEM_MSK 0x0ffff
|
||||
|
||||
struct codegen_context {
|
||||
unsigned int seen;
|
||||
unsigned int idx;
|
||||
int pc_ret0; /* bpf index of first RET #0 instruction (if any) */
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -0,0 +1,138 @@
|
|||
/* bpf_jit.S: Packet/header access helper functions
|
||||
* for PPC64 BPF compiler.
|
||||
*
|
||||
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*/
|
||||
|
||||
#include <asm/ppc_asm.h>
|
||||
#include "bpf_jit.h"
|
||||
|
||||
/*
|
||||
* All of these routines are called directly from generated code,
|
||||
* whose register usage is:
|
||||
*
|
||||
* r3 skb
|
||||
* r4,r5 A,X
|
||||
* r6 *** address parameter to helper ***
|
||||
* r7-r10 scratch
|
||||
* r14 skb->data
|
||||
* r15 skb headlen
|
||||
* r16-31 M[]
|
||||
*/
|
||||
|
||||
/*
|
||||
* To consider: These helpers are so small it could be better to just
|
||||
* generate them inline. Inline code can do the simple headlen check
|
||||
* then branch directly to slow_path_XXX if required. (In fact, could
|
||||
* load a spare GPR with the address of slow_path_generic and pass size
|
||||
* as an argument, making the call site a mtlr, li and bllr.)
|
||||
*
|
||||
* Technically, the "is addr < 0" check is unnecessary & slowing down
|
||||
* the ABS path, as it's statically checked on generation.
|
||||
*/
|
||||
.globl sk_load_word
|
||||
sk_load_word:
|
||||
cmpdi r_addr, 0
|
||||
blt bpf_error
|
||||
/* Are we accessing past headlen? */
|
||||
subi r_scratch1, r_HL, 4
|
||||
cmpd r_scratch1, r_addr
|
||||
blt bpf_slow_path_word
|
||||
/* Nope, just hitting the header. cr0 here is eq or gt! */
|
||||
lwzx r_A, r_D, r_addr
|
||||
/* When big endian we don't need to byteswap. */
|
||||
blr /* Return success, cr0 != LT */
|
||||
|
||||
.globl sk_load_half
|
||||
sk_load_half:
|
||||
cmpdi r_addr, 0
|
||||
blt bpf_error
|
||||
subi r_scratch1, r_HL, 2
|
||||
cmpd r_scratch1, r_addr
|
||||
blt bpf_slow_path_half
|
||||
lhzx r_A, r_D, r_addr
|
||||
blr
|
||||
|
||||
.globl sk_load_byte
|
||||
sk_load_byte:
|
||||
cmpdi r_addr, 0
|
||||
blt bpf_error
|
||||
cmpd r_HL, r_addr
|
||||
ble bpf_slow_path_byte
|
||||
lbzx r_A, r_D, r_addr
|
||||
blr
|
||||
|
||||
/*
|
||||
* BPF_S_LDX_B_MSH: ldxb 4*([offset]&0xf)
|
||||
* r_addr is the offset value, already known positive
|
||||
*/
|
||||
.globl sk_load_byte_msh
|
||||
sk_load_byte_msh:
|
||||
cmpd r_HL, r_addr
|
||||
ble bpf_slow_path_byte_msh
|
||||
lbzx r_X, r_D, r_addr
|
||||
rlwinm r_X, r_X, 2, 32-4-2, 31-2
|
||||
blr
|
||||
|
||||
bpf_error:
|
||||
/* Entered with cr0 = lt */
|
||||
li r3, 0
|
||||
/* Generated code will 'blt epilogue', returning 0. */
|
||||
blr
|
||||
|
||||
/* Call out to skb_copy_bits:
|
||||
* We'll need to back up our volatile regs first; we have
|
||||
* local variable space at r1+(BPF_PPC_STACK_BASIC).
|
||||
* Allocate a new stack frame here to remain ABI-compliant in
|
||||
* stashing LR.
|
||||
*/
|
||||
#define bpf_slow_path_common(SIZE) \
|
||||
mflr r0; \
|
||||
std r0, 16(r1); \
|
||||
/* R3 goes in parameter space of caller's frame */ \
|
||||
std r_skb, (BPF_PPC_STACKFRAME+48)(r1); \
|
||||
std r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1); \
|
||||
std r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1); \
|
||||
addi r5, r1, BPF_PPC_STACK_BASIC+(2*8); \
|
||||
stdu r1, -BPF_PPC_SLOWPATH_FRAME(r1); \
|
||||
/* R3 = r_skb, as passed */ \
|
||||
mr r4, r_addr; \
|
||||
li r6, SIZE; \
|
||||
bl skb_copy_bits; \
|
||||
/* R3 = 0 on success */ \
|
||||
addi r1, r1, BPF_PPC_SLOWPATH_FRAME; \
|
||||
ld r0, 16(r1); \
|
||||
ld r_A, (BPF_PPC_STACK_BASIC+(0*8))(r1); \
|
||||
ld r_X, (BPF_PPC_STACK_BASIC+(1*8))(r1); \
|
||||
mtlr r0; \
|
||||
cmpdi r3, 0; \
|
||||
blt bpf_error; /* cr0 = LT */ \
|
||||
ld r_skb, (BPF_PPC_STACKFRAME+48)(r1); \
|
||||
/* Great success! */
|
||||
|
||||
bpf_slow_path_word:
|
||||
bpf_slow_path_common(4)
|
||||
/* Data value is on stack, and cr0 != LT */
|
||||
lwz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
blr
|
||||
|
||||
bpf_slow_path_half:
|
||||
bpf_slow_path_common(2)
|
||||
lhz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
blr
|
||||
|
||||
bpf_slow_path_byte:
|
||||
bpf_slow_path_common(1)
|
||||
lbz r_A, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
blr
|
||||
|
||||
bpf_slow_path_byte_msh:
|
||||
bpf_slow_path_common(1)
|
||||
lbz r_X, BPF_PPC_STACK_BASIC+(2*8)(r1)
|
||||
rlwinm r_X, r_X, 2, 32-4-2, 31-2
|
||||
blr
|
|
@ -0,0 +1,694 @@
|
|||
/* bpf_jit_comp.c: BPF JIT compiler for PPC64
|
||||
*
|
||||
* Copyright 2011 Matt Evans <matt@ozlabs.org>, IBM Corporation
|
||||
*
|
||||
* Based on the x86 BPF compiler, by Eric Dumazet (eric.dumazet@gmail.com)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*/
|
||||
#include <linux/moduleloader.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <linux/netdevice.h>
|
||||
#include <linux/filter.h>
|
||||
#include "bpf_jit.h"
|
||||
|
||||
#ifndef __BIG_ENDIAN
|
||||
/* There are endianness assumptions herein. */
|
||||
#error "Little-endian PPC not supported in BPF compiler"
|
||||
#endif
|
||||
|
||||
int bpf_jit_enable __read_mostly;
|
||||
|
||||
|
||||
static inline void bpf_flush_icache(void *start, void *end)
|
||||
{
|
||||
smp_wmb();
|
||||
flush_icache_range((unsigned long)start, (unsigned long)end);
|
||||
}
|
||||
|
||||
static void bpf_jit_build_prologue(struct sk_filter *fp, u32 *image,
|
||||
struct codegen_context *ctx)
|
||||
{
|
||||
int i;
|
||||
const struct sock_filter *filter = fp->insns;
|
||||
|
||||
if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
|
||||
/* Make stackframe */
|
||||
if (ctx->seen & SEEN_DATAREF) {
|
||||
/* If we call any helpers (for loads), save LR */
|
||||
EMIT(PPC_INST_MFLR | __PPC_RT(0));
|
||||
PPC_STD(0, 1, 16);
|
||||
|
||||
/* Back up non-volatile regs. */
|
||||
PPC_STD(r_D, 1, -(8*(32-r_D)));
|
||||
PPC_STD(r_HL, 1, -(8*(32-r_HL)));
|
||||
}
|
||||
if (ctx->seen & SEEN_MEM) {
|
||||
/*
|
||||
* Conditionally save regs r15-r31 as some will be used
|
||||
* for M[] data.
|
||||
*/
|
||||
for (i = r_M; i < (r_M+16); i++) {
|
||||
if (ctx->seen & (1 << (i-r_M)))
|
||||
PPC_STD(i, 1, -(8*(32-i)));
|
||||
}
|
||||
}
|
||||
EMIT(PPC_INST_STDU | __PPC_RS(1) | __PPC_RA(1) |
|
||||
(-BPF_PPC_STACKFRAME & 0xfffc));
|
||||
}
|
||||
|
||||
if (ctx->seen & SEEN_DATAREF) {
|
||||
/*
|
||||
* If this filter needs to access skb data,
|
||||
* prepare r_D and r_HL:
|
||||
* r_HL = skb->len - skb->data_len
|
||||
* r_D = skb->data
|
||||
*/
|
||||
PPC_LWZ_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
|
||||
data_len));
|
||||
PPC_LWZ_OFFS(r_HL, r_skb, offsetof(struct sk_buff, len));
|
||||
PPC_SUB(r_HL, r_HL, r_scratch1);
|
||||
PPC_LD_OFFS(r_D, r_skb, offsetof(struct sk_buff, data));
|
||||
}
|
||||
|
||||
if (ctx->seen & SEEN_XREG) {
|
||||
/*
|
||||
* TODO: Could also detect whether first instr. sets X and
|
||||
* avoid this (as below, with A).
|
||||
*/
|
||||
PPC_LI(r_X, 0);
|
||||
}
|
||||
|
||||
switch (filter[0].code) {
|
||||
case BPF_S_RET_K:
|
||||
case BPF_S_LD_W_LEN:
|
||||
case BPF_S_ANC_PROTOCOL:
|
||||
case BPF_S_ANC_IFINDEX:
|
||||
case BPF_S_ANC_MARK:
|
||||
case BPF_S_ANC_RXHASH:
|
||||
case BPF_S_ANC_CPU:
|
||||
case BPF_S_ANC_QUEUE:
|
||||
case BPF_S_LD_W_ABS:
|
||||
case BPF_S_LD_H_ABS:
|
||||
case BPF_S_LD_B_ABS:
|
||||
/* first instruction sets A register (or is RET 'constant') */
|
||||
break;
|
||||
default:
|
||||
/* make sure we dont leak kernel information to user */
|
||||
PPC_LI(r_A, 0);
|
||||
}
|
||||
}
|
||||
|
||||
static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
|
||||
{
|
||||
int i;
|
||||
|
||||
if (ctx->seen & (SEEN_MEM | SEEN_DATAREF)) {
|
||||
PPC_ADDI(1, 1, BPF_PPC_STACKFRAME);
|
||||
if (ctx->seen & SEEN_DATAREF) {
|
||||
PPC_LD(0, 1, 16);
|
||||
PPC_MTLR(0);
|
||||
PPC_LD(r_D, 1, -(8*(32-r_D)));
|
||||
PPC_LD(r_HL, 1, -(8*(32-r_HL)));
|
||||
}
|
||||
if (ctx->seen & SEEN_MEM) {
|
||||
/* Restore any saved non-vol registers */
|
||||
for (i = r_M; i < (r_M+16); i++) {
|
||||
if (ctx->seen & (1 << (i-r_M)))
|
||||
PPC_LD(i, 1, -(8*(32-i)));
|
||||
}
|
||||
}
|
||||
}
|
||||
/* The RETs have left a return value in R3. */
|
||||
|
||||
PPC_BLR();
|
||||
}
|
||||
|
||||
/* Assemble the body code between the prologue & epilogue. */
|
||||
static int bpf_jit_build_body(struct sk_filter *fp, u32 *image,
|
||||
struct codegen_context *ctx,
|
||||
unsigned int *addrs)
|
||||
{
|
||||
const struct sock_filter *filter = fp->insns;
|
||||
int flen = fp->len;
|
||||
u8 *func;
|
||||
unsigned int true_cond;
|
||||
int i;
|
||||
|
||||
/* Start of epilogue code */
|
||||
unsigned int exit_addr = addrs[flen];
|
||||
|
||||
for (i = 0; i < flen; i++) {
|
||||
unsigned int K = filter[i].k;
|
||||
|
||||
/*
|
||||
* addrs[] maps a BPF bytecode address into a real offset from
|
||||
* the start of the body code.
|
||||
*/
|
||||
addrs[i] = ctx->idx * 4;
|
||||
|
||||
switch (filter[i].code) {
|
||||
/*** ALU ops ***/
|
||||
case BPF_S_ALU_ADD_X: /* A += X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_ADD(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_ADD_K: /* A += K; */
|
||||
if (!K)
|
||||
break;
|
||||
PPC_ADDI(r_A, r_A, IMM_L(K));
|
||||
if (K >= 32768)
|
||||
PPC_ADDIS(r_A, r_A, IMM_HA(K));
|
||||
break;
|
||||
case BPF_S_ALU_SUB_X: /* A -= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_SUB(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_SUB_K: /* A -= K */
|
||||
if (!K)
|
||||
break;
|
||||
PPC_ADDI(r_A, r_A, IMM_L(-K));
|
||||
if (K >= 32768)
|
||||
PPC_ADDIS(r_A, r_A, IMM_HA(-K));
|
||||
break;
|
||||
case BPF_S_ALU_MUL_X: /* A *= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_MUL(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_MUL_K: /* A *= K */
|
||||
if (K < 32768)
|
||||
PPC_MULI(r_A, r_A, K);
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
PPC_MUL(r_A, r_A, r_scratch1);
|
||||
}
|
||||
break;
|
||||
case BPF_S_ALU_DIV_X: /* A /= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_CMPWI(r_X, 0);
|
||||
if (ctx->pc_ret0 != -1) {
|
||||
PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
|
||||
} else {
|
||||
/*
|
||||
* Exit, returning 0; first pass hits here
|
||||
* (longer worst-case code size).
|
||||
*/
|
||||
PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
|
||||
PPC_LI(r_ret, 0);
|
||||
PPC_JMP(exit_addr);
|
||||
}
|
||||
PPC_DIVWU(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_DIV_K: /* A = reciprocal_divide(A, K); */
|
||||
PPC_LI32(r_scratch1, K);
|
||||
/* Top 32 bits of 64bit result -> A */
|
||||
PPC_MULHWU(r_A, r_A, r_scratch1);
|
||||
break;
|
||||
case BPF_S_ALU_AND_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_AND(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_AND_K:
|
||||
if (!IMM_H(K))
|
||||
PPC_ANDI(r_A, r_A, K);
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
PPC_AND(r_A, r_A, r_scratch1);
|
||||
}
|
||||
break;
|
||||
case BPF_S_ALU_OR_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_OR(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_OR_K:
|
||||
if (IMM_L(K))
|
||||
PPC_ORI(r_A, r_A, IMM_L(K));
|
||||
if (K >= 65536)
|
||||
PPC_ORIS(r_A, r_A, IMM_H(K));
|
||||
break;
|
||||
case BPF_S_ALU_LSH_X: /* A <<= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_SLW(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_LSH_K:
|
||||
if (K == 0)
|
||||
break;
|
||||
else
|
||||
PPC_SLWI(r_A, r_A, K);
|
||||
break;
|
||||
case BPF_S_ALU_RSH_X: /* A >>= X; */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_SRW(r_A, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_ALU_RSH_K: /* A >>= K; */
|
||||
if (K == 0)
|
||||
break;
|
||||
else
|
||||
PPC_SRWI(r_A, r_A, K);
|
||||
break;
|
||||
case BPF_S_ALU_NEG:
|
||||
PPC_NEG(r_A, r_A);
|
||||
break;
|
||||
case BPF_S_RET_K:
|
||||
PPC_LI32(r_ret, K);
|
||||
if (!K) {
|
||||
if (ctx->pc_ret0 == -1)
|
||||
ctx->pc_ret0 = i;
|
||||
}
|
||||
/*
|
||||
* If this isn't the very last instruction, branch to
|
||||
* the epilogue if we've stuff to clean up. Otherwise,
|
||||
* if there's nothing to tidy, just return. If we /are/
|
||||
* the last instruction, we're about to fall through to
|
||||
* the epilogue to return.
|
||||
*/
|
||||
if (i != flen - 1) {
|
||||
/*
|
||||
* Note: 'seen' is properly valid only on pass
|
||||
* #2. Both parts of this conditional are the
|
||||
* same instruction size though, meaning the
|
||||
* first pass will still correctly determine the
|
||||
* code size/addresses.
|
||||
*/
|
||||
if (ctx->seen)
|
||||
PPC_JMP(exit_addr);
|
||||
else
|
||||
PPC_BLR();
|
||||
}
|
||||
break;
|
||||
case BPF_S_RET_A:
|
||||
PPC_MR(r_ret, r_A);
|
||||
if (i != flen - 1) {
|
||||
if (ctx->seen)
|
||||
PPC_JMP(exit_addr);
|
||||
else
|
||||
PPC_BLR();
|
||||
}
|
||||
break;
|
||||
case BPF_S_MISC_TAX: /* X = A */
|
||||
PPC_MR(r_X, r_A);
|
||||
break;
|
||||
case BPF_S_MISC_TXA: /* A = X */
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_MR(r_A, r_X);
|
||||
break;
|
||||
|
||||
/*** Constant loads/M[] access ***/
|
||||
case BPF_S_LD_IMM: /* A = K */
|
||||
PPC_LI32(r_A, K);
|
||||
break;
|
||||
case BPF_S_LDX_IMM: /* X = K */
|
||||
PPC_LI32(r_X, K);
|
||||
break;
|
||||
case BPF_S_LD_MEM: /* A = mem[K] */
|
||||
PPC_MR(r_A, r_M + (K & 0xf));
|
||||
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_S_LDX_MEM: /* X = mem[K] */
|
||||
PPC_MR(r_X, r_M + (K & 0xf));
|
||||
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_S_ST: /* mem[K] = A */
|
||||
PPC_MR(r_M + (K & 0xf), r_A);
|
||||
ctx->seen |= SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_S_STX: /* mem[K] = X */
|
||||
PPC_MR(r_M + (K & 0xf), r_X);
|
||||
ctx->seen |= SEEN_XREG | SEEN_MEM | (1<<(K & 0xf));
|
||||
break;
|
||||
case BPF_S_LD_W_LEN: /* A = skb->len; */
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff, len));
|
||||
break;
|
||||
case BPF_S_LDX_W_LEN: /* X = skb->len; */
|
||||
PPC_LWZ_OFFS(r_X, r_skb, offsetof(struct sk_buff, len));
|
||||
break;
|
||||
|
||||
/*** Ancillary info loads ***/
|
||||
|
||||
/* None of the BPF_S_ANC* codes appear to be passed by
|
||||
* sk_chk_filter(). The interpreter and the x86 BPF
|
||||
* compiler implement them so we do too -- they may be
|
||||
* planted in future.
|
||||
*/
|
||||
case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
|
||||
protocol) != 2);
|
||||
PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
protocol));
|
||||
/* ntohs is a NOP with BE loads. */
|
||||
break;
|
||||
case BPF_S_ANC_IFINDEX:
|
||||
PPC_LD_OFFS(r_scratch1, r_skb, offsetof(struct sk_buff,
|
||||
dev));
|
||||
PPC_CMPDI(r_scratch1, 0);
|
||||
if (ctx->pc_ret0 != -1) {
|
||||
PPC_BCC(COND_EQ, addrs[ctx->pc_ret0]);
|
||||
} else {
|
||||
/* Exit, returning 0; first pass hits here. */
|
||||
PPC_BCC_SHORT(COND_NE, (ctx->idx*4)+12);
|
||||
PPC_LI(r_ret, 0);
|
||||
PPC_JMP(exit_addr);
|
||||
}
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
|
||||
ifindex) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_scratch1,
|
||||
offsetof(struct net_device, ifindex));
|
||||
break;
|
||||
case BPF_S_ANC_MARK:
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
mark));
|
||||
break;
|
||||
case BPF_S_ANC_RXHASH:
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, rxhash) != 4);
|
||||
PPC_LWZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
rxhash));
|
||||
break;
|
||||
case BPF_S_ANC_QUEUE:
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
|
||||
queue_mapping) != 2);
|
||||
PPC_LHZ_OFFS(r_A, r_skb, offsetof(struct sk_buff,
|
||||
queue_mapping));
|
||||
break;
|
||||
case BPF_S_ANC_CPU:
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* PACA ptr is r13:
|
||||
* raw_smp_processor_id() = local_paca->paca_index
|
||||
*/
|
||||
BUILD_BUG_ON(FIELD_SIZEOF(struct paca_struct,
|
||||
paca_index) != 2);
|
||||
PPC_LHZ_OFFS(r_A, 13,
|
||||
offsetof(struct paca_struct, paca_index));
|
||||
#else
|
||||
PPC_LI(r_A, 0);
|
||||
#endif
|
||||
break;
|
||||
|
||||
/*** Absolute loads from packet header/data ***/
|
||||
case BPF_S_LD_W_ABS:
|
||||
func = sk_load_word;
|
||||
goto common_load;
|
||||
case BPF_S_LD_H_ABS:
|
||||
func = sk_load_half;
|
||||
goto common_load;
|
||||
case BPF_S_LD_B_ABS:
|
||||
func = sk_load_byte;
|
||||
common_load:
|
||||
/*
|
||||
* Load from [K]. Reference with the (negative)
|
||||
* SKF_NET_OFF/SKF_LL_OFF offsets is unsupported.
|
||||
*/
|
||||
ctx->seen |= SEEN_DATAREF;
|
||||
if ((int)K < 0)
|
||||
return -ENOTSUPP;
|
||||
PPC_LI64(r_scratch1, func);
|
||||
PPC_MTLR(r_scratch1);
|
||||
PPC_LI32(r_addr, K);
|
||||
PPC_BLRL();
|
||||
/*
|
||||
* Helper returns 'lt' condition on error, and an
|
||||
* appropriate return value in r3
|
||||
*/
|
||||
PPC_BCC(COND_LT, exit_addr);
|
||||
break;
|
||||
|
||||
/*** Indirect loads from packet header/data ***/
|
||||
case BPF_S_LD_W_IND:
|
||||
func = sk_load_word;
|
||||
goto common_load_ind;
|
||||
case BPF_S_LD_H_IND:
|
||||
func = sk_load_half;
|
||||
goto common_load_ind;
|
||||
case BPF_S_LD_B_IND:
|
||||
func = sk_load_byte;
|
||||
common_load_ind:
|
||||
/*
|
||||
* Load from [X + K]. Negative offsets are tested for
|
||||
* in the helper functions, and result in a 'ret 0'.
|
||||
*/
|
||||
ctx->seen |= SEEN_DATAREF | SEEN_XREG;
|
||||
PPC_LI64(r_scratch1, func);
|
||||
PPC_MTLR(r_scratch1);
|
||||
PPC_ADDI(r_addr, r_X, IMM_L(K));
|
||||
if (K >= 32768)
|
||||
PPC_ADDIS(r_addr, r_addr, IMM_HA(K));
|
||||
PPC_BLRL();
|
||||
/* If error, cr0.LT set */
|
||||
PPC_BCC(COND_LT, exit_addr);
|
||||
break;
|
||||
|
||||
case BPF_S_LDX_B_MSH:
|
||||
/*
|
||||
* x86 version drops packet (RET 0) when K<0, whereas
|
||||
* interpreter does allow K<0 (__load_pointer, special
|
||||
* ancillary data). common_load returns ENOTSUPP if K<0,
|
||||
* so we fall back to interpreter & filter works.
|
||||
*/
|
||||
func = sk_load_byte_msh;
|
||||
goto common_load;
|
||||
break;
|
||||
|
||||
/*** Jump and branches ***/
|
||||
case BPF_S_JMP_JA:
|
||||
if (K != 0)
|
||||
PPC_JMP(addrs[i + 1 + K]);
|
||||
break;
|
||||
|
||||
case BPF_S_JMP_JGT_K:
|
||||
case BPF_S_JMP_JGT_X:
|
||||
true_cond = COND_GT;
|
||||
goto cond_branch;
|
||||
case BPF_S_JMP_JGE_K:
|
||||
case BPF_S_JMP_JGE_X:
|
||||
true_cond = COND_GE;
|
||||
goto cond_branch;
|
||||
case BPF_S_JMP_JEQ_K:
|
||||
case BPF_S_JMP_JEQ_X:
|
||||
true_cond = COND_EQ;
|
||||
goto cond_branch;
|
||||
case BPF_S_JMP_JSET_K:
|
||||
case BPF_S_JMP_JSET_X:
|
||||
true_cond = COND_NE;
|
||||
/* Fall through */
|
||||
cond_branch:
|
||||
/* same targets, can avoid doing the test :) */
|
||||
if (filter[i].jt == filter[i].jf) {
|
||||
if (filter[i].jt > 0)
|
||||
PPC_JMP(addrs[i + 1 + filter[i].jt]);
|
||||
break;
|
||||
}
|
||||
|
||||
switch (filter[i].code) {
|
||||
case BPF_S_JMP_JGT_X:
|
||||
case BPF_S_JMP_JGE_X:
|
||||
case BPF_S_JMP_JEQ_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_CMPLW(r_A, r_X);
|
||||
break;
|
||||
case BPF_S_JMP_JSET_X:
|
||||
ctx->seen |= SEEN_XREG;
|
||||
PPC_AND_DOT(r_scratch1, r_A, r_X);
|
||||
break;
|
||||
case BPF_S_JMP_JEQ_K:
|
||||
case BPF_S_JMP_JGT_K:
|
||||
case BPF_S_JMP_JGE_K:
|
||||
if (K < 32768)
|
||||
PPC_CMPLWI(r_A, K);
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
PPC_CMPLW(r_A, r_scratch1);
|
||||
}
|
||||
break;
|
||||
case BPF_S_JMP_JSET_K:
|
||||
if (K < 32768)
|
||||
/* PPC_ANDI is /only/ dot-form */
|
||||
PPC_ANDI(r_scratch1, r_A, K);
|
||||
else {
|
||||
PPC_LI32(r_scratch1, K);
|
||||
PPC_AND_DOT(r_scratch1, r_A,
|
||||
r_scratch1);
|
||||
}
|
||||
break;
|
||||
}
|
||||
/* Sometimes branches are constructed "backward", with
|
||||
* the false path being the branch and true path being
|
||||
* a fallthrough to the next instruction.
|
||||
*/
|
||||
if (filter[i].jt == 0)
|
||||
/* Swap the sense of the branch */
|
||||
PPC_BCC(true_cond ^ COND_CMP_TRUE,
|
||||
addrs[i + 1 + filter[i].jf]);
|
||||
else {
|
||||
PPC_BCC(true_cond, addrs[i + 1 + filter[i].jt]);
|
||||
if (filter[i].jf != 0)
|
||||
PPC_JMP(addrs[i + 1 + filter[i].jf]);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
/* The filter contains something cruel & unusual.
|
||||
* We don't handle it, but also there shouldn't be
|
||||
* anything missing from our list.
|
||||
*/
|
||||
if (printk_ratelimit())
|
||||
pr_err("BPF filter opcode %04x (@%d) unsupported\n",
|
||||
filter[i].code, i);
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
}
|
||||
/* Set end-of-body-code address for exit. */
|
||||
addrs[i] = ctx->idx * 4;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void bpf_jit_compile(struct sk_filter *fp)
|
||||
{
|
||||
unsigned int proglen;
|
||||
unsigned int alloclen;
|
||||
u32 *image = NULL;
|
||||
u32 *code_base;
|
||||
unsigned int *addrs;
|
||||
struct codegen_context cgctx;
|
||||
int pass;
|
||||
int flen = fp->len;
|
||||
|
||||
if (!bpf_jit_enable)
|
||||
return;
|
||||
|
||||
addrs = kzalloc((flen+1) * sizeof(*addrs), GFP_KERNEL);
|
||||
if (addrs == NULL)
|
||||
return;
|
||||
|
||||
/*
|
||||
* There are multiple assembly passes as the generated code will change
|
||||
* size as it settles down, figuring out the max branch offsets/exit
|
||||
* paths required.
|
||||
*
|
||||
* The range of standard conditional branches is +/- 32Kbytes. Since
|
||||
* BPF_MAXINSNS = 4096, we can only jump from (worst case) start to
|
||||
* finish with 8 bytes/instruction. Not feasible, so long jumps are
|
||||
* used, distinct from short branches.
|
||||
*
|
||||
* Current:
|
||||
*
|
||||
* For now, both branch types assemble to 2 words (short branches padded
|
||||
* with a NOP); this is less efficient, but assembly will always complete
|
||||
* after exactly 3 passes:
|
||||
*
|
||||
* First pass: No code buffer; Program is "faux-generated" -- no code
|
||||
* emitted but maximum size of output determined (and addrs[] filled
|
||||
* in). Also, we note whether we use M[], whether we use skb data, etc.
|
||||
* All generation choices assumed to be 'worst-case', e.g. branches all
|
||||
* far (2 instructions), return path code reduction not available, etc.
|
||||
*
|
||||
* Second pass: Code buffer allocated with size determined previously.
|
||||
* Prologue generated to support features we have seen used. Exit paths
|
||||
* determined and addrs[] is filled in again, as code may be slightly
|
||||
* smaller as a result.
|
||||
*
|
||||
* Third pass: Code generated 'for real', and branch destinations
|
||||
* determined from now-accurate addrs[] map.
|
||||
*
|
||||
* Ideal:
|
||||
*
|
||||
* If we optimise this, near branches will be shorter. On the
|
||||
* first assembly pass, we should err on the side of caution and
|
||||
* generate the biggest code. On subsequent passes, branches will be
|
||||
* generated short or long and code size will reduce. With smaller
|
||||
* code, more branches may fall into the short category, and code will
|
||||
* reduce more.
|
||||
*
|
||||
* Finally, if we see one pass generate code the same size as the
|
||||
* previous pass we have converged and should now generate code for
|
||||
* real. Allocating at the end will also save the memory that would
|
||||
* otherwise be wasted by the (small) current code shrinkage.
|
||||
* Preferably, we should do a small number of passes (e.g. 5) and if we
|
||||
* haven't converged by then, get impatient and force code to generate
|
||||
* as-is, even if the odd branch would be left long. The chances of a
|
||||
* long jump are tiny with all but the most enormous of BPF filter
|
||||
* inputs, so we should usually converge on the third pass.
|
||||
*/
|
||||
|
||||
cgctx.idx = 0;
|
||||
cgctx.seen = 0;
|
||||
cgctx.pc_ret0 = -1;
|
||||
/* Scouting faux-generate pass 0 */
|
||||
if (bpf_jit_build_body(fp, 0, &cgctx, addrs))
|
||||
/* We hit something illegal or unsupported. */
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Pretend to build prologue, given the features we've seen. This will
|
||||
* update ctgtx.idx as it pretends to output instructions, then we can
|
||||
* calculate total size from idx.
|
||||
*/
|
||||
bpf_jit_build_prologue(fp, 0, &cgctx);
|
||||
bpf_jit_build_epilogue(0, &cgctx);
|
||||
|
||||
proglen = cgctx.idx * 4;
|
||||
alloclen = proglen + FUNCTION_DESCR_SIZE;
|
||||
image = module_alloc(max_t(unsigned int, alloclen,
|
||||
sizeof(struct work_struct)));
|
||||
if (!image)
|
||||
goto out;
|
||||
|
||||
code_base = image + (FUNCTION_DESCR_SIZE/4);
|
||||
|
||||
/* Code generation passes 1-2 */
|
||||
for (pass = 1; pass < 3; pass++) {
|
||||
/* Now build the prologue, body code & epilogue for real. */
|
||||
cgctx.idx = 0;
|
||||
bpf_jit_build_prologue(fp, code_base, &cgctx);
|
||||
bpf_jit_build_body(fp, code_base, &cgctx, addrs);
|
||||
bpf_jit_build_epilogue(code_base, &cgctx);
|
||||
|
||||
if (bpf_jit_enable > 1)
|
||||
pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
|
||||
proglen - (cgctx.idx * 4), cgctx.seen);
|
||||
}
|
||||
|
||||
if (bpf_jit_enable > 1)
|
||||
pr_info("flen=%d proglen=%u pass=%d image=%p\n",
|
||||
flen, proglen, pass, image);
|
||||
|
||||
if (image) {
|
||||
if (bpf_jit_enable > 1)
|
||||
print_hex_dump(KERN_ERR, "JIT code: ",
|
||||
DUMP_PREFIX_ADDRESS,
|
||||
16, 1, code_base,
|
||||
proglen, false);
|
||||
|
||||
bpf_flush_icache(code_base, code_base + (proglen/4));
|
||||
/* Function descriptor nastiness: Address + TOC */
|
||||
((u64 *)image)[0] = (u64)code_base;
|
||||
((u64 *)image)[1] = local_paca->kernel_toc;
|
||||
fp->bpf_func = (void *)image;
|
||||
}
|
||||
out:
|
||||
kfree(addrs);
|
||||
return;
|
||||
}
|
||||
|
||||
static void jit_free_defer(struct work_struct *arg)
|
||||
{
|
||||
module_free(NULL, arg);
|
||||
}
|
||||
|
||||
/* run from softirq, we must use a work_struct to call
|
||||
* module_free() from process context
|
||||
*/
|
||||
void bpf_jit_free(struct sk_filter *fp)
|
||||
{
|
||||
if (fp->bpf_func != sk_run_filter) {
|
||||
struct work_struct *work = (struct work_struct *)fp->bpf_func;
|
||||
|
||||
INIT_WORK(work, jit_free_defer);
|
||||
schedule_work(work);
|
||||
}
|
||||
}
|
Загрузка…
Ссылка в новой задаче