rcu: Remove TINY_PREEMPT_RCU
TINY_PREEMPT_RCU adds significant code and complexity, but does not offer commensurate benefits. People currently using TINY_PREEMPT_RCU can get much better memory footprint with TINY_RCU, or, if they really need preemptible RCU, they can use TREE_PREEMPT_RCU with a relatively minor degradation in memory footprint. Please note that this move has been widely publicized on LKML (https://lkml.org/lkml/2012/11/12/545) and on LWN (http://lwn.net/Articles/541037/). This commit therefore removes TINY_PREEMPT_RCU. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> [ paulmck: Updated to eliminate #else in rcutiny.h as suggested by Josh ] Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit is contained in:
Родитель
efc151c33b
Коммит
127781d1ba
|
@ -128,7 +128,7 @@ extern void synchronize_irq(unsigned int irq);
|
|||
# define synchronize_irq(irq) barrier()
|
||||
#endif
|
||||
|
||||
#if defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
|
||||
#if defined(CONFIG_TINY_RCU)
|
||||
|
||||
static inline void rcu_nmi_enter(void)
|
||||
{
|
||||
|
|
|
@ -277,7 +277,7 @@ void wait_rcu_gp(call_rcu_func_t crf);
|
|||
|
||||
#if defined(CONFIG_TREE_RCU) || defined(CONFIG_TREE_PREEMPT_RCU)
|
||||
#include <linux/rcutree.h>
|
||||
#elif defined(CONFIG_TINY_RCU) || defined(CONFIG_TINY_PREEMPT_RCU)
|
||||
#elif defined(CONFIG_TINY_RCU)
|
||||
#include <linux/rcutiny.h>
|
||||
#else
|
||||
#error "Unknown RCU implementation specified to kernel configuration"
|
||||
|
|
|
@ -53,16 +53,7 @@ static inline void rcu_barrier(void)
|
|||
rcu_barrier_sched(); /* Only one CPU, so only one list of callbacks! */
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
void synchronize_rcu_expedited(void);
|
||||
|
||||
static inline void rcu_barrier(void)
|
||||
{
|
||||
wait_rcu_gp(call_rcu);
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TINY_RCU */
|
||||
#endif /* #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
static inline void synchronize_rcu_bh(void)
|
||||
{
|
||||
|
@ -97,18 +88,7 @@ static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
|||
return 0;
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
void rcu_preempt_note_context_switch(void);
|
||||
int rcu_preempt_needs_cpu(void);
|
||||
|
||||
static inline int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
{
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
return rcu_preempt_needs_cpu();
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TINY_RCU */
|
||||
#endif /* #ifdef CONFIG_TINY_RCU */
|
||||
|
||||
static inline void rcu_note_context_switch(int cpu)
|
||||
{
|
||||
|
|
10
init/Kconfig
10
init/Kconfig
|
@ -459,18 +459,10 @@ config TINY_RCU
|
|||
is not required. This option greatly reduces the
|
||||
memory footprint of RCU.
|
||||
|
||||
config TINY_PREEMPT_RCU
|
||||
bool "Preemptible UP-only small-memory-footprint RCU"
|
||||
depends on PREEMPT && !SMP
|
||||
help
|
||||
This option selects the RCU implementation that is designed
|
||||
for real-time UP systems. This option greatly reduces the
|
||||
memory footprint of RCU.
|
||||
|
||||
endchoice
|
||||
|
||||
config PREEMPT_RCU
|
||||
def_bool ( TREE_PREEMPT_RCU || TINY_PREEMPT_RCU )
|
||||
def_bool TREE_PREEMPT_RCU
|
||||
help
|
||||
This option enables preemptible-RCU code that is common between
|
||||
the TREE_PREEMPT_RCU and TINY_PREEMPT_RCU implementations.
|
||||
|
|
|
@ -102,763 +102,6 @@ static void check_cpu_stalls(void)
|
|||
RCU_TRACE(check_cpu_stall_preempt());
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TINY_PREEMPT_RCU
|
||||
|
||||
#include <linux/delay.h>
|
||||
|
||||
/* Global control variables for preemptible RCU. */
|
||||
struct rcu_preempt_ctrlblk {
|
||||
struct rcu_ctrlblk rcb; /* curtail: ->next ptr of last CB for GP. */
|
||||
struct rcu_head **nexttail;
|
||||
/* Tasks blocked in a preemptible RCU */
|
||||
/* read-side critical section while an */
|
||||
/* preemptible-RCU grace period is in */
|
||||
/* progress must wait for a later grace */
|
||||
/* period. This pointer points to the */
|
||||
/* ->next pointer of the last task that */
|
||||
/* must wait for a later grace period, or */
|
||||
/* to &->rcb.rcucblist if there is no */
|
||||
/* such task. */
|
||||
struct list_head blkd_tasks;
|
||||
/* Tasks blocked in RCU read-side critical */
|
||||
/* section. Tasks are placed at the head */
|
||||
/* of this list and age towards the tail. */
|
||||
struct list_head *gp_tasks;
|
||||
/* Pointer to the first task blocking the */
|
||||
/* current grace period, or NULL if there */
|
||||
/* is no such task. */
|
||||
struct list_head *exp_tasks;
|
||||
/* Pointer to first task blocking the */
|
||||
/* current expedited grace period, or NULL */
|
||||
/* if there is no such task. If there */
|
||||
/* is no current expedited grace period, */
|
||||
/* then there cannot be any such task. */
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
struct list_head *boost_tasks;
|
||||
/* Pointer to first task that needs to be */
|
||||
/* priority-boosted, or NULL if no priority */
|
||||
/* boosting is needed. If there is no */
|
||||
/* current or expedited grace period, there */
|
||||
/* can be no such task. */
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
u8 gpnum; /* Current grace period. */
|
||||
u8 gpcpu; /* Last grace period blocked by the CPU. */
|
||||
u8 completed; /* Last grace period completed. */
|
||||
/* If all three are equal, RCU is idle. */
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
unsigned long boost_time; /* When to start boosting (jiffies) */
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
unsigned long n_grace_periods;
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
unsigned long n_tasks_boosted;
|
||||
/* Total number of tasks boosted. */
|
||||
unsigned long n_exp_boosts;
|
||||
/* Number of tasks boosted for expedited GP. */
|
||||
unsigned long n_normal_boosts;
|
||||
/* Number of tasks boosted for normal GP. */
|
||||
unsigned long n_balk_blkd_tasks;
|
||||
/* Refused to boost: no blocked tasks. */
|
||||
unsigned long n_balk_exp_gp_tasks;
|
||||
/* Refused to boost: nothing blocking GP. */
|
||||
unsigned long n_balk_boost_tasks;
|
||||
/* Refused to boost: already boosting. */
|
||||
unsigned long n_balk_notyet;
|
||||
/* Refused to boost: not yet time. */
|
||||
unsigned long n_balk_nos;
|
||||
/* Refused to boost: not sure why, though. */
|
||||
/* This can happen due to race conditions. */
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
#endif /* #ifdef CONFIG_RCU_TRACE */
|
||||
};
|
||||
|
||||
static struct rcu_preempt_ctrlblk rcu_preempt_ctrlblk = {
|
||||
.rcb.donetail = &rcu_preempt_ctrlblk.rcb.rcucblist,
|
||||
.rcb.curtail = &rcu_preempt_ctrlblk.rcb.rcucblist,
|
||||
.nexttail = &rcu_preempt_ctrlblk.rcb.rcucblist,
|
||||
.blkd_tasks = LIST_HEAD_INIT(rcu_preempt_ctrlblk.blkd_tasks),
|
||||
RCU_TRACE(.rcb.name = "rcu_preempt")
|
||||
};
|
||||
|
||||
static int rcu_preempted_readers_exp(void);
|
||||
static void rcu_report_exp_done(void);
|
||||
|
||||
/*
|
||||
* Return true if the CPU has not yet responded to the current grace period.
|
||||
*/
|
||||
static int rcu_cpu_blocking_cur_gp(void)
|
||||
{
|
||||
return rcu_preempt_ctrlblk.gpcpu != rcu_preempt_ctrlblk.gpnum;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for a running RCU reader. Because there is only one CPU,
|
||||
* there can be but one running RCU reader at a time. ;-)
|
||||
*
|
||||
* Returns zero if there are no running readers. Returns a positive
|
||||
* number if there is at least one reader within its RCU read-side
|
||||
* critical section. Returns a negative number if an outermost reader
|
||||
* is in the midst of exiting from its RCU read-side critical section
|
||||
*
|
||||
* Returns zero if there are no running readers. Returns a positive
|
||||
* number if there is at least one reader within its RCU read-side
|
||||
* critical section. Returns a negative number if an outermost reader
|
||||
* is in the midst of exiting from its RCU read-side critical section.
|
||||
*/
|
||||
static int rcu_preempt_running_reader(void)
|
||||
{
|
||||
return current->rcu_read_lock_nesting;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for preempted RCU readers blocking any grace period.
|
||||
* If the caller needs a reliable answer, it must disable hard irqs.
|
||||
*/
|
||||
static int rcu_preempt_blocked_readers_any(void)
|
||||
{
|
||||
return !list_empty(&rcu_preempt_ctrlblk.blkd_tasks);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for preempted RCU readers blocking the current grace period.
|
||||
* If the caller needs a reliable answer, it must disable hard irqs.
|
||||
*/
|
||||
static int rcu_preempt_blocked_readers_cgp(void)
|
||||
{
|
||||
return rcu_preempt_ctrlblk.gp_tasks != NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return true if another preemptible-RCU grace period is needed.
|
||||
*/
|
||||
static int rcu_preempt_needs_another_gp(void)
|
||||
{
|
||||
return *rcu_preempt_ctrlblk.rcb.curtail != NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return true if a preemptible-RCU grace period is in progress.
|
||||
* The caller must disable hardirqs.
|
||||
*/
|
||||
static int rcu_preempt_gp_in_progress(void)
|
||||
{
|
||||
return rcu_preempt_ctrlblk.completed != rcu_preempt_ctrlblk.gpnum;
|
||||
}
|
||||
|
||||
/*
|
||||
* Advance a ->blkd_tasks-list pointer to the next entry, instead
|
||||
* returning NULL if at the end of the list.
|
||||
*/
|
||||
static struct list_head *rcu_next_node_entry(struct task_struct *t)
|
||||
{
|
||||
struct list_head *np;
|
||||
|
||||
np = t->rcu_node_entry.next;
|
||||
if (np == &rcu_preempt_ctrlblk.blkd_tasks)
|
||||
np = NULL;
|
||||
return np;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
static void rcu_initiate_boost_trace(void);
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
/*
|
||||
* Dump additional statistice for TINY_PREEMPT_RCU.
|
||||
*/
|
||||
static void show_tiny_preempt_stats(struct seq_file *m)
|
||||
{
|
||||
seq_printf(m, "rcu_preempt: qlen=%ld gp=%lu g%u/p%u/c%u tasks=%c%c%c\n",
|
||||
rcu_preempt_ctrlblk.rcb.qlen,
|
||||
rcu_preempt_ctrlblk.n_grace_periods,
|
||||
rcu_preempt_ctrlblk.gpnum,
|
||||
rcu_preempt_ctrlblk.gpcpu,
|
||||
rcu_preempt_ctrlblk.completed,
|
||||
"T."[list_empty(&rcu_preempt_ctrlblk.blkd_tasks)],
|
||||
"N."[!rcu_preempt_ctrlblk.gp_tasks],
|
||||
"E."[!rcu_preempt_ctrlblk.exp_tasks]);
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
seq_printf(m, "%sttb=%c ntb=%lu neb=%lu nnb=%lu j=%04x bt=%04x\n",
|
||||
" ",
|
||||
"B."[!rcu_preempt_ctrlblk.boost_tasks],
|
||||
rcu_preempt_ctrlblk.n_tasks_boosted,
|
||||
rcu_preempt_ctrlblk.n_exp_boosts,
|
||||
rcu_preempt_ctrlblk.n_normal_boosts,
|
||||
(int)(jiffies & 0xffff),
|
||||
(int)(rcu_preempt_ctrlblk.boost_time & 0xffff));
|
||||
seq_printf(m, "%s: nt=%lu egt=%lu bt=%lu ny=%lu nos=%lu\n",
|
||||
" balk",
|
||||
rcu_preempt_ctrlblk.n_balk_blkd_tasks,
|
||||
rcu_preempt_ctrlblk.n_balk_exp_gp_tasks,
|
||||
rcu_preempt_ctrlblk.n_balk_boost_tasks,
|
||||
rcu_preempt_ctrlblk.n_balk_notyet,
|
||||
rcu_preempt_ctrlblk.n_balk_nos);
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
}
|
||||
|
||||
#endif /* #ifdef CONFIG_RCU_TRACE */
|
||||
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
|
||||
#include "rtmutex_common.h"
|
||||
|
||||
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
|
||||
|
||||
/* Controls for rcu_kthread() kthread. */
|
||||
static struct task_struct *rcu_kthread_task;
|
||||
static DECLARE_WAIT_QUEUE_HEAD(rcu_kthread_wq);
|
||||
static unsigned long have_rcu_kthread_work;
|
||||
|
||||
/*
|
||||
* Carry out RCU priority boosting on the task indicated by ->boost_tasks,
|
||||
* and advance ->boost_tasks to the next task in the ->blkd_tasks list.
|
||||
*/
|
||||
static int rcu_boost(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct rt_mutex mtx;
|
||||
struct task_struct *t;
|
||||
struct list_head *tb;
|
||||
|
||||
if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
|
||||
rcu_preempt_ctrlblk.exp_tasks == NULL)
|
||||
return 0; /* Nothing to boost. */
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
/*
|
||||
* Recheck with irqs disabled: all tasks in need of boosting
|
||||
* might exit their RCU read-side critical sections on their own
|
||||
* if we are preempted just before disabling irqs.
|
||||
*/
|
||||
if (rcu_preempt_ctrlblk.boost_tasks == NULL &&
|
||||
rcu_preempt_ctrlblk.exp_tasks == NULL) {
|
||||
local_irq_restore(flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Preferentially boost tasks blocking expedited grace periods.
|
||||
* This cannot starve the normal grace periods because a second
|
||||
* expedited grace period must boost all blocked tasks, including
|
||||
* those blocking the pre-existing normal grace period.
|
||||
*/
|
||||
if (rcu_preempt_ctrlblk.exp_tasks != NULL) {
|
||||
tb = rcu_preempt_ctrlblk.exp_tasks;
|
||||
RCU_TRACE(rcu_preempt_ctrlblk.n_exp_boosts++);
|
||||
} else {
|
||||
tb = rcu_preempt_ctrlblk.boost_tasks;
|
||||
RCU_TRACE(rcu_preempt_ctrlblk.n_normal_boosts++);
|
||||
}
|
||||
RCU_TRACE(rcu_preempt_ctrlblk.n_tasks_boosted++);
|
||||
|
||||
/*
|
||||
* We boost task t by manufacturing an rt_mutex that appears to
|
||||
* be held by task t. We leave a pointer to that rt_mutex where
|
||||
* task t can find it, and task t will release the mutex when it
|
||||
* exits its outermost RCU read-side critical section. Then
|
||||
* simply acquiring this artificial rt_mutex will boost task
|
||||
* t's priority. (Thanks to tglx for suggesting this approach!)
|
||||
*/
|
||||
t = container_of(tb, struct task_struct, rcu_node_entry);
|
||||
rt_mutex_init_proxy_locked(&mtx, t);
|
||||
t->rcu_boost_mutex = &mtx;
|
||||
local_irq_restore(flags);
|
||||
rt_mutex_lock(&mtx);
|
||||
rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
|
||||
|
||||
return ACCESS_ONCE(rcu_preempt_ctrlblk.boost_tasks) != NULL ||
|
||||
ACCESS_ONCE(rcu_preempt_ctrlblk.exp_tasks) != NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check to see if it is now time to start boosting RCU readers blocking
|
||||
* the current grace period, and, if so, tell the rcu_kthread_task to
|
||||
* start boosting them. If there is an expedited boost in progress,
|
||||
* we wait for it to complete.
|
||||
*
|
||||
* If there are no blocked readers blocking the current grace period,
|
||||
* return 0 to let the caller know, otherwise return 1. Note that this
|
||||
* return value is independent of whether or not boosting was done.
|
||||
*/
|
||||
static int rcu_initiate_boost(void)
|
||||
{
|
||||
if (!rcu_preempt_blocked_readers_cgp() &&
|
||||
rcu_preempt_ctrlblk.exp_tasks == NULL) {
|
||||
RCU_TRACE(rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++);
|
||||
return 0;
|
||||
}
|
||||
if (rcu_preempt_ctrlblk.exp_tasks != NULL ||
|
||||
(rcu_preempt_ctrlblk.gp_tasks != NULL &&
|
||||
rcu_preempt_ctrlblk.boost_tasks == NULL &&
|
||||
ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))) {
|
||||
if (rcu_preempt_ctrlblk.exp_tasks == NULL)
|
||||
rcu_preempt_ctrlblk.boost_tasks =
|
||||
rcu_preempt_ctrlblk.gp_tasks;
|
||||
invoke_rcu_callbacks();
|
||||
} else {
|
||||
RCU_TRACE(rcu_initiate_boost_trace());
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
|
||||
|
||||
/*
|
||||
* Do priority-boost accounting for the start of a new grace period.
|
||||
*/
|
||||
static void rcu_preempt_boost_start_gp(void)
|
||||
{
|
||||
rcu_preempt_ctrlblk.boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
/*
|
||||
* If there is no RCU priority boosting, we don't initiate boosting,
|
||||
* but we do indicate whether there are blocked readers blocking the
|
||||
* current grace period.
|
||||
*/
|
||||
static int rcu_initiate_boost(void)
|
||||
{
|
||||
return rcu_preempt_blocked_readers_cgp();
|
||||
}
|
||||
|
||||
/*
|
||||
* If there is no RCU priority boosting, nothing to do at grace-period start.
|
||||
*/
|
||||
static void rcu_preempt_boost_start_gp(void)
|
||||
{
|
||||
}
|
||||
|
||||
#endif /* else #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
/*
|
||||
* Record a preemptible-RCU quiescent state for the specified CPU. Note
|
||||
* that this just means that the task currently running on the CPU is
|
||||
* in a quiescent state. There might be any number of tasks blocked
|
||||
* while in an RCU read-side critical section.
|
||||
*
|
||||
* Unlike the other rcu_*_qs() functions, callers to this function
|
||||
* must disable irqs in order to protect the assignment to
|
||||
* ->rcu_read_unlock_special.
|
||||
*
|
||||
* Because this is a single-CPU implementation, the only way a grace
|
||||
* period can end is if the CPU is in a quiescent state. The reason is
|
||||
* that a blocked preemptible-RCU reader can exit its critical section
|
||||
* only if the CPU is running it at the time. Therefore, when the
|
||||
* last task blocking the current grace period exits its RCU read-side
|
||||
* critical section, neither the CPU nor blocked tasks will be stopping
|
||||
* the current grace period. (In contrast, SMP implementations
|
||||
* might have CPUs running in RCU read-side critical sections that
|
||||
* block later grace periods -- but this is not possible given only
|
||||
* one CPU.)
|
||||
*/
|
||||
static void rcu_preempt_cpu_qs(void)
|
||||
{
|
||||
/* Record both CPU and task as having responded to current GP. */
|
||||
rcu_preempt_ctrlblk.gpcpu = rcu_preempt_ctrlblk.gpnum;
|
||||
current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
|
||||
|
||||
/* If there is no GP then there is nothing more to do. */
|
||||
if (!rcu_preempt_gp_in_progress())
|
||||
return;
|
||||
/*
|
||||
* Check up on boosting. If there are readers blocking the
|
||||
* current grace period, leave.
|
||||
*/
|
||||
if (rcu_initiate_boost())
|
||||
return;
|
||||
|
||||
/* Advance callbacks. */
|
||||
rcu_preempt_ctrlblk.completed = rcu_preempt_ctrlblk.gpnum;
|
||||
rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.rcb.curtail;
|
||||
rcu_preempt_ctrlblk.rcb.curtail = rcu_preempt_ctrlblk.nexttail;
|
||||
|
||||
/* If there are no blocked readers, next GP is done instantly. */
|
||||
if (!rcu_preempt_blocked_readers_any())
|
||||
rcu_preempt_ctrlblk.rcb.donetail = rcu_preempt_ctrlblk.nexttail;
|
||||
|
||||
/* If there are done callbacks, cause them to be invoked. */
|
||||
if (*rcu_preempt_ctrlblk.rcb.donetail != NULL)
|
||||
invoke_rcu_callbacks();
|
||||
}
|
||||
|
||||
/*
|
||||
* Start a new RCU grace period if warranted. Hard irqs must be disabled.
|
||||
*/
|
||||
static void rcu_preempt_start_gp(void)
|
||||
{
|
||||
if (!rcu_preempt_gp_in_progress() && rcu_preempt_needs_another_gp()) {
|
||||
|
||||
/* Official start of GP. */
|
||||
rcu_preempt_ctrlblk.gpnum++;
|
||||
RCU_TRACE(rcu_preempt_ctrlblk.n_grace_periods++);
|
||||
reset_cpu_stall_ticks(&rcu_preempt_ctrlblk.rcb);
|
||||
|
||||
/* Any blocked RCU readers block new GP. */
|
||||
if (rcu_preempt_blocked_readers_any())
|
||||
rcu_preempt_ctrlblk.gp_tasks =
|
||||
rcu_preempt_ctrlblk.blkd_tasks.next;
|
||||
|
||||
/* Set up for RCU priority boosting. */
|
||||
rcu_preempt_boost_start_gp();
|
||||
|
||||
/* If there is no running reader, CPU is done with GP. */
|
||||
if (!rcu_preempt_running_reader())
|
||||
rcu_preempt_cpu_qs();
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* We have entered the scheduler, and the current task might soon be
|
||||
* context-switched away from. If this task is in an RCU read-side
|
||||
* critical section, we will no longer be able to rely on the CPU to
|
||||
* record that fact, so we enqueue the task on the blkd_tasks list.
|
||||
* If the task started after the current grace period began, as recorded
|
||||
* by ->gpcpu, we enqueue at the beginning of the list. Otherwise
|
||||
* before the element referenced by ->gp_tasks (or at the tail if
|
||||
* ->gp_tasks is NULL) and point ->gp_tasks at the newly added element.
|
||||
* The task will dequeue itself when it exits the outermost enclosing
|
||||
* RCU read-side critical section. Therefore, the current grace period
|
||||
* cannot be permitted to complete until the ->gp_tasks pointer becomes
|
||||
* NULL.
|
||||
*
|
||||
* Caller must disable preemption.
|
||||
*/
|
||||
void rcu_preempt_note_context_switch(void)
|
||||
{
|
||||
struct task_struct *t = current;
|
||||
unsigned long flags;
|
||||
|
||||
local_irq_save(flags); /* must exclude scheduler_tick(). */
|
||||
if (rcu_preempt_running_reader() > 0 &&
|
||||
(t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
|
||||
|
||||
/* Possibly blocking in an RCU read-side critical section. */
|
||||
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
|
||||
|
||||
/*
|
||||
* If this CPU has already checked in, then this task
|
||||
* will hold up the next grace period rather than the
|
||||
* current grace period. Queue the task accordingly.
|
||||
* If the task is queued for the current grace period
|
||||
* (i.e., this CPU has not yet passed through a quiescent
|
||||
* state for the current grace period), then as long
|
||||
* as that task remains queued, the current grace period
|
||||
* cannot end.
|
||||
*/
|
||||
list_add(&t->rcu_node_entry, &rcu_preempt_ctrlblk.blkd_tasks);
|
||||
if (rcu_cpu_blocking_cur_gp())
|
||||
rcu_preempt_ctrlblk.gp_tasks = &t->rcu_node_entry;
|
||||
} else if (rcu_preempt_running_reader() < 0 &&
|
||||
t->rcu_read_unlock_special) {
|
||||
/*
|
||||
* Complete exit from RCU read-side critical section on
|
||||
* behalf of preempted instance of __rcu_read_unlock().
|
||||
*/
|
||||
rcu_read_unlock_special(t);
|
||||
}
|
||||
|
||||
/*
|
||||
* Either we were not in an RCU read-side critical section to
|
||||
* begin with, or we have now recorded that critical section
|
||||
* globally. Either way, we can now note a quiescent state
|
||||
* for this CPU. Again, if we were in an RCU read-side critical
|
||||
* section, and if that critical section was blocking the current
|
||||
* grace period, then the fact that the task has been enqueued
|
||||
* means that current grace period continues to be blocked.
|
||||
*/
|
||||
rcu_preempt_cpu_qs();
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Handle special cases during rcu_read_unlock(), such as needing to
|
||||
* notify RCU core processing or task having blocked during the RCU
|
||||
* read-side critical section.
|
||||
*/
|
||||
void rcu_read_unlock_special(struct task_struct *t)
|
||||
{
|
||||
int empty;
|
||||
int empty_exp;
|
||||
unsigned long flags;
|
||||
struct list_head *np;
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
struct rt_mutex *rbmp = NULL;
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
int special;
|
||||
|
||||
/*
|
||||
* NMI handlers cannot block and cannot safely manipulate state.
|
||||
* They therefore cannot possibly be special, so just leave.
|
||||
*/
|
||||
if (in_nmi())
|
||||
return;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
/*
|
||||
* If RCU core is waiting for this CPU to exit critical section,
|
||||
* let it know that we have done so.
|
||||
*/
|
||||
special = t->rcu_read_unlock_special;
|
||||
if (special & RCU_READ_UNLOCK_NEED_QS)
|
||||
rcu_preempt_cpu_qs();
|
||||
|
||||
/* Hardware IRQ handlers cannot block. */
|
||||
if (in_irq() || in_serving_softirq()) {
|
||||
local_irq_restore(flags);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Clean up if blocked during RCU read-side critical section. */
|
||||
if (special & RCU_READ_UNLOCK_BLOCKED) {
|
||||
t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
|
||||
|
||||
/*
|
||||
* Remove this task from the ->blkd_tasks list and adjust
|
||||
* any pointers that might have been referencing it.
|
||||
*/
|
||||
empty = !rcu_preempt_blocked_readers_cgp();
|
||||
empty_exp = rcu_preempt_ctrlblk.exp_tasks == NULL;
|
||||
np = rcu_next_node_entry(t);
|
||||
list_del_init(&t->rcu_node_entry);
|
||||
if (&t->rcu_node_entry == rcu_preempt_ctrlblk.gp_tasks)
|
||||
rcu_preempt_ctrlblk.gp_tasks = np;
|
||||
if (&t->rcu_node_entry == rcu_preempt_ctrlblk.exp_tasks)
|
||||
rcu_preempt_ctrlblk.exp_tasks = np;
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
if (&t->rcu_node_entry == rcu_preempt_ctrlblk.boost_tasks)
|
||||
rcu_preempt_ctrlblk.boost_tasks = np;
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
/*
|
||||
* If this was the last task on the current list, and if
|
||||
* we aren't waiting on the CPU, report the quiescent state
|
||||
* and start a new grace period if needed.
|
||||
*/
|
||||
if (!empty && !rcu_preempt_blocked_readers_cgp()) {
|
||||
rcu_preempt_cpu_qs();
|
||||
rcu_preempt_start_gp();
|
||||
}
|
||||
|
||||
/*
|
||||
* If this was the last task on the expedited lists,
|
||||
* then we need wake up the waiting task.
|
||||
*/
|
||||
if (!empty_exp && rcu_preempt_ctrlblk.exp_tasks == NULL)
|
||||
rcu_report_exp_done();
|
||||
}
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
/* Unboost self if was boosted. */
|
||||
if (t->rcu_boost_mutex != NULL) {
|
||||
rbmp = t->rcu_boost_mutex;
|
||||
t->rcu_boost_mutex = NULL;
|
||||
rt_mutex_unlock(rbmp);
|
||||
}
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Check for a quiescent state from the current CPU. When a task blocks,
|
||||
* the task is recorded in the rcu_preempt_ctrlblk structure, which is
|
||||
* checked elsewhere. This is called from the scheduling-clock interrupt.
|
||||
*
|
||||
* Caller must disable hard irqs.
|
||||
*/
|
||||
static void rcu_preempt_check_callbacks(void)
|
||||
{
|
||||
struct task_struct *t = current;
|
||||
|
||||
if (rcu_preempt_gp_in_progress() &&
|
||||
(!rcu_preempt_running_reader() ||
|
||||
!rcu_cpu_blocking_cur_gp()))
|
||||
rcu_preempt_cpu_qs();
|
||||
if (&rcu_preempt_ctrlblk.rcb.rcucblist !=
|
||||
rcu_preempt_ctrlblk.rcb.donetail)
|
||||
invoke_rcu_callbacks();
|
||||
if (rcu_preempt_gp_in_progress() &&
|
||||
rcu_cpu_blocking_cur_gp() &&
|
||||
rcu_preempt_running_reader() > 0)
|
||||
t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
|
||||
}
|
||||
|
||||
/*
|
||||
* TINY_PREEMPT_RCU has an extra callback-list tail pointer to
|
||||
* update, so this is invoked from rcu_process_callbacks() to
|
||||
* handle that case. Of course, it is invoked for all flavors of
|
||||
* RCU, but RCU callbacks can appear only on one of the lists, and
|
||||
* neither ->nexttail nor ->donetail can possibly be NULL, so there
|
||||
* is no need for an explicit check.
|
||||
*/
|
||||
static void rcu_preempt_remove_callbacks(struct rcu_ctrlblk *rcp)
|
||||
{
|
||||
if (rcu_preempt_ctrlblk.nexttail == rcp->donetail)
|
||||
rcu_preempt_ctrlblk.nexttail = &rcp->rcucblist;
|
||||
}
|
||||
|
||||
/*
|
||||
* Process callbacks for preemptible RCU.
|
||||
*/
|
||||
static void rcu_preempt_process_callbacks(void)
|
||||
{
|
||||
__rcu_process_callbacks(&rcu_preempt_ctrlblk.rcb);
|
||||
}
|
||||
|
||||
/*
|
||||
* Queue a preemptible -RCU callback for invocation after a grace period.
|
||||
*/
|
||||
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
debug_rcu_head_queue(head);
|
||||
head->func = func;
|
||||
head->next = NULL;
|
||||
|
||||
local_irq_save(flags);
|
||||
*rcu_preempt_ctrlblk.nexttail = head;
|
||||
rcu_preempt_ctrlblk.nexttail = &head->next;
|
||||
RCU_TRACE(rcu_preempt_ctrlblk.rcb.qlen++);
|
||||
rcu_preempt_start_gp(); /* checks to see if GP needed. */
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(call_rcu);
|
||||
|
||||
/*
|
||||
* synchronize_rcu - wait until a grace period has elapsed.
|
||||
*
|
||||
* Control will return to the caller some time after a full grace
|
||||
* period has elapsed, in other words after all currently executing RCU
|
||||
* read-side critical sections have completed. RCU read-side critical
|
||||
* sections are delimited by rcu_read_lock() and rcu_read_unlock(),
|
||||
* and may be nested.
|
||||
*/
|
||||
void synchronize_rcu(void)
|
||||
{
|
||||
rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
|
||||
!lock_is_held(&rcu_lock_map) &&
|
||||
!lock_is_held(&rcu_sched_lock_map),
|
||||
"Illegal synchronize_rcu() in RCU read-side critical section");
|
||||
|
||||
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
||||
if (!rcu_scheduler_active)
|
||||
return;
|
||||
#endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
|
||||
|
||||
WARN_ON_ONCE(rcu_preempt_running_reader());
|
||||
if (!rcu_preempt_blocked_readers_any())
|
||||
return;
|
||||
|
||||
/* Once we get past the fastpath checks, same code as rcu_barrier(). */
|
||||
if (rcu_expedited)
|
||||
synchronize_rcu_expedited();
|
||||
else
|
||||
rcu_barrier();
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(synchronize_rcu);
|
||||
|
||||
static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
|
||||
static unsigned long sync_rcu_preempt_exp_count;
|
||||
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
|
||||
|
||||
/*
|
||||
* Return non-zero if there are any tasks in RCU read-side critical
|
||||
* sections blocking the current preemptible-RCU expedited grace period.
|
||||
* If there is no preemptible-RCU expedited grace period currently in
|
||||
* progress, returns zero unconditionally.
|
||||
*/
|
||||
static int rcu_preempted_readers_exp(void)
|
||||
{
|
||||
return rcu_preempt_ctrlblk.exp_tasks != NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Report the exit from RCU read-side critical section for the last task
|
||||
* that queued itself during or before the current expedited preemptible-RCU
|
||||
* grace period.
|
||||
*/
|
||||
static void rcu_report_exp_done(void)
|
||||
{
|
||||
wake_up(&sync_rcu_preempt_exp_wq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Wait for an rcu-preempt grace period, but expedite it. The basic idea
|
||||
* is to rely in the fact that there is but one CPU, and that it is
|
||||
* illegal for a task to invoke synchronize_rcu_expedited() while in a
|
||||
* preemptible-RCU read-side critical section. Therefore, any such
|
||||
* critical sections must correspond to blocked tasks, which must therefore
|
||||
* be on the ->blkd_tasks list. So just record the current head of the
|
||||
* list in the ->exp_tasks pointer, and wait for all tasks including and
|
||||
* after the task pointed to by ->exp_tasks to drain.
|
||||
*/
|
||||
void synchronize_rcu_expedited(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct rcu_preempt_ctrlblk *rpcp = &rcu_preempt_ctrlblk;
|
||||
unsigned long snap;
|
||||
|
||||
barrier(); /* ensure prior action seen before grace period. */
|
||||
|
||||
WARN_ON_ONCE(rcu_preempt_running_reader());
|
||||
|
||||
/*
|
||||
* Acquire lock so that there is only one preemptible RCU grace
|
||||
* period in flight. Of course, if someone does the expedited
|
||||
* grace period for us while we are acquiring the lock, just leave.
|
||||
*/
|
||||
snap = sync_rcu_preempt_exp_count + 1;
|
||||
mutex_lock(&sync_rcu_preempt_exp_mutex);
|
||||
if (ULONG_CMP_LT(snap, sync_rcu_preempt_exp_count))
|
||||
goto unlock_mb_ret; /* Others did our work for us. */
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
/*
|
||||
* All RCU readers have to already be on blkd_tasks because
|
||||
* we cannot legally be executing in an RCU read-side critical
|
||||
* section.
|
||||
*/
|
||||
|
||||
/* Snapshot current head of ->blkd_tasks list. */
|
||||
rpcp->exp_tasks = rpcp->blkd_tasks.next;
|
||||
if (rpcp->exp_tasks == &rpcp->blkd_tasks)
|
||||
rpcp->exp_tasks = NULL;
|
||||
|
||||
/* Wait for tail of ->blkd_tasks list to drain. */
|
||||
if (!rcu_preempted_readers_exp()) {
|
||||
local_irq_restore(flags);
|
||||
} else {
|
||||
rcu_initiate_boost();
|
||||
local_irq_restore(flags);
|
||||
wait_event(sync_rcu_preempt_exp_wq,
|
||||
!rcu_preempted_readers_exp());
|
||||
}
|
||||
|
||||
/* Clean up and exit. */
|
||||
barrier(); /* ensure expedited GP seen before counter increment. */
|
||||
sync_rcu_preempt_exp_count++;
|
||||
unlock_mb_ret:
|
||||
mutex_unlock(&sync_rcu_preempt_exp_mutex);
|
||||
barrier(); /* ensure subsequent action seen after grace period. */
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
|
||||
|
||||
/*
|
||||
* Does preemptible RCU need the CPU to stay out of dynticks mode?
|
||||
*/
|
||||
int rcu_preempt_needs_cpu(void)
|
||||
{
|
||||
return rcu_preempt_ctrlblk.rcb.rcucblist != NULL;
|
||||
}
|
||||
|
||||
#else /* #ifdef CONFIG_TINY_PREEMPT_RCU */
|
||||
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
|
||||
/*
|
||||
|
@ -895,79 +138,6 @@ static void rcu_preempt_process_callbacks(void)
|
|||
{
|
||||
}
|
||||
|
||||
#endif /* #else #ifdef CONFIG_TINY_PREEMPT_RCU */
|
||||
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
|
||||
/*
|
||||
* Wake up rcu_kthread() to process callbacks now eligible for invocation
|
||||
* or to boost readers.
|
||||
*/
|
||||
static void invoke_rcu_callbacks(void)
|
||||
{
|
||||
have_rcu_kthread_work = 1;
|
||||
if (rcu_kthread_task != NULL)
|
||||
wake_up(&rcu_kthread_wq);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
|
||||
/*
|
||||
* Is the current CPU running the RCU-callbacks kthread?
|
||||
* Caller must have preemption disabled.
|
||||
*/
|
||||
static bool rcu_is_callbacks_kthread(void)
|
||||
{
|
||||
return rcu_kthread_task == current;
|
||||
}
|
||||
|
||||
#endif /* #ifdef CONFIG_RCU_TRACE */
|
||||
|
||||
/*
|
||||
* This kthread invokes RCU callbacks whose grace periods have
|
||||
* elapsed. It is awakened as needed, and takes the place of the
|
||||
* RCU_SOFTIRQ that is used for this purpose when boosting is disabled.
|
||||
* This is a kthread, but it is never stopped, at least not until
|
||||
* the system goes down.
|
||||
*/
|
||||
static int rcu_kthread(void *arg)
|
||||
{
|
||||
unsigned long work;
|
||||
unsigned long morework;
|
||||
unsigned long flags;
|
||||
|
||||
for (;;) {
|
||||
wait_event_interruptible(rcu_kthread_wq,
|
||||
have_rcu_kthread_work != 0);
|
||||
morework = rcu_boost();
|
||||
local_irq_save(flags);
|
||||
work = have_rcu_kthread_work;
|
||||
have_rcu_kthread_work = morework;
|
||||
local_irq_restore(flags);
|
||||
if (work)
|
||||
rcu_process_callbacks(NULL);
|
||||
schedule_timeout_interruptible(1); /* Leave CPU for others. */
|
||||
}
|
||||
|
||||
return 0; /* Not reached, but needed to shut gcc up. */
|
||||
}
|
||||
|
||||
/*
|
||||
* Spawn the kthread that invokes RCU callbacks.
|
||||
*/
|
||||
static int __init rcu_spawn_kthreads(void)
|
||||
{
|
||||
struct sched_param sp;
|
||||
|
||||
rcu_kthread_task = kthread_run(rcu_kthread, NULL, "rcu_kthread");
|
||||
sp.sched_priority = RCU_BOOST_PRIO;
|
||||
sched_setscheduler_nocheck(rcu_kthread_task, SCHED_FIFO, &sp);
|
||||
return 0;
|
||||
}
|
||||
early_initcall(rcu_spawn_kthreads);
|
||||
|
||||
#else /* #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
/* Hold off callback invocation until early_initcall() time. */
|
||||
static int rcu_scheduler_fully_active __read_mostly;
|
||||
|
||||
|
@ -1001,8 +171,6 @@ static int __init rcu_scheduler_really_started(void)
|
|||
}
|
||||
early_initcall(rcu_scheduler_really_started);
|
||||
|
||||
#endif /* #else #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
#ifdef CONFIG_DEBUG_LOCK_ALLOC
|
||||
#include <linux/kernel_stat.h>
|
||||
|
||||
|
@ -1020,25 +188,6 @@ void __init rcu_scheduler_starting(void)
|
|||
|
||||
#ifdef CONFIG_RCU_TRACE
|
||||
|
||||
#ifdef CONFIG_RCU_BOOST
|
||||
|
||||
static void rcu_initiate_boost_trace(void)
|
||||
{
|
||||
if (list_empty(&rcu_preempt_ctrlblk.blkd_tasks))
|
||||
rcu_preempt_ctrlblk.n_balk_blkd_tasks++;
|
||||
else if (rcu_preempt_ctrlblk.gp_tasks == NULL &&
|
||||
rcu_preempt_ctrlblk.exp_tasks == NULL)
|
||||
rcu_preempt_ctrlblk.n_balk_exp_gp_tasks++;
|
||||
else if (rcu_preempt_ctrlblk.boost_tasks != NULL)
|
||||
rcu_preempt_ctrlblk.n_balk_boost_tasks++;
|
||||
else if (!ULONG_CMP_GE(jiffies, rcu_preempt_ctrlblk.boost_time))
|
||||
rcu_preempt_ctrlblk.n_balk_notyet++;
|
||||
else
|
||||
rcu_preempt_ctrlblk.n_balk_nos++;
|
||||
}
|
||||
|
||||
#endif /* #ifdef CONFIG_RCU_BOOST */
|
||||
|
||||
static void rcu_trace_sub_qlen(struct rcu_ctrlblk *rcp, int n)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
@ -1105,9 +254,6 @@ MODULE_LICENSE("GPL");
|
|||
|
||||
static void check_cpu_stall_preempt(void)
|
||||
{
|
||||
#ifdef CONFIG_TINY_PREEMPT_RCU
|
||||
check_cpu_stall(&rcu_preempt_ctrlblk.rcb);
|
||||
#endif /* #ifdef CONFIG_TINY_PREEMPT_RCU */
|
||||
}
|
||||
|
||||
#endif /* #ifdef CONFIG_RCU_TRACE */
|
||||
|
|
Загрузка…
Ссылка в новой задаче