[ALSA] Add ASoC drivers for the Freescale MPC8610 SoC
Add the ASoC drivers for the Freescale MPC8610 SoC and the MPC8610 HPCD reference board. Signed-off-by: Timur Tabi <timur@freescale.com> Signed-off-by: Takashi Iwai <tiwai@suse.de> Signed-off-by: Jaroslav Kysela <perex@perex.cz>
This commit is contained in:
Родитель
ce22e03e62
Коммит
17467f2339
|
@ -28,6 +28,7 @@ source "sound/soc/at91/Kconfig"
|
|||
source "sound/soc/pxa/Kconfig"
|
||||
source "sound/soc/s3c24xx/Kconfig"
|
||||
source "sound/soc/sh/Kconfig"
|
||||
source "sound/soc/fsl/Kconfig"
|
||||
|
||||
# Supported codecs
|
||||
source "sound/soc/codecs/Kconfig"
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
snd-soc-core-objs := soc-core.o soc-dapm.o
|
||||
|
||||
obj-$(CONFIG_SND_SOC) += snd-soc-core.o
|
||||
obj-$(CONFIG_SND_SOC) += codecs/ at91/ pxa/ s3c24xx/ sh/
|
||||
obj-$(CONFIG_SND_SOC) += codecs/ at91/ pxa/ s3c24xx/ sh/ fsl/
|
||||
|
|
|
@ -0,0 +1,20 @@
|
|||
menu "ALSA SoC audio for Freescale SOCs"
|
||||
|
||||
config SND_SOC_MPC8610
|
||||
bool "ALSA SoC support for the MPC8610 SOC"
|
||||
depends on SND_SOC && MPC8610_HPCD
|
||||
default y if MPC8610
|
||||
help
|
||||
Say Y if you want to add support for codecs attached to the SSI
|
||||
device on an MPC8610.
|
||||
|
||||
config SND_SOC_MPC8610_HPCD
|
||||
bool "ALSA SoC support for the Freescale MPC8610 HPCD board"
|
||||
depends on SND_SOC_MPC8610
|
||||
select SND_SOC_CS4270
|
||||
select SND_SOC_CS4270_VD33_ERRATA
|
||||
default y if MPC8610_HPCD
|
||||
help
|
||||
Say Y if you want to enable audio on the Freescale MPC8610 HPCD.
|
||||
|
||||
endmenu
|
|
@ -0,0 +1,6 @@
|
|||
# MPC8610 HPCD Machine Support
|
||||
obj-$(CONFIG_SND_SOC_MPC8610_HPCD) += mpc8610_hpcd.o
|
||||
|
||||
# MPC8610 Platform Support
|
||||
obj-$(CONFIG_SND_SOC_MPC8610) += fsl_ssi.o fsl_dma.o
|
||||
|
|
@ -0,0 +1,839 @@
|
|||
/*
|
||||
* Freescale DMA ALSA SoC PCM driver
|
||||
*
|
||||
* Author: Timur Tabi <timur@freescale.com>
|
||||
*
|
||||
* Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
|
||||
* under the terms of the GNU General Public License version 2. This
|
||||
* program is licensed "as is" without any warranty of any kind, whether
|
||||
* express or implied.
|
||||
*
|
||||
* This driver implements ASoC support for the Elo DMA controller, which is
|
||||
* the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
|
||||
* the PCM driver is what handles the DMA buffer.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/dma-mapping.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/delay.h>
|
||||
|
||||
#include <sound/driver.h>
|
||||
#include <sound/core.h>
|
||||
#include <sound/pcm.h>
|
||||
#include <sound/pcm_params.h>
|
||||
#include <sound/soc.h>
|
||||
|
||||
#include <asm/io.h>
|
||||
|
||||
#include "fsl_dma.h"
|
||||
|
||||
/*
|
||||
* The formats that the DMA controller supports, which is anything
|
||||
* that is 8, 16, or 32 bits.
|
||||
*/
|
||||
#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
|
||||
SNDRV_PCM_FMTBIT_U8 | \
|
||||
SNDRV_PCM_FMTBIT_S16_LE | \
|
||||
SNDRV_PCM_FMTBIT_S16_BE | \
|
||||
SNDRV_PCM_FMTBIT_U16_LE | \
|
||||
SNDRV_PCM_FMTBIT_U16_BE | \
|
||||
SNDRV_PCM_FMTBIT_S24_LE | \
|
||||
SNDRV_PCM_FMTBIT_S24_BE | \
|
||||
SNDRV_PCM_FMTBIT_U24_LE | \
|
||||
SNDRV_PCM_FMTBIT_U24_BE | \
|
||||
SNDRV_PCM_FMTBIT_S32_LE | \
|
||||
SNDRV_PCM_FMTBIT_S32_BE | \
|
||||
SNDRV_PCM_FMTBIT_U32_LE | \
|
||||
SNDRV_PCM_FMTBIT_U32_BE)
|
||||
|
||||
#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
|
||||
SNDRV_PCM_RATE_CONTINUOUS)
|
||||
|
||||
/* DMA global data. This structure is used by fsl_dma_open() to determine
|
||||
* which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
|
||||
* not allow the machine driver to provide this information to the PCM
|
||||
* driver in advance, and there's no way to differentiate between the two
|
||||
* DMA controllers. So for now, this driver only supports one SSI device
|
||||
* using two DMA channels. We cannot support multiple DMA devices.
|
||||
*
|
||||
* ssi_stx_phys: bus address of SSI STX register
|
||||
* ssi_srx_phys: bus address of SSI SRX register
|
||||
* dma_channel: pointer to the DMA channel's registers
|
||||
* irq: IRQ for this DMA channel
|
||||
* assigned: set to 1 if that DMA channel is assigned to a substream
|
||||
*/
|
||||
static struct {
|
||||
dma_addr_t ssi_stx_phys;
|
||||
dma_addr_t ssi_srx_phys;
|
||||
struct ccsr_dma_channel __iomem *dma_channel[2];
|
||||
unsigned int irq[2];
|
||||
unsigned int assigned[2];
|
||||
} dma_global_data;
|
||||
|
||||
/*
|
||||
* The number of DMA links to use. Two is the bare minimum, but if you
|
||||
* have really small links you might need more.
|
||||
*/
|
||||
#define NUM_DMA_LINKS 2
|
||||
|
||||
/** fsl_dma_private: p-substream DMA data
|
||||
*
|
||||
* Each substream has a 1-to-1 association with a DMA channel.
|
||||
*
|
||||
* The link[] array is first because it needs to be aligned on a 32-byte
|
||||
* boundary, so putting it first will ensure alignment without padding the
|
||||
* structure.
|
||||
*
|
||||
* @link[]: array of link descriptors
|
||||
* @controller_id: which DMA controller (0, 1, ...)
|
||||
* @channel_id: which DMA channel on the controller (0, 1, 2, ...)
|
||||
* @dma_channel: pointer to the DMA channel's registers
|
||||
* @irq: IRQ for this DMA channel
|
||||
* @substream: pointer to the substream object, needed by the ISR
|
||||
* @ssi_sxx_phys: bus address of the STX or SRX register to use
|
||||
* @ld_buf_phys: physical address of the LD buffer
|
||||
* @current_link: index into link[] of the link currently being processed
|
||||
* @dma_buf_phys: physical address of the DMA buffer
|
||||
* @dma_buf_next: physical address of the next period to process
|
||||
* @dma_buf_end: physical address of the byte after the end of the DMA
|
||||
* @buffer period_size: the size of a single period
|
||||
* @num_periods: the number of periods in the DMA buffer
|
||||
*/
|
||||
struct fsl_dma_private {
|
||||
struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
|
||||
unsigned int controller_id;
|
||||
unsigned int channel_id;
|
||||
struct ccsr_dma_channel __iomem *dma_channel;
|
||||
unsigned int irq;
|
||||
struct snd_pcm_substream *substream;
|
||||
dma_addr_t ssi_sxx_phys;
|
||||
dma_addr_t ld_buf_phys;
|
||||
unsigned int current_link;
|
||||
dma_addr_t dma_buf_phys;
|
||||
dma_addr_t dma_buf_next;
|
||||
dma_addr_t dma_buf_end;
|
||||
size_t period_size;
|
||||
unsigned int num_periods;
|
||||
};
|
||||
|
||||
/**
|
||||
* fsl_dma_hardare: define characteristics of the PCM hardware.
|
||||
*
|
||||
* The PCM hardware is the Freescale DMA controller. This structure defines
|
||||
* the capabilities of that hardware.
|
||||
*
|
||||
* Since the sampling rate and data format are not controlled by the DMA
|
||||
* controller, we specify no limits for those values. The only exception is
|
||||
* period_bytes_min, which is set to a reasonably low value to prevent the
|
||||
* DMA controller from generating too many interrupts per second.
|
||||
*
|
||||
* Since each link descriptor has a 32-bit byte count field, we set
|
||||
* period_bytes_max to the largest 32-bit number. We also have no maximum
|
||||
* number of periods.
|
||||
*/
|
||||
static const struct snd_pcm_hardware fsl_dma_hardware = {
|
||||
|
||||
.info = SNDRV_PCM_INFO_INTERLEAVED,
|
||||
.formats = FSLDMA_PCM_FORMATS,
|
||||
.rates = FSLDMA_PCM_RATES,
|
||||
.rate_min = 5512,
|
||||
.rate_max = 192000,
|
||||
.period_bytes_min = 512, /* A reasonable limit */
|
||||
.period_bytes_max = (u32) -1,
|
||||
.periods_min = NUM_DMA_LINKS,
|
||||
.periods_max = (unsigned int) -1,
|
||||
.buffer_bytes_max = 128 * 1024, /* A reasonable limit */
|
||||
};
|
||||
|
||||
/**
|
||||
* fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
|
||||
*
|
||||
* This function should be called by the ISR whenever the DMA controller
|
||||
* halts data transfer.
|
||||
*/
|
||||
static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
snd_pcm_stream_lock_irqsave(substream, flags);
|
||||
|
||||
if (snd_pcm_running(substream))
|
||||
snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
|
||||
|
||||
snd_pcm_stream_unlock_irqrestore(substream, flags);
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_update_pointers - update LD pointers to point to the next period
|
||||
*
|
||||
* As each period is completed, this function changes the the link
|
||||
* descriptor pointers for that period to point to the next period.
|
||||
*/
|
||||
static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
|
||||
{
|
||||
struct fsl_dma_link_descriptor *link =
|
||||
&dma_private->link[dma_private->current_link];
|
||||
|
||||
/* Update our link descriptors to point to the next period */
|
||||
if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
link->source_addr =
|
||||
cpu_to_be32(dma_private->dma_buf_next);
|
||||
else
|
||||
link->dest_addr =
|
||||
cpu_to_be32(dma_private->dma_buf_next);
|
||||
|
||||
/* Update our variables for next time */
|
||||
dma_private->dma_buf_next += dma_private->period_size;
|
||||
|
||||
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
||||
|
||||
if (++dma_private->current_link >= NUM_DMA_LINKS)
|
||||
dma_private->current_link = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_isr: interrupt handler for the DMA controller
|
||||
*
|
||||
* @irq: IRQ of the DMA channel
|
||||
* @dev_id: pointer to the dma_private structure for this DMA channel
|
||||
*/
|
||||
static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
|
||||
{
|
||||
struct fsl_dma_private *dma_private = dev_id;
|
||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
||||
irqreturn_t ret = IRQ_NONE;
|
||||
u32 sr, sr2 = 0;
|
||||
|
||||
/* We got an interrupt, so read the status register to see what we
|
||||
were interrupted for.
|
||||
*/
|
||||
sr = in_be32(&dma_channel->sr);
|
||||
|
||||
if (sr & CCSR_DMA_SR_TE) {
|
||||
dev_err(dma_private->substream->pcm->card->dev,
|
||||
"DMA transmit error (controller=%u channel=%u irq=%u\n",
|
||||
dma_private->controller_id,
|
||||
dma_private->channel_id, irq);
|
||||
fsl_dma_abort_stream(dma_private->substream);
|
||||
sr2 |= CCSR_DMA_SR_TE;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sr & CCSR_DMA_SR_CH)
|
||||
ret = IRQ_HANDLED;
|
||||
|
||||
if (sr & CCSR_DMA_SR_PE) {
|
||||
dev_err(dma_private->substream->pcm->card->dev,
|
||||
"DMA%u programming error (channel=%u irq=%u)\n",
|
||||
dma_private->controller_id,
|
||||
dma_private->channel_id, irq);
|
||||
fsl_dma_abort_stream(dma_private->substream);
|
||||
sr2 |= CCSR_DMA_SR_PE;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sr & CCSR_DMA_SR_EOLNI) {
|
||||
sr2 |= CCSR_DMA_SR_EOLNI;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sr & CCSR_DMA_SR_CB)
|
||||
ret = IRQ_HANDLED;
|
||||
|
||||
if (sr & CCSR_DMA_SR_EOSI) {
|
||||
struct snd_pcm_substream *substream = dma_private->substream;
|
||||
|
||||
/* Tell ALSA we completed a period. */
|
||||
snd_pcm_period_elapsed(substream);
|
||||
|
||||
/*
|
||||
* Update our link descriptors to point to the next period. We
|
||||
* only need to do this if the number of periods is not equal to
|
||||
* the number of links.
|
||||
*/
|
||||
if (dma_private->num_periods != NUM_DMA_LINKS)
|
||||
fsl_dma_update_pointers(dma_private);
|
||||
|
||||
sr2 |= CCSR_DMA_SR_EOSI;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sr & CCSR_DMA_SR_EOLSI) {
|
||||
sr2 |= CCSR_DMA_SR_EOLSI;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
/* Clear the bits that we set */
|
||||
if (sr2)
|
||||
out_be32(&dma_channel->sr, sr2);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_new: initialize this PCM driver.
|
||||
*
|
||||
* This function is called when the codec driver calls snd_soc_new_pcms(),
|
||||
* once for each .dai_link in the machine driver's snd_soc_machine
|
||||
* structure.
|
||||
*/
|
||||
static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
|
||||
struct snd_pcm *pcm)
|
||||
{
|
||||
static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
|
||||
int ret;
|
||||
|
||||
if (!card->dev->dma_mask)
|
||||
card->dev->dma_mask = &fsl_dma_dmamask;
|
||||
|
||||
if (!card->dev->coherent_dma_mask)
|
||||
card->dev->coherent_dma_mask = fsl_dma_dmamask;
|
||||
|
||||
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
|
||||
fsl_dma_hardware.buffer_bytes_max,
|
||||
&pcm->streams[0].substream->dma_buffer);
|
||||
if (ret) {
|
||||
dev_err(card->dev,
|
||||
"Can't allocate playback DMA buffer (size=%u)\n",
|
||||
fsl_dma_hardware.buffer_bytes_max);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
|
||||
fsl_dma_hardware.buffer_bytes_max,
|
||||
&pcm->streams[1].substream->dma_buffer);
|
||||
if (ret) {
|
||||
snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
|
||||
dev_err(card->dev,
|
||||
"Can't allocate capture DMA buffer (size=%u)\n",
|
||||
fsl_dma_hardware.buffer_bytes_max);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_open: open a new substream.
|
||||
*
|
||||
* Each substream has its own DMA buffer.
|
||||
*/
|
||||
static int fsl_dma_open(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private;
|
||||
dma_addr_t ld_buf_phys;
|
||||
unsigned int channel;
|
||||
int ret = 0;
|
||||
|
||||
/*
|
||||
* Reject any DMA buffer whose size is not a multiple of the period
|
||||
* size. We need to make sure that the DMA buffer can be evenly divided
|
||||
* into periods.
|
||||
*/
|
||||
ret = snd_pcm_hw_constraint_integer(runtime,
|
||||
SNDRV_PCM_HW_PARAM_PERIODS);
|
||||
if (ret < 0) {
|
||||
dev_err(substream->pcm->card->dev, "invalid buffer size\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
|
||||
|
||||
if (dma_global_data.assigned[channel]) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"DMA channel already assigned\n");
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
dma_private = dma_alloc_coherent(substream->pcm->dev,
|
||||
sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
|
||||
if (!dma_private) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"can't allocate DMA private data\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
|
||||
else
|
||||
dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
|
||||
|
||||
dma_private->dma_channel = dma_global_data.dma_channel[channel];
|
||||
dma_private->irq = dma_global_data.irq[channel];
|
||||
dma_private->substream = substream;
|
||||
dma_private->ld_buf_phys = ld_buf_phys;
|
||||
dma_private->dma_buf_phys = substream->dma_buffer.addr;
|
||||
|
||||
/* We only support one DMA controller for now */
|
||||
dma_private->controller_id = 0;
|
||||
dma_private->channel_id = channel;
|
||||
|
||||
ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
|
||||
if (ret) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"can't register ISR for IRQ %u (ret=%i)\n",
|
||||
dma_private->irq, ret);
|
||||
dma_free_coherent(substream->pcm->dev,
|
||||
sizeof(struct fsl_dma_private),
|
||||
dma_private, dma_private->ld_buf_phys);
|
||||
return ret;
|
||||
}
|
||||
|
||||
dma_global_data.assigned[channel] = 1;
|
||||
|
||||
snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
|
||||
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
|
||||
runtime->private_data = dma_private;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
|
||||
*
|
||||
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
|
||||
* descriptors that ping-pong from one period to the next. For example, if
|
||||
* there are six periods and two link descriptors, this is how they look
|
||||
* before playback starts:
|
||||
*
|
||||
* The last link descriptor
|
||||
* ____________ points back to the first
|
||||
* | |
|
||||
* V |
|
||||
* ___ ___ |
|
||||
* | |->| |->|
|
||||
* |___| |___|
|
||||
* | |
|
||||
* | |
|
||||
* V V
|
||||
* _________________________________________
|
||||
* | | | | | | | The DMA buffer is
|
||||
* | | | | | | | divided into 6 parts
|
||||
* |______|______|______|______|______|______|
|
||||
*
|
||||
* and here's how they look after the first period is finished playing:
|
||||
*
|
||||
* ____________
|
||||
* | |
|
||||
* V |
|
||||
* ___ ___ |
|
||||
* | |->| |->|
|
||||
* |___| |___|
|
||||
* | |
|
||||
* |______________
|
||||
* | |
|
||||
* V V
|
||||
* _________________________________________
|
||||
* | | | | | | |
|
||||
* | | | | | | |
|
||||
* |______|______|______|______|______|______|
|
||||
*
|
||||
* The first link descriptor now points to the third period. The DMA
|
||||
* controller is currently playing the second period. When it finishes, it
|
||||
* will jump back to the first descriptor and play the third period.
|
||||
*
|
||||
* There are four reasons we do this:
|
||||
*
|
||||
* 1. The only way to get the DMA controller to automatically restart the
|
||||
* transfer when it gets to the end of the buffer is to use chaining
|
||||
* mode. Basic direct mode doesn't offer that feature.
|
||||
* 2. We need to receive an interrupt at the end of every period. The DMA
|
||||
* controller can generate an interrupt at the end of every link transfer
|
||||
* (aka segment). Making each period into a DMA segment will give us the
|
||||
* interrupts we need.
|
||||
* 3. By creating only two link descriptors, regardless of the number of
|
||||
* periods, we do not need to reallocate the link descriptors if the
|
||||
* number of periods changes.
|
||||
* 4. All of the audio data is still stored in a single, contiguous DMA
|
||||
* buffer, which is what ALSA expects. We're just dividing it into
|
||||
* contiguous parts, and creating a link descriptor for each one.
|
||||
*
|
||||
* Note that due to a quirk of the SSI's STX register, the target address
|
||||
* for the DMA operations depends on the sample size. So we don't program
|
||||
* the dest_addr (for playback -- source_addr for capture) fields in the
|
||||
* link descriptors here. We do that in fsl_dma_prepare()
|
||||
*/
|
||||
static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
|
||||
struct snd_pcm_hw_params *hw_params)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
||||
|
||||
dma_addr_t temp_addr; /* Pointer to next period */
|
||||
u64 temp_link; /* Pointer to next link descriptor */
|
||||
u32 mr; /* Temporary variable for MR register */
|
||||
|
||||
unsigned int i;
|
||||
|
||||
/* Get all the parameters we need */
|
||||
size_t buffer_size = params_buffer_bytes(hw_params);
|
||||
size_t period_size = params_period_bytes(hw_params);
|
||||
|
||||
/* Initialize our DMA tracking variables */
|
||||
dma_private->period_size = period_size;
|
||||
dma_private->num_periods = params_periods(hw_params);
|
||||
dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys +
|
||||
(NUM_DMA_LINKS * period_size);
|
||||
if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
|
||||
dma_private->dma_buf_next = dma_private->dma_buf_phys;
|
||||
|
||||
/*
|
||||
* Initialize each link descriptor.
|
||||
*
|
||||
* The actual address in STX0 (destination for playback, source for
|
||||
* capture) is based on the sample size, but we don't know the sample
|
||||
* size in this function, so we'll have to adjust that later. See
|
||||
* comments in fsl_dma_prepare().
|
||||
*
|
||||
* The DMA controller does not have a cache, so the CPU does not
|
||||
* need to tell it to flush its cache. However, the DMA
|
||||
* controller does need to tell the CPU to flush its cache.
|
||||
* That's what the SNOOP bit does.
|
||||
*
|
||||
* Also, even though the DMA controller supports 36-bit addressing, for
|
||||
* simplicity we currently support only 32-bit addresses for the audio
|
||||
* buffer itself.
|
||||
*/
|
||||
temp_addr = substream->dma_buffer.addr;
|
||||
temp_link = dma_private->ld_buf_phys +
|
||||
sizeof(struct fsl_dma_link_descriptor);
|
||||
|
||||
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||
|
||||
link->count = cpu_to_be32(period_size);
|
||||
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
|
||||
link->next = cpu_to_be64(temp_link);
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
link->source_addr = cpu_to_be32(temp_addr);
|
||||
else
|
||||
link->dest_addr = cpu_to_be32(temp_addr);
|
||||
|
||||
temp_addr += period_size;
|
||||
temp_link += sizeof(struct fsl_dma_link_descriptor);
|
||||
}
|
||||
/* The last link descriptor points to the first */
|
||||
dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
|
||||
|
||||
/* Tell the DMA controller where the first link descriptor is */
|
||||
out_be32(&dma_channel->clndar,
|
||||
CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
|
||||
out_be32(&dma_channel->eclndar,
|
||||
CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
|
||||
|
||||
/* The manual says the BCR must be clear before enabling EMP */
|
||||
out_be32(&dma_channel->bcr, 0);
|
||||
|
||||
/*
|
||||
* Program the mode register for interrupts, external master control,
|
||||
* and source/destination hold. Also clear the Channel Abort bit.
|
||||
*/
|
||||
mr = in_be32(&dma_channel->mr) &
|
||||
~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
|
||||
|
||||
/*
|
||||
* We want External Master Start and External Master Pause enabled,
|
||||
* because the SSI is controlling the DMA controller. We want the DMA
|
||||
* controller to be set up in advance, and then we signal only the SSI
|
||||
* to start transfering.
|
||||
*
|
||||
* We want End-Of-Segment Interrupts enabled, because this will generate
|
||||
* an interrupt at the end of each segment (each link descriptor
|
||||
* represents one segment). Each DMA segment is the same thing as an
|
||||
* ALSA period, so this is how we get an interrupt at the end of every
|
||||
* period.
|
||||
*
|
||||
* We want Error Interrupt enabled, so that we can get an error if
|
||||
* the DMA controller is mis-programmed somehow.
|
||||
*/
|
||||
mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
|
||||
CCSR_DMA_MR_EMS_EN;
|
||||
|
||||
/* For playback, we want the destination address to be held. For
|
||||
capture, set the source address to be held. */
|
||||
mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
|
||||
CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
|
||||
|
||||
out_be32(&dma_channel->mr, mr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_prepare - prepare the DMA registers for playback.
|
||||
*
|
||||
* This function is called after the specifics of the audio data are known,
|
||||
* i.e. snd_pcm_runtime is initialized.
|
||||
*
|
||||
* In this function, we finish programming the registers of the DMA
|
||||
* controller that are dependent on the sample size.
|
||||
*
|
||||
* One of the drawbacks with big-endian is that when copying integers of
|
||||
* different sizes to a fixed-sized register, the address to which the
|
||||
* integer must be copied is dependent on the size of the integer.
|
||||
*
|
||||
* For example, if P is the address of a 32-bit register, and X is a 32-bit
|
||||
* integer, then X should be copied to address P. However, if X is a 16-bit
|
||||
* integer, then it should be copied to P+2. If X is an 8-bit register,
|
||||
* then it should be copied to P+3.
|
||||
*
|
||||
* So for playback of 8-bit samples, the DMA controller must transfer single
|
||||
* bytes from the DMA buffer to the last byte of the STX0 register, i.e.
|
||||
* offset by 3 bytes. For 16-bit samples, the offset is two bytes.
|
||||
*
|
||||
* For 24-bit samples, the offset is 1 byte. However, the DMA controller
|
||||
* does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
|
||||
* and 8 bytes at a time). So we do not support packed 24-bit samples.
|
||||
* 24-bit data must be padded to 32 bits.
|
||||
*/
|
||||
static int fsl_dma_prepare(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
||||
u32 mr;
|
||||
unsigned int i;
|
||||
dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
|
||||
unsigned int frame_size; /* Number of bytes per frame */
|
||||
|
||||
ssi_sxx_phys = dma_private->ssi_sxx_phys;
|
||||
|
||||
mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
|
||||
CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
|
||||
|
||||
switch (runtime->sample_bits) {
|
||||
case 8:
|
||||
mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
|
||||
ssi_sxx_phys += 3;
|
||||
break;
|
||||
case 16:
|
||||
mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
|
||||
ssi_sxx_phys += 2;
|
||||
break;
|
||||
case 32:
|
||||
mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
|
||||
break;
|
||||
default:
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"unsupported sample size %u\n", runtime->sample_bits);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
frame_size = runtime->frame_bits / 8;
|
||||
/*
|
||||
* BWC should always be a multiple of the frame size. BWC determines
|
||||
* how many bytes are sent/received before the DMA controller checks the
|
||||
* SSI to see if it needs to stop. For playback, the transmit FIFO can
|
||||
* hold three frames, so we want to send two frames at a time. For
|
||||
* capture, the receive FIFO is triggered when it contains one frame, so
|
||||
* we want to receive one frame at a time.
|
||||
*/
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
mr |= CCSR_DMA_MR_BWC(2 * frame_size);
|
||||
else
|
||||
mr |= CCSR_DMA_MR_BWC(frame_size);
|
||||
|
||||
out_be32(&dma_channel->mr, mr);
|
||||
|
||||
/*
|
||||
* Program the address of the DMA transfer to/from the SSI.
|
||||
*/
|
||||
for (i = 0; i < NUM_DMA_LINKS; i++) {
|
||||
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
link->dest_addr = cpu_to_be32(ssi_sxx_phys);
|
||||
else
|
||||
link->source_addr = cpu_to_be32(ssi_sxx_phys);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_pointer: determine the current position of the DMA transfer
|
||||
*
|
||||
* This function is called by ALSA when ALSA wants to know where in the
|
||||
* stream buffer the hardware currently is.
|
||||
*
|
||||
* For playback, the SAR register contains the physical address of the most
|
||||
* recent DMA transfer. For capture, the value is in the DAR register.
|
||||
*
|
||||
* The base address of the buffer is stored in the source_addr field of the
|
||||
* first link descriptor.
|
||||
*/
|
||||
static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
|
||||
dma_addr_t position;
|
||||
snd_pcm_uframes_t frames;
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
position = in_be32(&dma_channel->sar);
|
||||
else
|
||||
position = in_be32(&dma_channel->dar);
|
||||
|
||||
frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
|
||||
|
||||
/*
|
||||
* If the current address is just past the end of the buffer, wrap it
|
||||
* around.
|
||||
*/
|
||||
if (frames == runtime->buffer_size)
|
||||
frames = 0;
|
||||
|
||||
return frames;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
|
||||
*
|
||||
* Release the resources allocated in fsl_dma_hw_params() and de-program the
|
||||
* registers.
|
||||
*
|
||||
* This function can be called multiple times.
|
||||
*/
|
||||
static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
|
||||
if (dma_private) {
|
||||
struct ccsr_dma_channel __iomem *dma_channel;
|
||||
|
||||
dma_channel = dma_private->dma_channel;
|
||||
|
||||
/* Stop the DMA */
|
||||
out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
|
||||
out_be32(&dma_channel->mr, 0);
|
||||
|
||||
/* Reset all the other registers */
|
||||
out_be32(&dma_channel->sr, -1);
|
||||
out_be32(&dma_channel->clndar, 0);
|
||||
out_be32(&dma_channel->eclndar, 0);
|
||||
out_be32(&dma_channel->satr, 0);
|
||||
out_be32(&dma_channel->sar, 0);
|
||||
out_be32(&dma_channel->datr, 0);
|
||||
out_be32(&dma_channel->dar, 0);
|
||||
out_be32(&dma_channel->bcr, 0);
|
||||
out_be32(&dma_channel->nlndar, 0);
|
||||
out_be32(&dma_channel->enlndar, 0);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_dma_close: close the stream.
|
||||
*/
|
||||
static int fsl_dma_close(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct fsl_dma_private *dma_private = runtime->private_data;
|
||||
int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
|
||||
|
||||
if (dma_private) {
|
||||
if (dma_private->irq)
|
||||
free_irq(dma_private->irq, dma_private);
|
||||
|
||||
if (dma_private->ld_buf_phys) {
|
||||
dma_unmap_single(substream->pcm->dev,
|
||||
dma_private->ld_buf_phys,
|
||||
sizeof(dma_private->link), DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
/* Deallocate the fsl_dma_private structure */
|
||||
dma_free_coherent(substream->pcm->dev,
|
||||
sizeof(struct fsl_dma_private),
|
||||
dma_private, dma_private->ld_buf_phys);
|
||||
substream->runtime->private_data = NULL;
|
||||
}
|
||||
|
||||
dma_global_data.assigned[dir] = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove this PCM driver.
|
||||
*/
|
||||
static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
|
||||
{
|
||||
struct snd_pcm_substream *substream;
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
|
||||
substream = pcm->streams[i].substream;
|
||||
if (substream) {
|
||||
snd_dma_free_pages(&substream->dma_buffer);
|
||||
substream->dma_buffer.area = NULL;
|
||||
substream->dma_buffer.addr = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static struct snd_pcm_ops fsl_dma_ops = {
|
||||
.open = fsl_dma_open,
|
||||
.close = fsl_dma_close,
|
||||
.ioctl = snd_pcm_lib_ioctl,
|
||||
.hw_params = fsl_dma_hw_params,
|
||||
.hw_free = fsl_dma_hw_free,
|
||||
.prepare = fsl_dma_prepare,
|
||||
.pointer = fsl_dma_pointer,
|
||||
};
|
||||
|
||||
struct snd_soc_platform fsl_soc_platform = {
|
||||
.name = "fsl-dma",
|
||||
.pcm_ops = &fsl_dma_ops,
|
||||
.pcm_new = fsl_dma_new,
|
||||
.pcm_free = fsl_dma_free_dma_buffers,
|
||||
};
|
||||
EXPORT_SYMBOL_GPL(fsl_soc_platform);
|
||||
|
||||
/**
|
||||
* fsl_dma_configure: store the DMA parameters from the fabric driver.
|
||||
*
|
||||
* This function is called by the ASoC fabric driver to give us the DMA and
|
||||
* SSI channel information.
|
||||
*
|
||||
* Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
|
||||
* data when a substream is created, so for now we need to store this data
|
||||
* into a global variable. This means that we can only support one DMA
|
||||
* controller, and hence only one SSI.
|
||||
*/
|
||||
int fsl_dma_configure(struct fsl_dma_info *dma_info)
|
||||
{
|
||||
static int initialized;
|
||||
|
||||
/* We only support one DMA controller for now */
|
||||
if (initialized)
|
||||
return 0;
|
||||
|
||||
dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
|
||||
dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
|
||||
dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
|
||||
dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
|
||||
dma_global_data.irq[0] = dma_info->dma_irq[0];
|
||||
dma_global_data.irq[1] = dma_info->dma_irq[1];
|
||||
dma_global_data.assigned[0] = 0;
|
||||
dma_global_data.assigned[1] = 0;
|
||||
|
||||
initialized = 1;
|
||||
return 1;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fsl_dma_configure);
|
||||
|
||||
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
||||
MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,149 @@
|
|||
/*
|
||||
* mpc8610-pcm.h - ALSA PCM interface for the Freescale MPC8610 SoC
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef _MPC8610_PCM_H
|
||||
#define _MPC8610_PCM_H
|
||||
|
||||
struct ccsr_dma {
|
||||
u8 res0[0x100];
|
||||
struct ccsr_dma_channel {
|
||||
__be32 mr; /* Mode register */
|
||||
__be32 sr; /* Status register */
|
||||
__be32 eclndar; /* Current link descriptor extended addr reg */
|
||||
__be32 clndar; /* Current link descriptor address register */
|
||||
__be32 satr; /* Source attributes register */
|
||||
__be32 sar; /* Source address register */
|
||||
__be32 datr; /* Destination attributes register */
|
||||
__be32 dar; /* Destination address register */
|
||||
__be32 bcr; /* Byte count register */
|
||||
__be32 enlndar; /* Next link descriptor extended address reg */
|
||||
__be32 nlndar; /* Next link descriptor address register */
|
||||
u8 res1[4];
|
||||
__be32 eclsdar; /* Current list descriptor extended addr reg */
|
||||
__be32 clsdar; /* Current list descriptor address register */
|
||||
__be32 enlsdar; /* Next list descriptor extended address reg */
|
||||
__be32 nlsdar; /* Next list descriptor address register */
|
||||
__be32 ssr; /* Source stride register */
|
||||
__be32 dsr; /* Destination stride register */
|
||||
u8 res2[0x38];
|
||||
} channel[4];
|
||||
__be32 dgsr;
|
||||
};
|
||||
|
||||
#define CCSR_DMA_MR_BWC_DISABLED 0x0F000000
|
||||
#define CCSR_DMA_MR_BWC_SHIFT 24
|
||||
#define CCSR_DMA_MR_BWC_MASK 0x0F000000
|
||||
#define CCSR_DMA_MR_BWC(x) \
|
||||
((ilog2(x) << CCSR_DMA_MR_BWC_SHIFT) & CCSR_DMA_MR_BWC_MASK)
|
||||
#define CCSR_DMA_MR_EMP_EN 0x00200000
|
||||
#define CCSR_DMA_MR_EMS_EN 0x00040000
|
||||
#define CCSR_DMA_MR_DAHTS_MASK 0x00030000
|
||||
#define CCSR_DMA_MR_DAHTS_1 0x00000000
|
||||
#define CCSR_DMA_MR_DAHTS_2 0x00010000
|
||||
#define CCSR_DMA_MR_DAHTS_4 0x00020000
|
||||
#define CCSR_DMA_MR_DAHTS_8 0x00030000
|
||||
#define CCSR_DMA_MR_SAHTS_MASK 0x0000C000
|
||||
#define CCSR_DMA_MR_SAHTS_1 0x00000000
|
||||
#define CCSR_DMA_MR_SAHTS_2 0x00004000
|
||||
#define CCSR_DMA_MR_SAHTS_4 0x00008000
|
||||
#define CCSR_DMA_MR_SAHTS_8 0x0000C000
|
||||
#define CCSR_DMA_MR_DAHE 0x00002000
|
||||
#define CCSR_DMA_MR_SAHE 0x00001000
|
||||
#define CCSR_DMA_MR_SRW 0x00000400
|
||||
#define CCSR_DMA_MR_EOSIE 0x00000200
|
||||
#define CCSR_DMA_MR_EOLNIE 0x00000100
|
||||
#define CCSR_DMA_MR_EOLSIE 0x00000080
|
||||
#define CCSR_DMA_MR_EIE 0x00000040
|
||||
#define CCSR_DMA_MR_XFE 0x00000020
|
||||
#define CCSR_DMA_MR_CDSM_SWSM 0x00000010
|
||||
#define CCSR_DMA_MR_CA 0x00000008
|
||||
#define CCSR_DMA_MR_CTM 0x00000004
|
||||
#define CCSR_DMA_MR_CC 0x00000002
|
||||
#define CCSR_DMA_MR_CS 0x00000001
|
||||
|
||||
#define CCSR_DMA_SR_TE 0x00000080
|
||||
#define CCSR_DMA_SR_CH 0x00000020
|
||||
#define CCSR_DMA_SR_PE 0x00000010
|
||||
#define CCSR_DMA_SR_EOLNI 0x00000008
|
||||
#define CCSR_DMA_SR_CB 0x00000004
|
||||
#define CCSR_DMA_SR_EOSI 0x00000002
|
||||
#define CCSR_DMA_SR_EOLSI 0x00000001
|
||||
|
||||
/* ECLNDAR takes bits 32-36 of the CLNDAR register */
|
||||
static inline u32 CCSR_DMA_ECLNDAR_ADDR(u64 x)
|
||||
{
|
||||
return (x >> 32) & 0xf;
|
||||
}
|
||||
|
||||
#define CCSR_DMA_CLNDAR_ADDR(x) ((x) & 0xFFFFFFFE)
|
||||
#define CCSR_DMA_CLNDAR_EOSIE 0x00000008
|
||||
|
||||
/* SATR and DATR, combined */
|
||||
#define CCSR_DMA_ATR_PBATMU 0x20000000
|
||||
#define CCSR_DMA_ATR_TFLOWLVL_0 0x00000000
|
||||
#define CCSR_DMA_ATR_TFLOWLVL_1 0x06000000
|
||||
#define CCSR_DMA_ATR_TFLOWLVL_2 0x08000000
|
||||
#define CCSR_DMA_ATR_TFLOWLVL_3 0x0C000000
|
||||
#define CCSR_DMA_ATR_PCIORDER 0x02000000
|
||||
#define CCSR_DMA_ATR_SME 0x01000000
|
||||
#define CCSR_DMA_ATR_NOSNOOP 0x00040000
|
||||
#define CCSR_DMA_ATR_SNOOP 0x00050000
|
||||
#define CCSR_DMA_ATR_ESAD_MASK 0x0000000F
|
||||
|
||||
/**
|
||||
* List Descriptor for extended chaining mode DMA operations.
|
||||
*
|
||||
* The CLSDAR register points to the first (in a linked-list) List
|
||||
* Descriptor. Each object must be aligned on a 32-byte boundary. Each
|
||||
* list descriptor points to a linked-list of link Descriptors.
|
||||
*/
|
||||
struct fsl_dma_list_descriptor {
|
||||
__be64 next; /* Address of next list descriptor */
|
||||
__be64 first_link; /* Address of first link descriptor */
|
||||
__be32 source; /* Source stride */
|
||||
__be32 dest; /* Destination stride */
|
||||
u8 res[8]; /* Reserved */
|
||||
} __attribute__ ((aligned(32), packed));
|
||||
|
||||
/**
|
||||
* Link Descriptor for basic and extended chaining mode DMA operations.
|
||||
*
|
||||
* A Link Descriptor points to a single DMA buffer. Each link descriptor
|
||||
* must be aligned on a 32-byte boundary.
|
||||
*/
|
||||
struct fsl_dma_link_descriptor {
|
||||
__be32 source_attr; /* Programmed into SATR register */
|
||||
__be32 source_addr; /* Programmed into SAR register */
|
||||
__be32 dest_attr; /* Programmed into DATR register */
|
||||
__be32 dest_addr; /* Programmed into DAR register */
|
||||
__be64 next; /* Address of next link descriptor */
|
||||
__be32 count; /* Byte count */
|
||||
u8 res[4]; /* Reserved */
|
||||
} __attribute__ ((aligned(32), packed));
|
||||
|
||||
/* DMA information needed to create a snd_soc_cpu_dai object
|
||||
*
|
||||
* ssi_stx_phys: bus address of SSI STX register to use
|
||||
* ssi_srx_phys: bus address of SSI SRX register to use
|
||||
* dma[0]: points to the DMA channel to use for playback
|
||||
* dma[1]: points to the DMA channel to use for capture
|
||||
* dma_irq[0]: IRQ of the DMA channel to use for playback
|
||||
* dma_irq[1]: IRQ of the DMA channel to use for capture
|
||||
*/
|
||||
struct fsl_dma_info {
|
||||
dma_addr_t ssi_stx_phys;
|
||||
dma_addr_t ssi_srx_phys;
|
||||
struct ccsr_dma_channel __iomem *dma_channel[2];
|
||||
unsigned int dma_irq[2];
|
||||
};
|
||||
|
||||
extern struct snd_soc_platform fsl_soc_platform;
|
||||
|
||||
int fsl_dma_configure(struct fsl_dma_info *dma_info);
|
||||
|
||||
#endif
|
|
@ -0,0 +1,644 @@
|
|||
/*
|
||||
* Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
|
||||
*
|
||||
* Author: Timur Tabi <timur@freescale.com>
|
||||
*
|
||||
* Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
|
||||
* under the terms of the GNU General Public License version 2. This
|
||||
* program is licensed "as is" without any warranty of any kind, whether
|
||||
* express or implied.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/delay.h>
|
||||
|
||||
#include <sound/driver.h>
|
||||
#include <sound/core.h>
|
||||
#include <sound/pcm.h>
|
||||
#include <sound/pcm_params.h>
|
||||
#include <sound/initval.h>
|
||||
#include <sound/soc.h>
|
||||
|
||||
#include <asm/immap_86xx.h>
|
||||
|
||||
#include "fsl_ssi.h"
|
||||
|
||||
/**
|
||||
* FSLSSI_I2S_RATES: sample rates supported by the I2S
|
||||
*
|
||||
* This driver currently only supports the SSI running in I2S slave mode,
|
||||
* which means the codec determines the sample rate. Therefore, we tell
|
||||
* ALSA that we support all rates and let the codec driver decide what rates
|
||||
* are really supported.
|
||||
*/
|
||||
#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
|
||||
SNDRV_PCM_RATE_CONTINUOUS)
|
||||
|
||||
/**
|
||||
* FSLSSI_I2S_FORMATS: audio formats supported by the SSI
|
||||
*
|
||||
* This driver currently only supports the SSI running in I2S slave mode.
|
||||
*
|
||||
* The SSI has a limitation in that the samples must be in the same byte
|
||||
* order as the host CPU. This is because when multiple bytes are written
|
||||
* to the STX register, the bytes and bits must be written in the same
|
||||
* order. The STX is a shift register, so all the bits need to be aligned
|
||||
* (bit-endianness must match byte-endianness). Processors typically write
|
||||
* the bits within a byte in the same order that the bytes of a word are
|
||||
* written in. So if the host CPU is big-endian, then only big-endian
|
||||
* samples will be written to STX properly.
|
||||
*/
|
||||
#ifdef __BIG_ENDIAN
|
||||
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
|
||||
SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
|
||||
SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
|
||||
#else
|
||||
#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
|
||||
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
|
||||
SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* fsl_ssi_private: per-SSI private data
|
||||
*
|
||||
* @name: short name for this device ("SSI0", "SSI1", etc)
|
||||
* @ssi: pointer to the SSI's registers
|
||||
* @ssi_phys: physical address of the SSI registers
|
||||
* @irq: IRQ of this SSI
|
||||
* @dev: struct device pointer
|
||||
* @playback: the number of playback streams opened
|
||||
* @capture: the number of capture streams opened
|
||||
* @cpu_dai: the CPU DAI for this device
|
||||
* @dev_attr: the sysfs device attribute structure
|
||||
* @stats: SSI statistics
|
||||
*/
|
||||
struct fsl_ssi_private {
|
||||
char name[8];
|
||||
struct ccsr_ssi __iomem *ssi;
|
||||
dma_addr_t ssi_phys;
|
||||
unsigned int irq;
|
||||
struct device *dev;
|
||||
unsigned int playback;
|
||||
unsigned int capture;
|
||||
struct snd_soc_cpu_dai cpu_dai;
|
||||
struct device_attribute dev_attr;
|
||||
|
||||
struct {
|
||||
unsigned int rfrc;
|
||||
unsigned int tfrc;
|
||||
unsigned int cmdau;
|
||||
unsigned int cmddu;
|
||||
unsigned int rxt;
|
||||
unsigned int rdr1;
|
||||
unsigned int rdr0;
|
||||
unsigned int tde1;
|
||||
unsigned int tde0;
|
||||
unsigned int roe1;
|
||||
unsigned int roe0;
|
||||
unsigned int tue1;
|
||||
unsigned int tue0;
|
||||
unsigned int tfs;
|
||||
unsigned int rfs;
|
||||
unsigned int tls;
|
||||
unsigned int rls;
|
||||
unsigned int rff1;
|
||||
unsigned int rff0;
|
||||
unsigned int tfe1;
|
||||
unsigned int tfe0;
|
||||
} stats;
|
||||
};
|
||||
|
||||
/**
|
||||
* fsl_ssi_isr: SSI interrupt handler
|
||||
*
|
||||
* Although it's possible to use the interrupt handler to send and receive
|
||||
* data to/from the SSI, we use the DMA instead. Programming is more
|
||||
* complicated, but the performance is much better.
|
||||
*
|
||||
* This interrupt handler is used only to gather statistics.
|
||||
*
|
||||
* @irq: IRQ of the SSI device
|
||||
* @dev_id: pointer to the ssi_private structure for this SSI device
|
||||
*/
|
||||
static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
|
||||
{
|
||||
struct fsl_ssi_private *ssi_private = dev_id;
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
irqreturn_t ret = IRQ_NONE;
|
||||
__be32 sisr;
|
||||
__be32 sisr2 = 0;
|
||||
|
||||
/* We got an interrupt, so read the status register to see what we
|
||||
were interrupted for. We mask it with the Interrupt Enable register
|
||||
so that we only check for events that we're interested in.
|
||||
*/
|
||||
sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RFRC) {
|
||||
ssi_private->stats.rfrc++;
|
||||
sisr2 |= CCSR_SSI_SISR_RFRC;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TFRC) {
|
||||
ssi_private->stats.tfrc++;
|
||||
sisr2 |= CCSR_SSI_SISR_TFRC;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_CMDAU) {
|
||||
ssi_private->stats.cmdau++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_CMDDU) {
|
||||
ssi_private->stats.cmddu++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RXT) {
|
||||
ssi_private->stats.rxt++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RDR1) {
|
||||
ssi_private->stats.rdr1++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RDR0) {
|
||||
ssi_private->stats.rdr0++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TDE1) {
|
||||
ssi_private->stats.tde1++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TDE0) {
|
||||
ssi_private->stats.tde0++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_ROE1) {
|
||||
ssi_private->stats.roe1++;
|
||||
sisr2 |= CCSR_SSI_SISR_ROE1;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_ROE0) {
|
||||
ssi_private->stats.roe0++;
|
||||
sisr2 |= CCSR_SSI_SISR_ROE0;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TUE1) {
|
||||
ssi_private->stats.tue1++;
|
||||
sisr2 |= CCSR_SSI_SISR_TUE1;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TUE0) {
|
||||
ssi_private->stats.tue0++;
|
||||
sisr2 |= CCSR_SSI_SISR_TUE0;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TFS) {
|
||||
ssi_private->stats.tfs++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RFS) {
|
||||
ssi_private->stats.rfs++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TLS) {
|
||||
ssi_private->stats.tls++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RLS) {
|
||||
ssi_private->stats.rls++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RFF1) {
|
||||
ssi_private->stats.rff1++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_RFF0) {
|
||||
ssi_private->stats.rff0++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TFE1) {
|
||||
ssi_private->stats.tfe1++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
if (sisr & CCSR_SSI_SISR_TFE0) {
|
||||
ssi_private->stats.tfe0++;
|
||||
ret = IRQ_HANDLED;
|
||||
}
|
||||
|
||||
/* Clear the bits that we set */
|
||||
if (sisr2)
|
||||
out_be32(&ssi->sisr, sisr2);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_startup: create a new substream
|
||||
*
|
||||
* This is the first function called when a stream is opened.
|
||||
*
|
||||
* If this is the first stream open, then grab the IRQ and program most of
|
||||
* the SSI registers.
|
||||
*/
|
||||
static int fsl_ssi_startup(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
||||
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
||||
|
||||
/*
|
||||
* If this is the first stream opened, then request the IRQ
|
||||
* and initialize the SSI registers.
|
||||
*/
|
||||
if (!ssi_private->playback && !ssi_private->capture) {
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
int ret;
|
||||
|
||||
ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
|
||||
ssi_private->name, ssi_private);
|
||||
if (ret < 0) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"could not claim irq %u\n", ssi_private->irq);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Section 16.5 of the MPC8610 reference manual says that the
|
||||
* SSI needs to be disabled before updating the registers we set
|
||||
* here.
|
||||
*/
|
||||
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
||||
|
||||
/*
|
||||
* Program the SSI into I2S Slave Non-Network Synchronous mode.
|
||||
* Also enable the transmit and receive FIFO.
|
||||
*
|
||||
* FIXME: Little-endian samples require a different shift dir
|
||||
*/
|
||||
clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK,
|
||||
CCSR_SSI_SCR_TFR_CLK_DIS |
|
||||
CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN);
|
||||
|
||||
out_be32(&ssi->stcr,
|
||||
CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
|
||||
CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
|
||||
CCSR_SSI_STCR_TSCKP);
|
||||
|
||||
out_be32(&ssi->srcr,
|
||||
CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
|
||||
CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
|
||||
CCSR_SSI_SRCR_RSCKP);
|
||||
|
||||
/*
|
||||
* The DC and PM bits are only used if the SSI is the clock
|
||||
* master.
|
||||
*/
|
||||
|
||||
/* 4. Enable the interrupts and DMA requests */
|
||||
out_be32(&ssi->sier,
|
||||
CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
|
||||
CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
|
||||
CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
|
||||
CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
|
||||
CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
|
||||
|
||||
/*
|
||||
* Set the watermark for transmit FIFI 0 and receive FIFO 0. We
|
||||
* don't use FIFO 1. Since the SSI only supports stereo, the
|
||||
* watermark should never be an odd number.
|
||||
*/
|
||||
out_be32(&ssi->sfcsr,
|
||||
CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
|
||||
|
||||
/*
|
||||
* We keep the SSI disabled because if we enable it, then the
|
||||
* DMA controller will start. It's not supposed to start until
|
||||
* the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
|
||||
* DMA controller will transfer one "BWC" of data (i.e. the
|
||||
* amount of data that the MR.BWC bits are set to). The reason
|
||||
* this is bad is because at this point, the PCM driver has not
|
||||
* finished initializing the DMA controller.
|
||||
*/
|
||||
}
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
ssi_private->playback++;
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
|
||||
ssi_private->capture++;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_prepare: prepare the SSI.
|
||||
*
|
||||
* Most of the SSI registers have been programmed in the startup function,
|
||||
* but the word length must be programmed here. Unfortunately, programming
|
||||
* the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
|
||||
* cause a problem with supporting simultaneous playback and capture. If
|
||||
* the SSI is already playing a stream, then that stream may be temporarily
|
||||
* stopped when you start capture.
|
||||
*
|
||||
* Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
|
||||
* clock master.
|
||||
*/
|
||||
static int fsl_ssi_prepare(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_pcm_runtime *runtime = substream->runtime;
|
||||
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
||||
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
||||
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
u32 wl;
|
||||
|
||||
wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
|
||||
|
||||
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
||||
else
|
||||
clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
|
||||
|
||||
setbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_trigger: start and stop the DMA transfer.
|
||||
*
|
||||
* This function is called by ALSA to start, stop, pause, and resume the DMA
|
||||
* transfer of data.
|
||||
*
|
||||
* The DMA channel is in external master start and pause mode, which
|
||||
* means the SSI completely controls the flow of data.
|
||||
*/
|
||||
static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd)
|
||||
{
|
||||
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
||||
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
|
||||
switch (cmd) {
|
||||
case SNDRV_PCM_TRIGGER_START:
|
||||
case SNDRV_PCM_TRIGGER_RESUME:
|
||||
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
|
||||
setbits32(&ssi->scr, CCSR_SSI_SCR_TE);
|
||||
} else {
|
||||
setbits32(&ssi->scr, CCSR_SSI_SCR_RE);
|
||||
|
||||
/*
|
||||
* I think we need this delay to allow time for the SSI
|
||||
* to put data into its FIFO. Without it, ALSA starts
|
||||
* to complain about overruns.
|
||||
*/
|
||||
msleep(1);
|
||||
}
|
||||
break;
|
||||
|
||||
case SNDRV_PCM_TRIGGER_STOP:
|
||||
case SNDRV_PCM_TRIGGER_SUSPEND:
|
||||
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
|
||||
else
|
||||
clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
|
||||
break;
|
||||
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_shutdown: shutdown the SSI
|
||||
*
|
||||
* Shutdown the SSI if there are no other substreams open.
|
||||
*/
|
||||
static void fsl_ssi_shutdown(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
||||
struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
|
||||
ssi_private->playback--;
|
||||
|
||||
if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
|
||||
ssi_private->capture--;
|
||||
|
||||
/*
|
||||
* If this is the last active substream, disable the SSI and release
|
||||
* the IRQ.
|
||||
*/
|
||||
if (!ssi_private->playback && !ssi_private->capture) {
|
||||
struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
|
||||
|
||||
clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
|
||||
|
||||
free_irq(ssi_private->irq, ssi_private);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_set_sysclk: set the clock frequency and direction
|
||||
*
|
||||
* This function is called by the machine driver to tell us what the clock
|
||||
* frequency and direction are.
|
||||
*
|
||||
* Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
|
||||
* and we don't care about the frequency. Return an error if the direction
|
||||
* is not SND_SOC_CLOCK_IN.
|
||||
*
|
||||
* @clk_id: reserved, should be zero
|
||||
* @freq: the frequency of the given clock ID, currently ignored
|
||||
* @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
|
||||
*/
|
||||
static int fsl_ssi_set_sysclk(struct snd_soc_cpu_dai *cpu_dai,
|
||||
int clk_id, unsigned int freq, int dir)
|
||||
{
|
||||
|
||||
return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_set_fmt: set the serial format.
|
||||
*
|
||||
* This function is called by the machine driver to tell us what serial
|
||||
* format to use.
|
||||
*
|
||||
* Currently, we only support I2S mode. Return an error if the format is
|
||||
* not SND_SOC_DAIFMT_I2S.
|
||||
*
|
||||
* @format: one of SND_SOC_DAIFMT_xxx
|
||||
*/
|
||||
static int fsl_ssi_set_fmt(struct snd_soc_cpu_dai *cpu_dai, unsigned int format)
|
||||
{
|
||||
return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_dai_template: template CPU DAI for the SSI
|
||||
*/
|
||||
static struct snd_soc_cpu_dai fsl_ssi_dai_template = {
|
||||
.playback = {
|
||||
/* The SSI does not support monaural audio. */
|
||||
.channels_min = 2,
|
||||
.channels_max = 2,
|
||||
.rates = FSLSSI_I2S_RATES,
|
||||
.formats = FSLSSI_I2S_FORMATS,
|
||||
},
|
||||
.capture = {
|
||||
.channels_min = 2,
|
||||
.channels_max = 2,
|
||||
.rates = FSLSSI_I2S_RATES,
|
||||
.formats = FSLSSI_I2S_FORMATS,
|
||||
},
|
||||
.ops = {
|
||||
.startup = fsl_ssi_startup,
|
||||
.prepare = fsl_ssi_prepare,
|
||||
.shutdown = fsl_ssi_shutdown,
|
||||
.trigger = fsl_ssi_trigger,
|
||||
},
|
||||
.dai_ops = {
|
||||
.set_sysclk = fsl_ssi_set_sysclk,
|
||||
.set_fmt = fsl_ssi_set_fmt,
|
||||
},
|
||||
};
|
||||
|
||||
/**
|
||||
* fsl_sysfs_ssi_show: display SSI statistics
|
||||
*
|
||||
* Display the statistics for the current SSI device.
|
||||
*/
|
||||
static ssize_t fsl_sysfs_ssi_show(struct device *dev,
|
||||
struct device_attribute *attr, char *buf)
|
||||
{
|
||||
struct fsl_ssi_private *ssi_private =
|
||||
container_of(attr, struct fsl_ssi_private, dev_attr);
|
||||
ssize_t length;
|
||||
|
||||
length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
|
||||
length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
|
||||
length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
|
||||
length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
|
||||
length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
|
||||
length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
|
||||
length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
|
||||
length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
|
||||
length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
|
||||
length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
|
||||
length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
|
||||
length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
|
||||
length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
|
||||
length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
|
||||
length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
|
||||
length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
|
||||
length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
|
||||
length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
|
||||
length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
|
||||
length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
|
||||
length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
|
||||
|
||||
return length;
|
||||
}
|
||||
|
||||
/**
|
||||
* fsl_ssi_create_dai: create a snd_soc_cpu_dai structure
|
||||
*
|
||||
* This function is called by the machine driver to create a snd_soc_cpu_dai
|
||||
* structure. The function creates an ssi_private object, which contains
|
||||
* the snd_soc_cpu_dai. It also creates the sysfs statistics device.
|
||||
*/
|
||||
struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
|
||||
{
|
||||
struct snd_soc_cpu_dai *fsl_ssi_dai;
|
||||
struct fsl_ssi_private *ssi_private;
|
||||
int ret = 0;
|
||||
struct device_attribute *dev_attr;
|
||||
|
||||
ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
|
||||
if (!ssi_private) {
|
||||
dev_err(ssi_info->dev, "could not allocate DAI object\n");
|
||||
return NULL;
|
||||
}
|
||||
memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
|
||||
sizeof(struct snd_soc_cpu_dai));
|
||||
|
||||
fsl_ssi_dai = &ssi_private->cpu_dai;
|
||||
dev_attr = &ssi_private->dev_attr;
|
||||
|
||||
sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
|
||||
ssi_private->ssi = ssi_info->ssi;
|
||||
ssi_private->ssi_phys = ssi_info->ssi_phys;
|
||||
ssi_private->irq = ssi_info->irq;
|
||||
ssi_private->dev = ssi_info->dev;
|
||||
|
||||
ssi_private->dev->driver_data = fsl_ssi_dai;
|
||||
|
||||
/* Initialize the the device_attribute structure */
|
||||
dev_attr->attr.name = "ssi-stats";
|
||||
dev_attr->attr.mode = S_IRUGO;
|
||||
dev_attr->show = fsl_sysfs_ssi_show;
|
||||
|
||||
ret = device_create_file(ssi_private->dev, dev_attr);
|
||||
if (ret) {
|
||||
dev_err(ssi_info->dev, "could not create sysfs %s file\n",
|
||||
ssi_private->dev_attr.attr.name);
|
||||
kfree(fsl_ssi_dai);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
fsl_ssi_dai->private_data = ssi_private;
|
||||
fsl_ssi_dai->name = ssi_private->name;
|
||||
fsl_ssi_dai->id = ssi_info->id;
|
||||
|
||||
return fsl_ssi_dai;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
|
||||
|
||||
/**
|
||||
* fsl_ssi_destroy_dai: destroy the snd_soc_cpu_dai object
|
||||
*
|
||||
* This function undoes the operations of fsl_ssi_create_dai()
|
||||
*/
|
||||
void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai)
|
||||
{
|
||||
struct fsl_ssi_private *ssi_private =
|
||||
container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
|
||||
|
||||
device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
|
||||
|
||||
kfree(ssi_private);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
|
||||
|
||||
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
||||
MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,224 @@
|
|||
/*
|
||||
* fsl_ssi.h - ALSA SSI interface for the Freescale MPC8610 SoC
|
||||
*
|
||||
* Author: Timur Tabi <timur@freescale.com>
|
||||
*
|
||||
* Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
|
||||
* under the terms of the GNU General Public License version 2. This
|
||||
* program is licensed "as is" without any warranty of any kind, whether
|
||||
* express or implied.
|
||||
*/
|
||||
|
||||
#ifndef _MPC8610_I2S_H
|
||||
#define _MPC8610_I2S_H
|
||||
|
||||
/* SSI Register Map */
|
||||
struct ccsr_ssi {
|
||||
__be32 stx0; /* 0x.0000 - SSI Transmit Data Register 0 */
|
||||
__be32 stx1; /* 0x.0004 - SSI Transmit Data Register 1 */
|
||||
__be32 srx0; /* 0x.0008 - SSI Receive Data Register 0 */
|
||||
__be32 srx1; /* 0x.000C - SSI Receive Data Register 1 */
|
||||
__be32 scr; /* 0x.0010 - SSI Control Register */
|
||||
__be32 sisr; /* 0x.0014 - SSI Interrupt Status Register Mixed */
|
||||
__be32 sier; /* 0x.0018 - SSI Interrupt Enable Register */
|
||||
__be32 stcr; /* 0x.001C - SSI Transmit Configuration Register */
|
||||
__be32 srcr; /* 0x.0020 - SSI Receive Configuration Register */
|
||||
__be32 stccr; /* 0x.0024 - SSI Transmit Clock Control Register */
|
||||
__be32 srccr; /* 0x.0028 - SSI Receive Clock Control Register */
|
||||
__be32 sfcsr; /* 0x.002C - SSI FIFO Control/Status Register */
|
||||
__be32 str; /* 0x.0030 - SSI Test Register */
|
||||
__be32 sor; /* 0x.0034 - SSI Option Register */
|
||||
__be32 sacnt; /* 0x.0038 - SSI AC97 Control Register */
|
||||
__be32 sacadd; /* 0x.003C - SSI AC97 Command Address Register */
|
||||
__be32 sacdat; /* 0x.0040 - SSI AC97 Command Data Register */
|
||||
__be32 satag; /* 0x.0044 - SSI AC97 Tag Register */
|
||||
__be32 stmsk; /* 0x.0048 - SSI Transmit Time Slot Mask Register */
|
||||
__be32 srmsk; /* 0x.004C - SSI Receive Time Slot Mask Register */
|
||||
__be32 saccst; /* 0x.0050 - SSI AC97 Channel Status Register */
|
||||
__be32 saccen; /* 0x.0054 - SSI AC97 Channel Enable Register */
|
||||
__be32 saccdis; /* 0x.0058 - SSI AC97 Channel Disable Register */
|
||||
};
|
||||
|
||||
#define CCSR_SSI_SCR_RFR_CLK_DIS 0x00000800
|
||||
#define CCSR_SSI_SCR_TFR_CLK_DIS 0x00000400
|
||||
#define CCSR_SSI_SCR_TCH_EN 0x00000100
|
||||
#define CCSR_SSI_SCR_SYS_CLK_EN 0x00000080
|
||||
#define CCSR_SSI_SCR_I2S_MODE_MASK 0x00000060
|
||||
#define CCSR_SSI_SCR_I2S_MODE_NORMAL 0x00000000
|
||||
#define CCSR_SSI_SCR_I2S_MODE_MASTER 0x00000020
|
||||
#define CCSR_SSI_SCR_I2S_MODE_SLAVE 0x00000040
|
||||
#define CCSR_SSI_SCR_SYN 0x00000010
|
||||
#define CCSR_SSI_SCR_NET 0x00000008
|
||||
#define CCSR_SSI_SCR_RE 0x00000004
|
||||
#define CCSR_SSI_SCR_TE 0x00000002
|
||||
#define CCSR_SSI_SCR_SSIEN 0x00000001
|
||||
|
||||
#define CCSR_SSI_SISR_RFRC 0x01000000
|
||||
#define CCSR_SSI_SISR_TFRC 0x00800000
|
||||
#define CCSR_SSI_SISR_CMDAU 0x00040000
|
||||
#define CCSR_SSI_SISR_CMDDU 0x00020000
|
||||
#define CCSR_SSI_SISR_RXT 0x00010000
|
||||
#define CCSR_SSI_SISR_RDR1 0x00008000
|
||||
#define CCSR_SSI_SISR_RDR0 0x00004000
|
||||
#define CCSR_SSI_SISR_TDE1 0x00002000
|
||||
#define CCSR_SSI_SISR_TDE0 0x00001000
|
||||
#define CCSR_SSI_SISR_ROE1 0x00000800
|
||||
#define CCSR_SSI_SISR_ROE0 0x00000400
|
||||
#define CCSR_SSI_SISR_TUE1 0x00000200
|
||||
#define CCSR_SSI_SISR_TUE0 0x00000100
|
||||
#define CCSR_SSI_SISR_TFS 0x00000080
|
||||
#define CCSR_SSI_SISR_RFS 0x00000040
|
||||
#define CCSR_SSI_SISR_TLS 0x00000020
|
||||
#define CCSR_SSI_SISR_RLS 0x00000010
|
||||
#define CCSR_SSI_SISR_RFF1 0x00000008
|
||||
#define CCSR_SSI_SISR_RFF0 0x00000004
|
||||
#define CCSR_SSI_SISR_TFE1 0x00000002
|
||||
#define CCSR_SSI_SISR_TFE0 0x00000001
|
||||
|
||||
#define CCSR_SSI_SIER_RFRC_EN 0x01000000
|
||||
#define CCSR_SSI_SIER_TFRC_EN 0x00800000
|
||||
#define CCSR_SSI_SIER_RDMAE 0x00400000
|
||||
#define CCSR_SSI_SIER_RIE 0x00200000
|
||||
#define CCSR_SSI_SIER_TDMAE 0x00100000
|
||||
#define CCSR_SSI_SIER_TIE 0x00080000
|
||||
#define CCSR_SSI_SIER_CMDAU_EN 0x00040000
|
||||
#define CCSR_SSI_SIER_CMDDU_EN 0x00020000
|
||||
#define CCSR_SSI_SIER_RXT_EN 0x00010000
|
||||
#define CCSR_SSI_SIER_RDR1_EN 0x00008000
|
||||
#define CCSR_SSI_SIER_RDR0_EN 0x00004000
|
||||
#define CCSR_SSI_SIER_TDE1_EN 0x00002000
|
||||
#define CCSR_SSI_SIER_TDE0_EN 0x00001000
|
||||
#define CCSR_SSI_SIER_ROE1_EN 0x00000800
|
||||
#define CCSR_SSI_SIER_ROE0_EN 0x00000400
|
||||
#define CCSR_SSI_SIER_TUE1_EN 0x00000200
|
||||
#define CCSR_SSI_SIER_TUE0_EN 0x00000100
|
||||
#define CCSR_SSI_SIER_TFS_EN 0x00000080
|
||||
#define CCSR_SSI_SIER_RFS_EN 0x00000040
|
||||
#define CCSR_SSI_SIER_TLS_EN 0x00000020
|
||||
#define CCSR_SSI_SIER_RLS_EN 0x00000010
|
||||
#define CCSR_SSI_SIER_RFF1_EN 0x00000008
|
||||
#define CCSR_SSI_SIER_RFF0_EN 0x00000004
|
||||
#define CCSR_SSI_SIER_TFE1_EN 0x00000002
|
||||
#define CCSR_SSI_SIER_TFE0_EN 0x00000001
|
||||
|
||||
#define CCSR_SSI_STCR_TXBIT0 0x00000200
|
||||
#define CCSR_SSI_STCR_TFEN1 0x00000100
|
||||
#define CCSR_SSI_STCR_TFEN0 0x00000080
|
||||
#define CCSR_SSI_STCR_TFDIR 0x00000040
|
||||
#define CCSR_SSI_STCR_TXDIR 0x00000020
|
||||
#define CCSR_SSI_STCR_TSHFD 0x00000010
|
||||
#define CCSR_SSI_STCR_TSCKP 0x00000008
|
||||
#define CCSR_SSI_STCR_TFSI 0x00000004
|
||||
#define CCSR_SSI_STCR_TFSL 0x00000002
|
||||
#define CCSR_SSI_STCR_TEFS 0x00000001
|
||||
|
||||
#define CCSR_SSI_SRCR_RXEXT 0x00000400
|
||||
#define CCSR_SSI_SRCR_RXBIT0 0x00000200
|
||||
#define CCSR_SSI_SRCR_RFEN1 0x00000100
|
||||
#define CCSR_SSI_SRCR_RFEN0 0x00000080
|
||||
#define CCSR_SSI_SRCR_RFDIR 0x00000040
|
||||
#define CCSR_SSI_SRCR_RXDIR 0x00000020
|
||||
#define CCSR_SSI_SRCR_RSHFD 0x00000010
|
||||
#define CCSR_SSI_SRCR_RSCKP 0x00000008
|
||||
#define CCSR_SSI_SRCR_RFSI 0x00000004
|
||||
#define CCSR_SSI_SRCR_RFSL 0x00000002
|
||||
#define CCSR_SSI_SRCR_REFS 0x00000001
|
||||
|
||||
/* STCCR and SRCCR */
|
||||
#define CCSR_SSI_SxCCR_DIV2 0x00040000
|
||||
#define CCSR_SSI_SxCCR_PSR 0x00020000
|
||||
#define CCSR_SSI_SxCCR_WL_SHIFT 13
|
||||
#define CCSR_SSI_SxCCR_WL_MASK 0x0001E000
|
||||
#define CCSR_SSI_SxCCR_WL(x) \
|
||||
(((((x) / 2) - 1) << CCSR_SSI_SxCCR_WL_SHIFT) & CCSR_SSI_SxCCR_WL_MASK)
|
||||
#define CCSR_SSI_SxCCR_DC_SHIFT 8
|
||||
#define CCSR_SSI_SxCCR_DC_MASK 0x00001F00
|
||||
#define CCSR_SSI_SxCCR_DC(x) \
|
||||
((((x) - 1) << CCSR_SSI_SxCCR_DC_SHIFT) & CCSR_SSI_SxCCR_DC_MASK)
|
||||
#define CCSR_SSI_SxCCR_PM_SHIFT 0
|
||||
#define CCSR_SSI_SxCCR_PM_MASK 0x000000FF
|
||||
#define CCSR_SSI_SxCCR_PM(x) \
|
||||
((((x) - 1) << CCSR_SSI_SxCCR_PM_SHIFT) & CCSR_SSI_SxCCR_PM_MASK)
|
||||
|
||||
/*
|
||||
* The xFCNT bits are read-only, and the xFWM bits are read/write. Use the
|
||||
* CCSR_SSI_SFCSR_xFCNTy() macros to read the FIFO counters, and use the
|
||||
* CCSR_SSI_SFCSR_xFWMy() macros to set the watermarks.
|
||||
*/
|
||||
#define CCSR_SSI_SFCSR_RFCNT1_SHIFT 28
|
||||
#define CCSR_SSI_SFCSR_RFCNT1_MASK 0xF0000000
|
||||
#define CCSR_SSI_SFCSR_RFCNT1(x) \
|
||||
(((x) & CCSR_SSI_SFCSR_RFCNT1_MASK) >> CCSR_SSI_SFCSR_RFCNT1_SHIFT)
|
||||
#define CCSR_SSI_SFCSR_TFCNT1_SHIFT 24
|
||||
#define CCSR_SSI_SFCSR_TFCNT1_MASK 0x0F000000
|
||||
#define CCSR_SSI_SFCSR_TFCNT1(x) \
|
||||
(((x) & CCSR_SSI_SFCSR_TFCNT1_MASK) >> CCSR_SSI_SFCSR_TFCNT1_SHIFT)
|
||||
#define CCSR_SSI_SFCSR_RFWM1_SHIFT 20
|
||||
#define CCSR_SSI_SFCSR_RFWM1_MASK 0x00F00000
|
||||
#define CCSR_SSI_SFCSR_RFWM1(x) \
|
||||
(((x) << CCSR_SSI_SFCSR_RFWM1_SHIFT) & CCSR_SSI_SFCSR_RFWM1_MASK)
|
||||
#define CCSR_SSI_SFCSR_TFWM1_SHIFT 16
|
||||
#define CCSR_SSI_SFCSR_TFWM1_MASK 0x000F0000
|
||||
#define CCSR_SSI_SFCSR_TFWM1(x) \
|
||||
(((x) << CCSR_SSI_SFCSR_TFWM1_SHIFT) & CCSR_SSI_SFCSR_TFWM1_MASK)
|
||||
#define CCSR_SSI_SFCSR_RFCNT0_SHIFT 12
|
||||
#define CCSR_SSI_SFCSR_RFCNT0_MASK 0x0000F000
|
||||
#define CCSR_SSI_SFCSR_RFCNT0(x) \
|
||||
(((x) & CCSR_SSI_SFCSR_RFCNT0_MASK) >> CCSR_SSI_SFCSR_RFCNT0_SHIFT)
|
||||
#define CCSR_SSI_SFCSR_TFCNT0_SHIFT 8
|
||||
#define CCSR_SSI_SFCSR_TFCNT0_MASK 0x00000F00
|
||||
#define CCSR_SSI_SFCSR_TFCNT0(x) \
|
||||
(((x) & CCSR_SSI_SFCSR_TFCNT0_MASK) >> CCSR_SSI_SFCSR_TFCNT0_SHIFT)
|
||||
#define CCSR_SSI_SFCSR_RFWM0_SHIFT 4
|
||||
#define CCSR_SSI_SFCSR_RFWM0_MASK 0x000000F0
|
||||
#define CCSR_SSI_SFCSR_RFWM0(x) \
|
||||
(((x) << CCSR_SSI_SFCSR_RFWM0_SHIFT) & CCSR_SSI_SFCSR_RFWM0_MASK)
|
||||
#define CCSR_SSI_SFCSR_TFWM0_SHIFT 0
|
||||
#define CCSR_SSI_SFCSR_TFWM0_MASK 0x0000000F
|
||||
#define CCSR_SSI_SFCSR_TFWM0(x) \
|
||||
(((x) << CCSR_SSI_SFCSR_TFWM0_SHIFT) & CCSR_SSI_SFCSR_TFWM0_MASK)
|
||||
|
||||
#define CCSR_SSI_STR_TEST 0x00008000
|
||||
#define CCSR_SSI_STR_RCK2TCK 0x00004000
|
||||
#define CCSR_SSI_STR_RFS2TFS 0x00002000
|
||||
#define CCSR_SSI_STR_RXSTATE(x) (((x) >> 8) & 0x1F)
|
||||
#define CCSR_SSI_STR_TXD2RXD 0x00000080
|
||||
#define CCSR_SSI_STR_TCK2RCK 0x00000040
|
||||
#define CCSR_SSI_STR_TFS2RFS 0x00000020
|
||||
#define CCSR_SSI_STR_TXSTATE(x) ((x) & 0x1F)
|
||||
|
||||
#define CCSR_SSI_SOR_CLKOFF 0x00000040
|
||||
#define CCSR_SSI_SOR_RX_CLR 0x00000020
|
||||
#define CCSR_SSI_SOR_TX_CLR 0x00000010
|
||||
#define CCSR_SSI_SOR_INIT 0x00000008
|
||||
#define CCSR_SSI_SOR_WAIT_SHIFT 1
|
||||
#define CCSR_SSI_SOR_WAIT_MASK 0x00000006
|
||||
#define CCSR_SSI_SOR_WAIT(x) (((x) & 3) << CCSR_SSI_SOR_WAIT_SHIFT)
|
||||
#define CCSR_SSI_SOR_SYNRST 0x00000001
|
||||
|
||||
/* Instantiation data for an SSI interface
|
||||
*
|
||||
* This structure contains all the information that the the SSI driver needs
|
||||
* to instantiate an SSI interface with ALSA. The machine driver should
|
||||
* create this structure, fill it in, call fsl_ssi_create_dai(), and then
|
||||
* delete the structure.
|
||||
*
|
||||
* id: which SSI this is (0, 1, etc. )
|
||||
* ssi: pointer to the SSI's registers
|
||||
* ssi_phys: physical address of the SSI registers
|
||||
* irq: IRQ of this SSI
|
||||
* dev: struct device, used to create the sysfs statistics file
|
||||
*/
|
||||
struct fsl_ssi_info {
|
||||
unsigned int id;
|
||||
struct ccsr_ssi __iomem *ssi;
|
||||
dma_addr_t ssi_phys;
|
||||
unsigned int irq;
|
||||
struct device *dev;
|
||||
};
|
||||
|
||||
struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info);
|
||||
void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai);
|
||||
|
||||
#endif
|
||||
|
|
@ -0,0 +1,631 @@
|
|||
/**
|
||||
* Freescale MPC8610HPCD ALSA SoC Fabric driver
|
||||
*
|
||||
* Author: Timur Tabi <timur@freescale.com>
|
||||
*
|
||||
* Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
|
||||
* under the terms of the GNU General Public License version 2. This
|
||||
* program is licensed "as is" without any warranty of any kind, whether
|
||||
* express or implied.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/of_platform.h>
|
||||
#include <sound/soc.h>
|
||||
#include <asm/immap_86xx.h>
|
||||
|
||||
#include "../codecs/cs4270.h"
|
||||
#include "fsl_dma.h"
|
||||
#include "fsl_ssi.h"
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_data: fabric-specific ASoC device data
|
||||
*
|
||||
* This structure contains data for a single sound platform device on an
|
||||
* MPC8610 HPCD. Some of the data is taken from the device tree.
|
||||
*/
|
||||
struct mpc8610_hpcd_data {
|
||||
struct snd_soc_device sound_devdata;
|
||||
struct snd_soc_dai_link dai;
|
||||
struct snd_soc_machine machine;
|
||||
unsigned int dai_format;
|
||||
unsigned int codec_clk_direction;
|
||||
unsigned int cpu_clk_direction;
|
||||
unsigned int clk_frequency;
|
||||
struct ccsr_guts __iomem *guts;
|
||||
struct ccsr_ssi __iomem *ssi;
|
||||
unsigned int ssi_id; /* 0 = SSI1, 1 = SSI2, etc */
|
||||
unsigned int ssi_irq;
|
||||
unsigned int dma_id; /* 0 = DMA1, 1 = DMA2, etc */
|
||||
unsigned int dma_irq[2];
|
||||
struct ccsr_dma_channel __iomem *dma[2];
|
||||
unsigned int dma_channel_id[2]; /* 0 = ch 0, 1 = ch 1, etc*/
|
||||
};
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_machine_probe: initalize the board
|
||||
*
|
||||
* This function is called when platform_device_add() is called. It is used
|
||||
* to initialize the board-specific hardware.
|
||||
*
|
||||
* Here we program the DMACR and PMUXCR registers.
|
||||
*/
|
||||
static int mpc8610_hpcd_machine_probe(struct platform_device *sound_device)
|
||||
{
|
||||
struct mpc8610_hpcd_data *machine_data =
|
||||
sound_device->dev.platform_data;
|
||||
|
||||
/* Program the signal routing between the SSI and the DMA */
|
||||
guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
|
||||
machine_data->dma_channel_id[0], CCSR_GUTS_DMACR_DEV_SSI);
|
||||
guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
|
||||
machine_data->dma_channel_id[1], CCSR_GUTS_DMACR_DEV_SSI);
|
||||
|
||||
guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id,
|
||||
machine_data->dma_channel_id[0], 0);
|
||||
guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id,
|
||||
machine_data->dma_channel_id[1], 0);
|
||||
|
||||
guts_set_pmuxcr_dma(machine_data->guts, 1, 0, 0);
|
||||
guts_set_pmuxcr_dma(machine_data->guts, 1, 3, 0);
|
||||
guts_set_pmuxcr_dma(machine_data->guts, 0, 3, 0);
|
||||
|
||||
switch (machine_data->ssi_id) {
|
||||
case 0:
|
||||
clrsetbits_be32(&machine_data->guts->pmuxcr,
|
||||
CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_SSI);
|
||||
break;
|
||||
case 1:
|
||||
clrsetbits_be32(&machine_data->guts->pmuxcr,
|
||||
CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI2_SSI);
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_startup: program the board with various hardware parameters
|
||||
*
|
||||
* This function takes board-specific information, like clock frequencies
|
||||
* and serial data formats, and passes that information to the codec and
|
||||
* transport drivers.
|
||||
*/
|
||||
static int mpc8610_hpcd_startup(struct snd_pcm_substream *substream)
|
||||
{
|
||||
struct snd_soc_pcm_runtime *rtd = substream->private_data;
|
||||
struct snd_soc_codec_dai *codec_dai = rtd->dai->codec_dai;
|
||||
struct snd_soc_cpu_dai *cpu_dai = rtd->dai->cpu_dai;
|
||||
struct mpc8610_hpcd_data *machine_data =
|
||||
rtd->socdev->dev->platform_data;
|
||||
int ret = 0;
|
||||
|
||||
/* Tell the CPU driver what the serial protocol is. */
|
||||
if (cpu_dai->dai_ops.set_fmt) {
|
||||
ret = cpu_dai->dai_ops.set_fmt(cpu_dai,
|
||||
machine_data->dai_format);
|
||||
if (ret < 0) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"could not set CPU driver audio format\n");
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/* Tell the codec driver what the serial protocol is. */
|
||||
if (codec_dai->dai_ops.set_fmt) {
|
||||
ret = codec_dai->dai_ops.set_fmt(codec_dai,
|
||||
machine_data->dai_format);
|
||||
if (ret < 0) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"could not set codec driver audio format\n");
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Tell the CPU driver what the clock frequency is, and whether it's a
|
||||
* slave or master.
|
||||
*/
|
||||
if (cpu_dai->dai_ops.set_sysclk) {
|
||||
ret = cpu_dai->dai_ops.set_sysclk(cpu_dai, 0,
|
||||
machine_data->clk_frequency,
|
||||
machine_data->cpu_clk_direction);
|
||||
if (ret < 0) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"could not set CPU driver clock parameters\n");
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Tell the codec driver what the MCLK frequency is, and whether it's
|
||||
* a slave or master.
|
||||
*/
|
||||
if (codec_dai->dai_ops.set_sysclk) {
|
||||
ret = codec_dai->dai_ops.set_sysclk(codec_dai, 0,
|
||||
machine_data->clk_frequency,
|
||||
machine_data->codec_clk_direction);
|
||||
if (ret < 0) {
|
||||
dev_err(substream->pcm->card->dev,
|
||||
"could not set codec driver clock params\n");
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_machine_remove: Remove the sound device
|
||||
*
|
||||
* This function is called to remove the sound device for one SSI. We
|
||||
* de-program the DMACR and PMUXCR register.
|
||||
*/
|
||||
int mpc8610_hpcd_machine_remove(struct platform_device *sound_device)
|
||||
{
|
||||
struct mpc8610_hpcd_data *machine_data =
|
||||
sound_device->dev.platform_data;
|
||||
|
||||
/* Restore the signal routing */
|
||||
|
||||
guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
|
||||
machine_data->dma_channel_id[0], 0);
|
||||
guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
|
||||
machine_data->dma_channel_id[1], 0);
|
||||
|
||||
switch (machine_data->ssi_id) {
|
||||
case 0:
|
||||
clrsetbits_be32(&machine_data->guts->pmuxcr,
|
||||
CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_LA);
|
||||
break;
|
||||
case 1:
|
||||
clrsetbits_be32(&machine_data->guts->pmuxcr,
|
||||
CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI1_LA);
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_ops: ASoC fabric driver operations
|
||||
*/
|
||||
static struct snd_soc_ops mpc8610_hpcd_ops = {
|
||||
.startup = mpc8610_hpcd_startup,
|
||||
};
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_machine: ASoC machine data
|
||||
*/
|
||||
static struct snd_soc_machine mpc8610_hpcd_machine = {
|
||||
.probe = mpc8610_hpcd_machine_probe,
|
||||
.remove = mpc8610_hpcd_machine_remove,
|
||||
.name = "MPC8610 HPCD",
|
||||
.num_links = 1,
|
||||
};
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_probe: OF probe function for the fabric driver
|
||||
*
|
||||
* This function gets called when an SSI node is found in the device tree.
|
||||
*
|
||||
* Although this is a fabric driver, the SSI node is the "master" node with
|
||||
* respect to audio hardware connections. Therefore, we create a new ASoC
|
||||
* device for each new SSI node that has a codec attached.
|
||||
*
|
||||
* FIXME: Currently, we only support one DMA controller, so if there are
|
||||
* multiple SSI nodes with codecs, only the first will be supported.
|
||||
*
|
||||
* FIXME: Even if we did support multiple DMA controllers, we have no
|
||||
* mechanism for assigning DMA controllers and channels to the individual
|
||||
* SSI devices. We also probably aren't compatible with the generic Elo DMA
|
||||
* device driver.
|
||||
*/
|
||||
static int mpc8610_hpcd_probe(struct of_device *ofdev,
|
||||
const struct of_device_id *match)
|
||||
{
|
||||
struct device_node *np = ofdev->node;
|
||||
struct device_node *codec_np = NULL;
|
||||
struct device_node *guts_np = NULL;
|
||||
struct device_node *dma_np = NULL;
|
||||
struct device_node *dma_channel_np = NULL;
|
||||
const phandle *codec_ph;
|
||||
const char *sprop;
|
||||
const u32 *iprop;
|
||||
struct resource res;
|
||||
struct platform_device *sound_device = NULL;
|
||||
struct mpc8610_hpcd_data *machine_data;
|
||||
struct fsl_ssi_info ssi_info;
|
||||
struct fsl_dma_info dma_info;
|
||||
int ret = -ENODEV;
|
||||
|
||||
machine_data = kzalloc(sizeof(struct mpc8610_hpcd_data), GFP_KERNEL);
|
||||
if (!machine_data)
|
||||
return -ENOMEM;
|
||||
|
||||
memset(&ssi_info, 0, sizeof(ssi_info));
|
||||
memset(&dma_info, 0, sizeof(dma_info));
|
||||
|
||||
ssi_info.dev = &ofdev->dev;
|
||||
|
||||
/*
|
||||
* We are only interested in SSIs with a codec phandle in them, so let's
|
||||
* make sure this SSI has one.
|
||||
*/
|
||||
codec_ph = of_get_property(np, "codec-handle", NULL);
|
||||
if (!codec_ph)
|
||||
goto error;
|
||||
|
||||
codec_np = of_find_node_by_phandle(*codec_ph);
|
||||
if (!codec_np)
|
||||
goto error;
|
||||
|
||||
/* The MPC8610 HPCD only knows about the CS4270 codec, so reject
|
||||
anything else. */
|
||||
if (!of_device_is_compatible(codec_np, "cirrus,cs4270"))
|
||||
goto error;
|
||||
|
||||
/* Get the device ID */
|
||||
iprop = of_get_property(np, "cell-index", NULL);
|
||||
if (!iprop) {
|
||||
dev_err(&ofdev->dev, "cell-index property not found\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
machine_data->ssi_id = *iprop;
|
||||
ssi_info.id = *iprop;
|
||||
|
||||
/* Get the serial format and clock direction. */
|
||||
sprop = of_get_property(np, "fsl,mode", NULL);
|
||||
if (!sprop) {
|
||||
dev_err(&ofdev->dev, "fsl,mode property not found\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if (strcasecmp(sprop, "i2s-slave") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_I2S;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
|
||||
|
||||
/*
|
||||
* In i2s-slave mode, the codec has its own clock source, so we
|
||||
* need to get the frequency from the device tree and pass it to
|
||||
* the codec driver.
|
||||
*/
|
||||
iprop = of_get_property(codec_np, "clock-frequency", NULL);
|
||||
if (!iprop || !*iprop) {
|
||||
dev_err(&ofdev->dev, "codec bus-frequency property "
|
||||
"is missing or invalid\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
machine_data->clk_frequency = *iprop;
|
||||
} else if (strcasecmp(sprop, "i2s-master") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_I2S;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
} else if (strcasecmp(sprop, "lj-slave") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
|
||||
} else if (strcasecmp(sprop, "lj-master") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
} else if (strcasecmp(sprop, "rj-master") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
|
||||
} else if (strcasecmp(sprop, "rj-master") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
} else if (strcasecmp(sprop, "ac97-slave") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_AC97;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
|
||||
} else if (strcasecmp(sprop, "ac97-master") == 0) {
|
||||
machine_data->dai_format = SND_SOC_DAIFMT_AC97;
|
||||
machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
|
||||
machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
|
||||
} else {
|
||||
dev_err(&ofdev->dev,
|
||||
"unrecognized fsl,mode property \"%s\"\n", sprop);
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
if (!machine_data->clk_frequency) {
|
||||
dev_err(&ofdev->dev, "unknown clock frequency\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Read the SSI information from the device tree */
|
||||
ret = of_address_to_resource(np, 0, &res);
|
||||
if (ret) {
|
||||
dev_err(&ofdev->dev, "could not obtain SSI address\n");
|
||||
goto error;
|
||||
}
|
||||
if (!res.start) {
|
||||
dev_err(&ofdev->dev, "invalid SSI address\n");
|
||||
goto error;
|
||||
}
|
||||
ssi_info.ssi_phys = res.start;
|
||||
|
||||
machine_data->ssi = ioremap(ssi_info.ssi_phys, sizeof(struct ccsr_ssi));
|
||||
if (!machine_data->ssi) {
|
||||
dev_err(&ofdev->dev, "could not map SSI address %x\n",
|
||||
ssi_info.ssi_phys);
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
ssi_info.ssi = machine_data->ssi;
|
||||
|
||||
|
||||
/* Get the IRQ of the SSI */
|
||||
machine_data->ssi_irq = irq_of_parse_and_map(np, 0);
|
||||
if (!machine_data->ssi_irq) {
|
||||
dev_err(&ofdev->dev, "could not get SSI IRQ\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
ssi_info.irq = machine_data->ssi_irq;
|
||||
|
||||
|
||||
/* Map the global utilities registers. */
|
||||
guts_np = of_find_compatible_node(NULL, NULL, "fsl,mpc8610-guts");
|
||||
if (!guts_np) {
|
||||
dev_err(&ofdev->dev, "could not obtain address of GUTS\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
machine_data->guts = of_iomap(guts_np, 0);
|
||||
of_node_put(guts_np);
|
||||
if (!machine_data->guts) {
|
||||
dev_err(&ofdev->dev, "could not map GUTS\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* Find the DMA channels to use. For now, we always use the first DMA
|
||||
controller. */
|
||||
for_each_compatible_node(dma_np, NULL, "fsl,mpc8610-dma") {
|
||||
iprop = of_get_property(dma_np, "cell-index", NULL);
|
||||
if (iprop && (*iprop == 0)) {
|
||||
of_node_put(dma_np);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!dma_np) {
|
||||
dev_err(&ofdev->dev, "could not find DMA node\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
machine_data->dma_id = *iprop;
|
||||
|
||||
/*
|
||||
* Find the DMA channels to use. For now, we always use DMA channel 0
|
||||
* for playback, and DMA channel 1 for capture.
|
||||
*/
|
||||
while ((dma_channel_np = of_get_next_child(dma_np, dma_channel_np))) {
|
||||
iprop = of_get_property(dma_channel_np, "cell-index", NULL);
|
||||
/* Is it DMA channel 0? */
|
||||
if (iprop && (*iprop == 0)) {
|
||||
/* dma_channel[0] and dma_irq[0] are for playback */
|
||||
dma_info.dma_channel[0] = of_iomap(dma_channel_np, 0);
|
||||
dma_info.dma_irq[0] =
|
||||
irq_of_parse_and_map(dma_channel_np, 0);
|
||||
machine_data->dma_channel_id[0] = *iprop;
|
||||
continue;
|
||||
}
|
||||
if (iprop && (*iprop == 1)) {
|
||||
/* dma_channel[1] and dma_irq[1] are for capture */
|
||||
dma_info.dma_channel[1] = of_iomap(dma_channel_np, 0);
|
||||
dma_info.dma_irq[1] =
|
||||
irq_of_parse_and_map(dma_channel_np, 0);
|
||||
machine_data->dma_channel_id[1] = *iprop;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
if (!dma_info.dma_channel[0] || !dma_info.dma_channel[1] ||
|
||||
!dma_info.dma_irq[0] || !dma_info.dma_irq[1]) {
|
||||
dev_err(&ofdev->dev, "could not find DMA channels\n");
|
||||
ret = -EINVAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
dma_info.ssi_stx_phys = ssi_info.ssi_phys +
|
||||
offsetof(struct ccsr_ssi, stx0);
|
||||
dma_info.ssi_srx_phys = ssi_info.ssi_phys +
|
||||
offsetof(struct ccsr_ssi, srx0);
|
||||
|
||||
/* We have the DMA information, so tell the DMA driver what it is */
|
||||
if (!fsl_dma_configure(&dma_info)) {
|
||||
dev_err(&ofdev->dev, "could not instantiate DMA device\n");
|
||||
ret = -EBUSY;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize our DAI data structure. We should probably get this
|
||||
* information from the device tree.
|
||||
*/
|
||||
machine_data->dai.name = "CS4270";
|
||||
machine_data->dai.stream_name = "CS4270";
|
||||
|
||||
machine_data->dai.cpu_dai = fsl_ssi_create_dai(&ssi_info);
|
||||
machine_data->dai.codec_dai = &cs4270_dai; /* The codec_dai we want */
|
||||
machine_data->dai.ops = &mpc8610_hpcd_ops;
|
||||
|
||||
mpc8610_hpcd_machine.dai_link = &machine_data->dai;
|
||||
|
||||
/* Allocate a new audio platform device structure */
|
||||
sound_device = platform_device_alloc("soc-audio", -1);
|
||||
if (!sound_device) {
|
||||
dev_err(&ofdev->dev, "platform device allocation failed\n");
|
||||
ret = -ENOMEM;
|
||||
goto error;
|
||||
}
|
||||
|
||||
machine_data->sound_devdata.machine = &mpc8610_hpcd_machine;
|
||||
machine_data->sound_devdata.codec_dev = &soc_codec_device_cs4270;
|
||||
machine_data->sound_devdata.platform = &fsl_soc_platform;
|
||||
|
||||
sound_device->dev.platform_data = machine_data;
|
||||
|
||||
|
||||
/* Set the platform device and ASoC device to point to each other */
|
||||
platform_set_drvdata(sound_device, &machine_data->sound_devdata);
|
||||
|
||||
machine_data->sound_devdata.dev = &sound_device->dev;
|
||||
|
||||
|
||||
/* Tell ASoC to probe us. This will call mpc8610_hpcd_machine.probe(),
|
||||
if it exists. */
|
||||
ret = platform_device_add(sound_device);
|
||||
|
||||
if (ret) {
|
||||
dev_err(&ofdev->dev, "platform device add failed\n");
|
||||
goto error;
|
||||
}
|
||||
|
||||
dev_set_drvdata(&ofdev->dev, sound_device);
|
||||
|
||||
return 0;
|
||||
|
||||
error:
|
||||
of_node_put(codec_np);
|
||||
of_node_put(guts_np);
|
||||
of_node_put(dma_np);
|
||||
of_node_put(dma_channel_np);
|
||||
|
||||
if (sound_device)
|
||||
platform_device_unregister(sound_device);
|
||||
|
||||
if (machine_data->dai.cpu_dai)
|
||||
fsl_ssi_destroy_dai(machine_data->dai.cpu_dai);
|
||||
|
||||
if (ssi_info.ssi)
|
||||
iounmap(ssi_info.ssi);
|
||||
|
||||
if (ssi_info.irq)
|
||||
irq_dispose_mapping(ssi_info.irq);
|
||||
|
||||
if (dma_info.dma_channel[0])
|
||||
iounmap(dma_info.dma_channel[0]);
|
||||
|
||||
if (dma_info.dma_channel[1])
|
||||
iounmap(dma_info.dma_channel[1]);
|
||||
|
||||
if (dma_info.dma_irq[0])
|
||||
irq_dispose_mapping(dma_info.dma_irq[0]);
|
||||
|
||||
if (dma_info.dma_irq[1])
|
||||
irq_dispose_mapping(dma_info.dma_irq[1]);
|
||||
|
||||
if (machine_data->guts)
|
||||
iounmap(machine_data->guts);
|
||||
|
||||
kfree(machine_data);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_remove: remove the OF device
|
||||
*
|
||||
* This function is called when the OF device is removed.
|
||||
*/
|
||||
static int mpc8610_hpcd_remove(struct of_device *ofdev)
|
||||
{
|
||||
struct platform_device *sound_device = dev_get_drvdata(&ofdev->dev);
|
||||
struct mpc8610_hpcd_data *machine_data =
|
||||
sound_device->dev.platform_data;
|
||||
|
||||
platform_device_unregister(sound_device);
|
||||
|
||||
if (machine_data->dai.cpu_dai)
|
||||
fsl_ssi_destroy_dai(machine_data->dai.cpu_dai);
|
||||
|
||||
if (machine_data->ssi)
|
||||
iounmap(machine_data->ssi);
|
||||
|
||||
if (machine_data->dma[0])
|
||||
iounmap(machine_data->dma[0]);
|
||||
|
||||
if (machine_data->dma[1])
|
||||
iounmap(machine_data->dma[1]);
|
||||
|
||||
if (machine_data->dma_irq[0])
|
||||
irq_dispose_mapping(machine_data->dma_irq[0]);
|
||||
|
||||
if (machine_data->dma_irq[1])
|
||||
irq_dispose_mapping(machine_data->dma_irq[1]);
|
||||
|
||||
if (machine_data->guts)
|
||||
iounmap(machine_data->guts);
|
||||
|
||||
kfree(machine_data);
|
||||
sound_device->dev.platform_data = NULL;
|
||||
|
||||
dev_set_drvdata(&ofdev->dev, NULL);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct of_device_id mpc8610_hpcd_match[] = {
|
||||
{
|
||||
.compatible = "fsl,mpc8610-ssi",
|
||||
},
|
||||
{}
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, mpc8610_hpcd_match);
|
||||
|
||||
static struct of_platform_driver mpc8610_hpcd_of_driver = {
|
||||
.owner = THIS_MODULE,
|
||||
.name = "mpc8610_hpcd",
|
||||
.match_table = mpc8610_hpcd_match,
|
||||
.probe = mpc8610_hpcd_probe,
|
||||
.remove = mpc8610_hpcd_remove,
|
||||
};
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_init: fabric driver initialization.
|
||||
*
|
||||
* This function is called when this module is loaded.
|
||||
*/
|
||||
static int __init mpc8610_hpcd_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
printk(KERN_INFO "Freescale MPC8610 HPCD ALSA SoC fabric driver\n");
|
||||
|
||||
ret = of_register_platform_driver(&mpc8610_hpcd_of_driver);
|
||||
|
||||
if (ret)
|
||||
printk(KERN_ERR
|
||||
"mpc8610-hpcd: failed to register platform driver\n");
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* mpc8610_hpcd_exit: fabric driver exit
|
||||
*
|
||||
* This function is called when this driver is unloaded.
|
||||
*/
|
||||
static void __exit mpc8610_hpcd_exit(void)
|
||||
{
|
||||
of_unregister_platform_driver(&mpc8610_hpcd_of_driver);
|
||||
}
|
||||
|
||||
module_init(mpc8610_hpcd_init);
|
||||
module_exit(mpc8610_hpcd_exit);
|
||||
|
||||
MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
|
||||
MODULE_DESCRIPTION("Freescale MPC8610 HPCD ALSA SoC fabric driver");
|
||||
MODULE_LICENSE("GPL");
|
Загрузка…
Ссылка в новой задаче