[PATCH] fix and optimize clock source update
This fixes the clock source updates in update_wall_time() to correctly track the time coming in via current_tick_length(). Optimize the fast paths to be as short as possible to keep the overhead low. Signed-off-by: Roman Zippel <zippel@linux-m68k.org> Acked-by: John Stultz <johnstul@us.ibm.com> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This commit is contained in:
Родитель
6415ce9a92
Коммит
19923c190e
|
@ -102,7 +102,7 @@ EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
|
|||
u64 tb_to_xs;
|
||||
unsigned tb_to_us;
|
||||
|
||||
#define TICKLEN_SCALE (SHIFT_SCALE - 10)
|
||||
#define TICKLEN_SCALE TICK_LENGTH_SHIFT
|
||||
u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
|
||||
u64 ticklen_to_xs; /* 0.64 fraction */
|
||||
|
||||
|
@ -534,7 +534,7 @@ static __inline__ void timer_recalc_offset(u64 cur_tb)
|
|||
|
||||
if (__USE_RTC())
|
||||
return;
|
||||
tlen = current_tick_length(SHIFT_SCALE - 10);
|
||||
tlen = current_tick_length();
|
||||
offset = cur_tb - do_gtod.varp->tb_orig_stamp;
|
||||
if (tlen == last_tick_len && offset < 0x80000000u)
|
||||
return;
|
||||
|
|
|
@ -46,8 +46,8 @@ typedef u64 cycle_t;
|
|||
* @shift: cycle to nanosecond divisor (power of two)
|
||||
* @update_callback: called when safe to alter clocksource values
|
||||
* @is_continuous: defines if clocksource is free-running.
|
||||
* @interval_cycles: Used internally by timekeeping core, please ignore.
|
||||
* @interval_snsecs: Used internally by timekeeping core, please ignore.
|
||||
* @cycle_interval: Used internally by timekeeping core, please ignore.
|
||||
* @xtime_interval: Used internally by timekeeping core, please ignore.
|
||||
*/
|
||||
struct clocksource {
|
||||
char *name;
|
||||
|
@ -61,8 +61,9 @@ struct clocksource {
|
|||
int is_continuous;
|
||||
|
||||
/* timekeeping specific data, ignore */
|
||||
cycle_t interval_cycles;
|
||||
u64 interval_snsecs;
|
||||
cycle_t cycle_last, cycle_interval;
|
||||
u64 xtime_nsec, xtime_interval;
|
||||
s64 error;
|
||||
};
|
||||
|
||||
/* simplify initialization of mask field */
|
||||
|
@ -168,107 +169,11 @@ static inline void clocksource_calculate_interval(struct clocksource *c,
|
|||
tmp += c->mult/2;
|
||||
do_div(tmp, c->mult);
|
||||
|
||||
c->interval_cycles = (cycle_t)tmp;
|
||||
if(c->interval_cycles == 0)
|
||||
c->interval_cycles = 1;
|
||||
c->cycle_interval = (cycle_t)tmp;
|
||||
if (c->cycle_interval == 0)
|
||||
c->cycle_interval = 1;
|
||||
|
||||
c->interval_snsecs = (u64)c->interval_cycles * c->mult;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* error_aproximation - calculates an error adjustment for a given error
|
||||
*
|
||||
* @error: Error value (unsigned)
|
||||
* @unit: Adjustment unit
|
||||
*
|
||||
* For a given error value, this function takes the adjustment unit
|
||||
* and uses binary approximation to return a power of two adjustment value.
|
||||
*
|
||||
* This function is only for use by the the make_ntp_adj() function
|
||||
* and you must hold a write on the xtime_lock when calling.
|
||||
*/
|
||||
static inline int error_aproximation(u64 error, u64 unit)
|
||||
{
|
||||
static int saved_adj = 0;
|
||||
u64 adjusted_unit = unit << saved_adj;
|
||||
|
||||
if (error > (adjusted_unit * 2)) {
|
||||
/* large error, so increment the adjustment factor */
|
||||
saved_adj++;
|
||||
} else if (error > adjusted_unit) {
|
||||
/* just right, don't touch it */
|
||||
} else if (saved_adj) {
|
||||
/* small error, so drop the adjustment factor */
|
||||
saved_adj--;
|
||||
return 0;
|
||||
}
|
||||
|
||||
return saved_adj;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* make_ntp_adj - Adjusts the specified clocksource for a given error
|
||||
*
|
||||
* @clock: Pointer to clock to be adjusted
|
||||
* @cycles_delta: Current unacounted cycle delta
|
||||
* @error: Pointer to current error value
|
||||
*
|
||||
* Returns clock shifted nanosecond adjustment to be applied against
|
||||
* the accumulated time value (ie: xtime).
|
||||
*
|
||||
* If the error value is large enough, this function calulates the
|
||||
* (power of two) adjustment value, and adjusts the clock's mult and
|
||||
* interval_snsecs values accordingly.
|
||||
*
|
||||
* However, since there may be some unaccumulated cycles, to avoid
|
||||
* time inconsistencies we must adjust the accumulation value
|
||||
* accordingly.
|
||||
*
|
||||
* This is not very intuitive, so the following proof should help:
|
||||
* The basic timeofday algorithm: base + cycle * mult
|
||||
* Thus:
|
||||
* new_base + cycle * new_mult = old_base + cycle * old_mult
|
||||
* new_base = old_base + cycle * old_mult - cycle * new_mult
|
||||
* new_base = old_base + cycle * (old_mult - new_mult)
|
||||
* new_base - old_base = cycle * (old_mult - new_mult)
|
||||
* base_delta = cycle * (old_mult - new_mult)
|
||||
* base_delta = cycle * (mult_delta)
|
||||
*
|
||||
* Where mult_delta is the adjustment value made to mult
|
||||
*
|
||||
*/
|
||||
static inline s64 make_ntp_adj(struct clocksource *clock,
|
||||
cycles_t cycles_delta, s64* error)
|
||||
{
|
||||
s64 ret = 0;
|
||||
if (*error > ((s64)clock->interval_cycles+1)/2) {
|
||||
/* calculate adjustment value */
|
||||
int adjustment = error_aproximation(*error,
|
||||
clock->interval_cycles);
|
||||
/* adjust clock */
|
||||
clock->mult += 1 << adjustment;
|
||||
clock->interval_snsecs += clock->interval_cycles << adjustment;
|
||||
|
||||
/* adjust the base and error for the adjustment */
|
||||
ret = -(cycles_delta << adjustment);
|
||||
*error -= clock->interval_cycles << adjustment;
|
||||
/* XXX adj error for cycle_delta offset? */
|
||||
} else if ((-(*error)) > ((s64)clock->interval_cycles+1)/2) {
|
||||
/* calculate adjustment value */
|
||||
int adjustment = error_aproximation(-(*error),
|
||||
clock->interval_cycles);
|
||||
/* adjust clock */
|
||||
clock->mult -= 1 << adjustment;
|
||||
clock->interval_snsecs -= clock->interval_cycles << adjustment;
|
||||
|
||||
/* adjust the base and error for the adjustment */
|
||||
ret = cycles_delta << adjustment;
|
||||
*error += clock->interval_cycles << adjustment;
|
||||
/* XXX adj error for cycle_delta offset? */
|
||||
}
|
||||
return ret;
|
||||
c->xtime_interval = (u64)c->cycle_interval * c->mult;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -303,8 +303,10 @@ time_interpolator_reset(void)
|
|||
|
||||
#endif /* !CONFIG_TIME_INTERPOLATION */
|
||||
|
||||
#define TICK_LENGTH_SHIFT 32
|
||||
|
||||
/* Returns how long ticks are at present, in ns / 2^(SHIFT_SCALE-10). */
|
||||
extern u64 current_tick_length(long);
|
||||
extern u64 current_tick_length(void);
|
||||
|
||||
extern int do_adjtimex(struct timex *);
|
||||
|
||||
|
|
153
kernel/timer.c
153
kernel/timer.c
|
@ -770,7 +770,7 @@ static void update_ntp_one_tick(void)
|
|||
* specified number of bits to the right of the binary point.
|
||||
* This function has no side-effects.
|
||||
*/
|
||||
u64 current_tick_length(long shift)
|
||||
u64 current_tick_length(void)
|
||||
{
|
||||
long delta_nsec;
|
||||
u64 ret;
|
||||
|
@ -779,14 +779,8 @@ u64 current_tick_length(long shift)
|
|||
* ie: nanosecond value shifted by (SHIFT_SCALE - 10)
|
||||
*/
|
||||
delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
|
||||
ret = ((u64) delta_nsec << (SHIFT_SCALE - 10)) + time_adj;
|
||||
|
||||
/* convert from (SHIFT_SCALE - 10) to specified shift scale: */
|
||||
shift = shift - (SHIFT_SCALE - 10);
|
||||
if (shift < 0)
|
||||
ret >>= -shift;
|
||||
else
|
||||
ret <<= shift;
|
||||
ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
|
||||
ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
@ -794,7 +788,6 @@ u64 current_tick_length(long shift)
|
|||
/* XXX - all of this timekeeping code should be later moved to time.c */
|
||||
#include <linux/clocksource.h>
|
||||
static struct clocksource *clock; /* pointer to current clocksource */
|
||||
static cycle_t last_clock_cycle; /* cycle value at last update_wall_time */
|
||||
|
||||
#ifdef CONFIG_GENERIC_TIME
|
||||
/**
|
||||
|
@ -813,7 +806,7 @@ static inline s64 __get_nsec_offset(void)
|
|||
cycle_now = clocksource_read(clock);
|
||||
|
||||
/* calculate the delta since the last update_wall_time: */
|
||||
cycle_delta = (cycle_now - last_clock_cycle) & clock->mask;
|
||||
cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
|
||||
|
||||
/* convert to nanoseconds: */
|
||||
ns_offset = cyc2ns(clock, cycle_delta);
|
||||
|
@ -927,7 +920,7 @@ static int change_clocksource(void)
|
|||
timespec_add_ns(&xtime, nsec);
|
||||
|
||||
clock = new;
|
||||
last_clock_cycle = now;
|
||||
clock->cycle_last = now;
|
||||
printk(KERN_INFO "Time: %s clocksource has been installed.\n",
|
||||
clock->name);
|
||||
return 1;
|
||||
|
@ -968,7 +961,7 @@ void __init timekeeping_init(void)
|
|||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
clock = clocksource_get_next();
|
||||
clocksource_calculate_interval(clock, tick_nsec);
|
||||
last_clock_cycle = clocksource_read(clock);
|
||||
clock->cycle_last = clocksource_read(clock);
|
||||
ntp_clear();
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
}
|
||||
|
@ -988,7 +981,7 @@ static int timekeeping_resume(struct sys_device *dev)
|
|||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
/* restart the last cycle value */
|
||||
last_clock_cycle = clocksource_read(clock);
|
||||
clock->cycle_last = clocksource_read(clock);
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
return 0;
|
||||
}
|
||||
|
@ -1014,6 +1007,81 @@ static int __init timekeeping_init_device(void)
|
|||
|
||||
device_initcall(timekeeping_init_device);
|
||||
|
||||
/*
|
||||
* If the error is already larger, we look ahead another tick,
|
||||
* to compensate for late or lost adjustments.
|
||||
*/
|
||||
static __always_inline int clocksource_bigadjust(int sign, s64 error, s64 *interval, s64 *offset)
|
||||
{
|
||||
int adj;
|
||||
|
||||
/*
|
||||
* As soon as the machine is synchronized to the external time
|
||||
* source this should be the common case.
|
||||
*/
|
||||
error >>= 2;
|
||||
if (likely(sign > 0 ? error <= *interval : error >= *interval))
|
||||
return sign;
|
||||
|
||||
/*
|
||||
* An extra look ahead dampens the effect of the current error,
|
||||
* which can grow quite large with continously late updates, as
|
||||
* it would dominate the adjustment value and can lead to
|
||||
* oscillation.
|
||||
*/
|
||||
error += current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1);
|
||||
error -= clock->xtime_interval >> 1;
|
||||
|
||||
adj = 0;
|
||||
while (1) {
|
||||
error >>= 1;
|
||||
if (sign > 0 ? error <= *interval : error >= *interval)
|
||||
break;
|
||||
adj++;
|
||||
}
|
||||
|
||||
/*
|
||||
* Add the current adjustments to the error and take the offset
|
||||
* into account, the latter can cause the error to be hardly
|
||||
* reduced at the next tick. Check the error again if there's
|
||||
* room for another adjustment, thus further reducing the error
|
||||
* which otherwise had to be corrected at the next update.
|
||||
*/
|
||||
error = (error << 1) - *interval + *offset;
|
||||
if (sign > 0 ? error > *interval : error < *interval)
|
||||
adj++;
|
||||
|
||||
*interval <<= adj;
|
||||
*offset <<= adj;
|
||||
return sign << adj;
|
||||
}
|
||||
|
||||
/*
|
||||
* Adjust the multiplier to reduce the error value,
|
||||
* this is optimized for the most common adjustments of -1,0,1,
|
||||
* for other values we can do a bit more work.
|
||||
*/
|
||||
static void clocksource_adjust(struct clocksource *clock, s64 offset)
|
||||
{
|
||||
s64 error, interval = clock->cycle_interval;
|
||||
int adj;
|
||||
|
||||
error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
|
||||
if (error > interval) {
|
||||
adj = clocksource_bigadjust(1, error, &interval, &offset);
|
||||
} else if (error < -interval) {
|
||||
interval = -interval;
|
||||
offset = -offset;
|
||||
adj = clocksource_bigadjust(-1, error, &interval, &offset);
|
||||
} else
|
||||
return;
|
||||
|
||||
clock->mult += adj;
|
||||
clock->xtime_interval += interval;
|
||||
clock->xtime_nsec -= offset;
|
||||
clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift);
|
||||
}
|
||||
|
||||
/*
|
||||
* update_wall_time - Uses the current clocksource to increment the wall time
|
||||
*
|
||||
|
@ -1021,54 +1089,53 @@ device_initcall(timekeeping_init_device);
|
|||
*/
|
||||
static void update_wall_time(void)
|
||||
{
|
||||
static s64 remainder_snsecs, error;
|
||||
s64 snsecs_per_sec;
|
||||
cycle_t now, offset;
|
||||
cycle_t offset;
|
||||
|
||||
snsecs_per_sec = (s64)NSEC_PER_SEC << clock->shift;
|
||||
remainder_snsecs += (s64)xtime.tv_nsec << clock->shift;
|
||||
clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
|
||||
|
||||
now = clocksource_read(clock);
|
||||
offset = (now - last_clock_cycle)&clock->mask;
|
||||
#ifdef CONFIG_GENERIC_TIME
|
||||
offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
|
||||
#else
|
||||
offset = clock->cycle_interval;
|
||||
#endif
|
||||
|
||||
/* normally this loop will run just once, however in the
|
||||
* case of lost or late ticks, it will accumulate correctly.
|
||||
*/
|
||||
while (offset > clock->interval_cycles) {
|
||||
/* get the ntp interval in clock shifted nanoseconds */
|
||||
s64 ntp_snsecs = current_tick_length(clock->shift);
|
||||
|
||||
while (offset >= clock->cycle_interval) {
|
||||
/* accumulate one interval */
|
||||
remainder_snsecs += clock->interval_snsecs;
|
||||
last_clock_cycle += clock->interval_cycles;
|
||||
offset -= clock->interval_cycles;
|
||||
clock->xtime_nsec += clock->xtime_interval;
|
||||
clock->cycle_last += clock->cycle_interval;
|
||||
offset -= clock->cycle_interval;
|
||||
|
||||
if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
|
||||
clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
|
||||
xtime.tv_sec++;
|
||||
second_overflow();
|
||||
}
|
||||
|
||||
/* interpolator bits */
|
||||
time_interpolator_update(clock->interval_snsecs
|
||||
time_interpolator_update(clock->xtime_interval
|
||||
>> clock->shift);
|
||||
/* increment the NTP state machine */
|
||||
update_ntp_one_tick();
|
||||
|
||||
/* accumulate error between NTP and clock interval */
|
||||
error += (ntp_snsecs - (s64)clock->interval_snsecs);
|
||||
|
||||
/* correct the clock when NTP error is too big */
|
||||
remainder_snsecs += make_ntp_adj(clock, offset, &error);
|
||||
|
||||
if (remainder_snsecs >= snsecs_per_sec) {
|
||||
remainder_snsecs -= snsecs_per_sec;
|
||||
xtime.tv_sec++;
|
||||
second_overflow();
|
||||
}
|
||||
clock->error += current_tick_length();
|
||||
clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift);
|
||||
}
|
||||
|
||||
/* correct the clock when NTP error is too big */
|
||||
clocksource_adjust(clock, offset);
|
||||
|
||||
/* store full nanoseconds into xtime */
|
||||
xtime.tv_nsec = remainder_snsecs >> clock->shift;
|
||||
remainder_snsecs -= (s64)xtime.tv_nsec << clock->shift;
|
||||
xtime.tv_nsec = clock->xtime_nsec >> clock->shift;
|
||||
clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
|
||||
|
||||
/* check to see if there is a new clocksource to use */
|
||||
if (change_clocksource()) {
|
||||
error = 0;
|
||||
remainder_snsecs = 0;
|
||||
clock->error = 0;
|
||||
clock->xtime_nsec = 0;
|
||||
clocksource_calculate_interval(clock, tick_nsec);
|
||||
}
|
||||
}
|
||||
|
|
Загрузка…
Ссылка в новой задаче