Signed-off-by: Christian Pellegrin <chripell@fsfe.org>
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
This commit is contained in:
Christian Pellegrin 2008-11-15 08:58:16 +01:00 коммит произвёл Mark Brown
Родитель 6e5d9db271
Коммит 1cad1de1b2
7 изменённых файлов: 839 добавлений и 0 удалений

18
include/sound/l3.h Normal file
Просмотреть файл

@ -0,0 +1,18 @@
#ifndef _L3_H_
#define _L3_H_ 1
struct l3_pins {
void (*setdat)(int);
void (*setclk)(int);
void (*setmode)(int);
int data_hold;
int data_setup;
int clock_high;
int mode_hold;
int mode;
int mode_setup;
};
int l3_write(struct l3_pins *adap, u8 addr, u8 *data, int len);
#endif

26
include/sound/uda134x.h Normal file
Просмотреть файл

@ -0,0 +1,26 @@
/*
* uda134x.h -- UDA134x ALSA SoC Codec driver
*
* Copyright 2007 Dension Audio Systems Ltd.
* Author: Zoltan Devai
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _UDA134X_H
#define _UDA134X_H
#include <sound/l3.h>
struct uda134x_platform_data {
struct l3_pins l3;
void (*power) (int);
int model;
#define UDA134X_UDA1340 1
#define UDA134X_UDA1341 2
#define UDA134X_UDA1344 3
};
#endif /* _UDA134X_H */

Просмотреть файл

@ -10,6 +10,7 @@ config SND_SOC_ALL_CODECS
select SND_SOC_TLV320AIC26 if SPI_MASTER
select SND_SOC_TLV320AIC3X if I2C
select SND_SOC_TWL4030 if TWL4030_CORE
select SND_SOC_UDA134X
select SND_SOC_UDA1380 if I2C
select SND_SOC_WM8510 if (I2C || SPI_MASTER)
select SND_SOC_WM8580 if I2C
@ -66,6 +67,9 @@ config SND_SOC_CS4270_VD33_ERRATA
bool
depends on SND_SOC_CS4270
config SND_SOC_L3
tristate
config SND_SOC_SSM2602
tristate
@ -85,6 +89,10 @@ config SND_SOC_TWL4030
tristate
depends on TWL4030_CORE
config SND_SOC_UDA134X
tristate
select SND_SOC_L3
config SND_SOC_UDA1380
tristate

Просмотреть файл

@ -3,11 +3,13 @@ snd-soc-ad1980-objs := ad1980.o
snd-soc-ad73311-objs := ad73311.o
snd-soc-ak4535-objs := ak4535.o
snd-soc-cs4270-objs := cs4270.o
snd-soc-l3-objs := l3.o
snd-soc-ssm2602-objs := ssm2602.o
snd-soc-tlv320aic23-objs := tlv320aic23.o
snd-soc-tlv320aic26-objs := tlv320aic26.o
snd-soc-tlv320aic3x-objs := tlv320aic3x.o
snd-soc-twl4030-objs := twl4030.o
snd-soc-uda134x-objs := uda134x.o
snd-soc-uda1380-objs := uda1380.o
snd-soc-wm8510-objs := wm8510.o
snd-soc-wm8580-objs := wm8580.o
@ -27,11 +29,13 @@ obj-$(CONFIG_SND_SOC_AD1980) += snd-soc-ad1980.o
obj-$(CONFIG_SND_SOC_AD73311) += snd-soc-ad73311.o
obj-$(CONFIG_SND_SOC_AK4535) += snd-soc-ak4535.o
obj-$(CONFIG_SND_SOC_CS4270) += snd-soc-cs4270.o
obj-$(CONFIG_SND_SOC_L3) += snd-soc-l3.o
obj-$(CONFIG_SND_SOC_SSM2602) += snd-soc-ssm2602.o
obj-$(CONFIG_SND_SOC_TLV320AIC23) += snd-soc-tlv320aic23.o
obj-$(CONFIG_SND_SOC_TLV320AIC26) += snd-soc-tlv320aic26.o
obj-$(CONFIG_SND_SOC_TLV320AIC3X) += snd-soc-tlv320aic3x.o
obj-$(CONFIG_SND_SOC_TWL4030) += snd-soc-twl4030.o
obj-$(CONFIG_SND_SOC_UDA134X) += snd-soc-uda134x.o
obj-$(CONFIG_SND_SOC_UDA1380) += snd-soc-uda1380.o
obj-$(CONFIG_SND_SOC_WM8510) += snd-soc-wm8510.o
obj-$(CONFIG_SND_SOC_WM8580) += snd-soc-wm8580.o

91
sound/soc/codecs/l3.c Normal file
Просмотреть файл

@ -0,0 +1,91 @@
/*
* L3 code
*
* Copyright (C) 2008, Christian Pellegrin <chripell@evolware.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*
* based on:
*
* L3 bus algorithm module.
*
* Copyright (C) 2001 Russell King, All Rights Reserved.
*
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <sound/l3.h>
/*
* Send one byte of data to the chip. Data is latched into the chip on
* the rising edge of the clock.
*/
static void sendbyte(struct l3_pins *adap, unsigned int byte)
{
int i;
for (i = 0; i < 8; i++) {
adap->setclk(0);
udelay(adap->data_hold);
adap->setdat(byte & 1);
udelay(adap->data_setup);
adap->setclk(1);
udelay(adap->clock_high);
byte >>= 1;
}
}
/*
* Send a set of bytes to the chip. We need to pulse the MODE line
* between each byte, but never at the start nor at the end of the
* transfer.
*/
static void sendbytes(struct l3_pins *adap, const u8 *buf,
int len)
{
int i;
for (i = 0; i < len; i++) {
if (i) {
udelay(adap->mode_hold);
adap->setmode(0);
udelay(adap->mode);
}
adap->setmode(1);
udelay(adap->mode_setup);
sendbyte(adap, buf[i]);
}
}
int l3_write(struct l3_pins *adap, u8 addr, u8 *data, int len)
{
adap->setclk(1);
adap->setdat(1);
adap->setmode(1);
udelay(adap->mode);
adap->setmode(0);
udelay(adap->mode_setup);
sendbyte(adap, addr);
udelay(adap->mode_hold);
sendbytes(adap, data, len);
adap->setclk(1);
adap->setdat(1);
adap->setmode(0);
return len;
}
EXPORT_SYMBOL_GPL(l3_write);
MODULE_DESCRIPTION("L3 bit-banging driver");
MODULE_AUTHOR("Christian Pellegrin <chripell@evolware.org>");
MODULE_LICENSE("GPL");

656
sound/soc/codecs/uda134x.c Normal file
Просмотреть файл

@ -0,0 +1,656 @@
/*
* uda134x.c -- UDA134X ALSA SoC Codec driver
*
* Modifications by Christian Pellegrin <chripell@evolware.org>
*
* Copyright 2007 Dension Audio Systems Ltd.
* Author: Zoltan Devai
*
* Based on the WM87xx drivers by Liam Girdwood and Richard Purdie
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>
#include <sound/uda134x.h>
#include <sound/l3.h>
#include "uda134x_codec.h"
#define POWER_OFF_ON_STANDBY 1
/*
ALSA SOC usually puts the device in standby mode when it's not used
for sometime. If you define POWER_OFF_ON_STANDBY the driver will
turn off the ADC/DAC when this callback is invoked and turn it back
on when needed. Unfortunately this will result in a very light bump
(it can be audible only with good earphones). If this bothers you
just comment this line, you will have slightly higher power
consumption . Please note that sending the L3 command for ADC is
enough to make the bump, so it doesn't make difference if you
completely take off power from the codec.
*/
#define UDA134X_RATES SNDRV_PCM_RATE_8000_48000
#define UDA134X_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE)
struct uda134x_priv {
int sysclk;
int dai_fmt;
struct snd_pcm_substream *master_substream;
struct snd_pcm_substream *slave_substream;
};
/* In-data addresses are hard-coded into the reg-cache values */
static const char uda134x_reg[UDA134X_REGS_NUM] = {
/* Extended address registers */
0x04, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00,
/* Status, data regs */
0x00, 0x83, 0x00, 0x40, 0x80, 0x00,
};
/*
* The codec has no support for reading its registers except for peak level...
*/
static inline unsigned int uda134x_read_reg_cache(struct snd_soc_codec *codec,
unsigned int reg)
{
u8 *cache = codec->reg_cache;
if (reg >= UDA134X_REGS_NUM)
return -1;
return cache[reg];
}
/*
* Write the register cache
*/
static inline void uda134x_write_reg_cache(struct snd_soc_codec *codec,
u8 reg, unsigned int value)
{
u8 *cache = codec->reg_cache;
if (reg >= UDA134X_REGS_NUM)
return;
cache[reg] = value;
}
/*
* Write to the uda134x registers
*
*/
static int uda134x_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
int ret;
u8 addr;
u8 data = value;
struct uda134x_platform_data *pd = codec->control_data;
pr_debug("%s reg: %02X, value:%02X\n", __func__, reg, value);
if (reg >= UDA134X_REGS_NUM) {
printk(KERN_ERR "%s unkown register: reg: %d",
__func__, reg);
return -EINVAL;
}
uda134x_write_reg_cache(codec, reg, value);
switch (reg) {
case UDA134X_STATUS0:
case UDA134X_STATUS1:
addr = UDA134X_STATUS_ADDR;
break;
case UDA134X_DATA000:
case UDA134X_DATA001:
case UDA134X_DATA010:
addr = UDA134X_DATA0_ADDR;
break;
case UDA134X_DATA1:
addr = UDA134X_DATA1_ADDR;
break;
default:
/* It's an extended address register */
addr = (reg | UDA134X_EXTADDR_PREFIX);
ret = l3_write(&pd->l3,
UDA134X_DATA0_ADDR, &addr, 1);
if (ret != 1)
return -EIO;
addr = UDA134X_DATA0_ADDR;
data = (value | UDA134X_EXTDATA_PREFIX);
break;
}
ret = l3_write(&pd->l3,
addr, &data, 1);
if (ret != 1)
return -EIO;
return 0;
}
static inline void uda134x_reset(struct snd_soc_codec *codec)
{
u8 reset_reg = uda134x_read_reg_cache(codec, UDA134X_STATUS0);
uda134x_write(codec, UDA134X_STATUS0, reset_reg | (1<<6));
msleep(1);
uda134x_write(codec, UDA134X_STATUS0, reset_reg & ~(1<<6));
}
static int uda134x_mute(struct snd_soc_dai *dai, int mute)
{
struct snd_soc_codec *codec = dai->codec;
u8 mute_reg = uda134x_read_reg_cache(codec, UDA134X_DATA010);
pr_debug("%s mute: %d\n", __func__, mute);
if (mute)
mute_reg |= (1<<2);
else
mute_reg &= ~(1<<2);
uda134x_write(codec, UDA134X_DATA010, mute_reg & ~(1<<2));
return 0;
}
static int uda134x_startup(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->codec;
struct uda134x_priv *uda134x = codec->private_data;
struct snd_pcm_runtime *master_runtime;
if (uda134x->master_substream) {
master_runtime = uda134x->master_substream->runtime;
pr_debug("%s constraining to %d bits at %d\n", __func__,
master_runtime->sample_bits,
master_runtime->rate);
snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_RATE,
master_runtime->rate,
master_runtime->rate);
snd_pcm_hw_constraint_minmax(substream->runtime,
SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
master_runtime->sample_bits,
master_runtime->sample_bits);
uda134x->slave_substream = substream;
} else
uda134x->master_substream = substream;
return 0;
}
static void uda134x_shutdown(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->codec;
struct uda134x_priv *uda134x = codec->private_data;
if (uda134x->master_substream == substream)
uda134x->master_substream = uda134x->slave_substream;
uda134x->slave_substream = NULL;
}
static int uda134x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = substream->private_data;
struct snd_soc_device *socdev = rtd->socdev;
struct snd_soc_codec *codec = socdev->codec;
struct uda134x_priv *uda134x = codec->private_data;
u8 hw_params;
if (substream == uda134x->slave_substream) {
pr_debug("%s ignoring hw_params for slave substream\n",
__func__);
return 0;
}
hw_params = uda134x_read_reg_cache(codec, UDA134X_STATUS0);
hw_params &= STATUS0_SYSCLK_MASK;
hw_params &= STATUS0_DAIFMT_MASK;
pr_debug("%s sysclk: %d, rate:%d\n", __func__,
uda134x->sysclk, params_rate(params));
/* set SYSCLK / fs ratio */
switch (uda134x->sysclk / params_rate(params)) {
case 512:
break;
case 384:
hw_params |= (1<<4);
break;
case 256:
hw_params |= (1<<5);
break;
default:
printk(KERN_ERR "%s unsupported fs\n", __func__);
return -EINVAL;
}
pr_debug("%s dai_fmt: %d, params_format:%d\n", __func__,
uda134x->dai_fmt, params_format(params));
/* set DAI format and word length */
switch (uda134x->dai_fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
break;
case SND_SOC_DAIFMT_RIGHT_J:
switch (params_format(params)) {
case SNDRV_PCM_FORMAT_S16_LE:
hw_params |= (1<<1);
break;
case SNDRV_PCM_FORMAT_S18_3LE:
hw_params |= (1<<2);
break;
case SNDRV_PCM_FORMAT_S20_3LE:
hw_params |= ((1<<2) | (1<<1));
break;
default:
printk(KERN_ERR "%s unsupported format (right)\n",
__func__);
return -EINVAL;
}
break;
case SND_SOC_DAIFMT_LEFT_J:
hw_params |= (1<<3);
break;
default:
printk(KERN_ERR "%s unsupported format\n", __func__);
return -EINVAL;
}
uda134x_write(codec, UDA134X_STATUS0, hw_params);
return 0;
}
static int uda134x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct uda134x_priv *uda134x = codec->private_data;
pr_debug("%s clk_id: %d, freq: %d, dir: %d\n", __func__,
clk_id, freq, dir);
/* Anything between 256fs*8Khz and 512fs*48Khz should be acceptable
because the codec is slave. Of course limitations of the clock
master (the IIS controller) apply.
We'll error out on set_hw_params if it's not OK */
if ((freq >= (256 * 8000)) && (freq <= (512 * 48000))) {
uda134x->sysclk = freq;
return 0;
}
printk(KERN_ERR "%s unsupported sysclk\n", __func__);
return -EINVAL;
}
static int uda134x_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_codec *codec = codec_dai->codec;
struct uda134x_priv *uda134x = codec->private_data;
pr_debug("%s fmt: %08X\n", __func__, fmt);
/* codec supports only full slave mode */
if ((fmt & SND_SOC_DAIFMT_MASTER_MASK) != SND_SOC_DAIFMT_CBS_CFS) {
printk(KERN_ERR "%s unsupported slave mode\n", __func__);
return -EINVAL;
}
/* no support for clock inversion */
if ((fmt & SND_SOC_DAIFMT_INV_MASK) != SND_SOC_DAIFMT_NB_NF) {
printk(KERN_ERR "%s unsupported clock inversion\n", __func__);
return -EINVAL;
}
/* We can't setup DAI format here as it depends on the word bit num */
/* so let's just store the value for later */
uda134x->dai_fmt = fmt;
return 0;
}
static int uda134x_set_bias_level(struct snd_soc_codec *codec,
enum snd_soc_bias_level level)
{
u8 reg;
struct uda134x_platform_data *pd = codec->control_data;
int i;
u8 *cache = codec->reg_cache;
pr_debug("%s bias level %d\n", __func__, level);
switch (level) {
case SND_SOC_BIAS_ON:
/* ADC, DAC on */
reg = uda134x_read_reg_cache(codec, UDA134X_STATUS1);
uda134x_write(codec, UDA134X_STATUS1, reg | 0x03);
break;
case SND_SOC_BIAS_PREPARE:
/* power on */
if (pd->power) {
pd->power(1);
/* Sync reg_cache with the hardware */
for (i = 0; i < ARRAY_SIZE(uda134x_reg); i++)
codec->write(codec, i, *cache++);
}
break;
case SND_SOC_BIAS_STANDBY:
/* ADC, DAC power off */
reg = uda134x_read_reg_cache(codec, UDA134X_STATUS1);
uda134x_write(codec, UDA134X_STATUS1, reg & ~(0x03));
break;
case SND_SOC_BIAS_OFF:
/* power off */
if (pd->power)
pd->power(0);
break;
}
codec->bias_level = level;
return 0;
}
static const char *uda134x_dsp_setting[] = {"Flat", "Minimum1",
"Minimum2", "Maximum"};
static const char *uda134x_deemph[] = {"None", "32Khz", "44.1Khz", "48Khz"};
static const char *uda134x_mixmode[] = {"Differential", "Analog1",
"Analog2", "Both"};
static const struct soc_enum uda134x_mixer_enum[] = {
SOC_ENUM_SINGLE(UDA134X_DATA010, 0, 0x04, uda134x_dsp_setting),
SOC_ENUM_SINGLE(UDA134X_DATA010, 3, 0x04, uda134x_deemph),
SOC_ENUM_SINGLE(UDA134X_EA010, 0, 0x04, uda134x_mixmode),
};
static const struct snd_kcontrol_new uda1341_snd_controls[] = {
SOC_SINGLE("Master Playback Volume", UDA134X_DATA000, 0, 0x3F, 1),
SOC_SINGLE("Capture Volume", UDA134X_EA010, 2, 0x07, 0),
SOC_SINGLE("Analog1 Volume", UDA134X_EA000, 0, 0x1F, 1),
SOC_SINGLE("Analog2 Volume", UDA134X_EA001, 0, 0x1F, 1),
SOC_SINGLE("Mic Sensitivity", UDA134X_EA010, 2, 7, 0),
SOC_SINGLE("Mic Volume", UDA134X_EA101, 0, 0x1F, 0),
SOC_SINGLE("Tone Control - Bass", UDA134X_DATA001, 2, 0xF, 0),
SOC_SINGLE("Tone Control - Treble", UDA134X_DATA001, 0, 3, 0),
SOC_ENUM("Sound Processing Filter", uda134x_mixer_enum[0]),
SOC_ENUM("PCM Playback De-emphasis", uda134x_mixer_enum[1]),
SOC_ENUM("Input Mux", uda134x_mixer_enum[2]),
SOC_SINGLE("AGC Switch", UDA134X_EA100, 4, 1, 0),
SOC_SINGLE("AGC Target Volume", UDA134X_EA110, 0, 0x03, 1),
SOC_SINGLE("AGC Timing", UDA134X_EA110, 2, 0x07, 0),
SOC_SINGLE("DAC +6dB Switch", UDA134X_STATUS1, 6, 1, 0),
SOC_SINGLE("ADC +6dB Switch", UDA134X_STATUS1, 5, 1, 0),
SOC_SINGLE("ADC Polarity Switch", UDA134X_STATUS1, 4, 1, 0),
SOC_SINGLE("DAC Polarity Switch", UDA134X_STATUS1, 3, 1, 0),
SOC_SINGLE("Double Speed Playback Switch", UDA134X_STATUS1, 2, 1, 0),
SOC_SINGLE("DC Filter Enable Switch", UDA134X_STATUS0, 0, 1, 0),
};
static const struct snd_kcontrol_new uda1340_snd_controls[] = {
SOC_SINGLE("Master Playback Volume", UDA134X_DATA000, 0, 0x3F, 1),
SOC_SINGLE("Tone Control - Bass", UDA134X_DATA001, 2, 0xF, 0),
SOC_SINGLE("Tone Control - Treble", UDA134X_DATA001, 0, 3, 0),
SOC_ENUM("Sound Processing Filter", uda134x_mixer_enum[0]),
SOC_ENUM("PCM Playback De-emphasis", uda134x_mixer_enum[1]),
SOC_SINGLE("DC Filter Enable Switch", UDA134X_STATUS0, 0, 1, 0),
};
static int uda134x_add_controls(struct snd_soc_codec *codec)
{
int err, i, n;
const struct snd_kcontrol_new *ctrls;
struct uda134x_platform_data *pd = codec->control_data;
switch (pd->model) {
case UDA134X_UDA1340:
case UDA134X_UDA1344:
n = ARRAY_SIZE(uda1340_snd_controls);
ctrls = uda1340_snd_controls;
break;
case UDA134X_UDA1341:
n = ARRAY_SIZE(uda1341_snd_controls);
ctrls = uda1341_snd_controls;
break;
default:
printk(KERN_ERR "%s unkown codec type: %d",
__func__, pd->model);
return -EINVAL;
}
for (i = 0; i < n; i++) {
err = snd_ctl_add(codec->card,
snd_soc_cnew(&ctrls[i],
codec, NULL));
if (err < 0)
return err;
}
return 0;
}
struct snd_soc_dai uda134x_dai = {
.name = "UDA134X",
/* playback capabilities */
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = UDA134X_RATES,
.formats = UDA134X_FORMATS,
},
/* capture capabilities */
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = UDA134X_RATES,
.formats = UDA134X_FORMATS,
},
/* pcm operations */
.ops = {
.startup = uda134x_startup,
.shutdown = uda134x_shutdown,
.hw_params = uda134x_hw_params,
},
/* DAI operations */
.dai_ops = {
.digital_mute = uda134x_mute,
.set_sysclk = uda134x_set_dai_sysclk,
.set_fmt = uda134x_set_dai_fmt,
}
};
EXPORT_SYMBOL(uda134x_dai);
static int uda134x_soc_probe(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec;
struct uda134x_priv *uda134x;
void *codec_setup_data = socdev->codec_data;
int ret = -ENOMEM;
struct uda134x_platform_data *pd;
printk(KERN_INFO "UDA134X SoC Audio Codec\n");
if (!codec_setup_data) {
printk(KERN_ERR "UDA134X SoC codec: "
"missing L3 bitbang function\n");
return -ENODEV;
}
pd = codec_setup_data;
switch (pd->model) {
case UDA134X_UDA1340:
case UDA134X_UDA1341:
case UDA134X_UDA1344:
break;
default:
printk(KERN_ERR "UDA134X SoC codec: "
"unsupported model %d\n",
pd->model);
return -EINVAL;
}
socdev->codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
if (socdev->codec == NULL)
return ret;
codec = socdev->codec;
uda134x = kzalloc(sizeof(struct uda134x_priv), GFP_KERNEL);
if (uda134x == NULL)
goto priv_err;
codec->private_data = uda134x;
codec->reg_cache = kmemdup(uda134x_reg, sizeof(uda134x_reg),
GFP_KERNEL);
if (codec->reg_cache == NULL)
goto reg_err;
mutex_init(&codec->mutex);
codec->reg_cache_size = sizeof(uda134x_reg);
codec->reg_cache_step = 1;
codec->name = "UDA134X";
codec->owner = THIS_MODULE;
codec->dai = &uda134x_dai;
codec->num_dai = 1;
codec->read = uda134x_read_reg_cache;
codec->write = uda134x_write;
#ifdef POWER_OFF_ON_STANDBY
codec->set_bias_level = uda134x_set_bias_level;
#endif
INIT_LIST_HEAD(&codec->dapm_widgets);
INIT_LIST_HEAD(&codec->dapm_paths);
codec->control_data = codec_setup_data;
if (pd->power)
pd->power(1);
uda134x_reset(codec);
/* register pcms */
ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);
if (ret < 0) {
printk(KERN_ERR "UDA134X: failed to register pcms\n");
goto pcm_err;
}
ret = uda134x_add_controls(codec);
if (ret < 0) {
printk(KERN_ERR "UDA134X: failed to register controls\n");
goto pcm_err;
}
ret = snd_soc_register_card(socdev);
if (ret < 0) {
printk(KERN_ERR "UDA134X: failed to register card\n");
goto card_err;
}
return 0;
card_err:
snd_soc_free_pcms(socdev);
snd_soc_dapm_free(socdev);
pcm_err:
kfree(codec->reg_cache);
reg_err:
kfree(codec->private_data);
priv_err:
kfree(codec);
return ret;
}
/* power down chip */
static int uda134x_soc_remove(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->codec;
uda134x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
uda134x_set_bias_level(codec, SND_SOC_BIAS_OFF);
snd_soc_free_pcms(socdev);
snd_soc_dapm_free(socdev);
kfree(codec->private_data);
kfree(codec->reg_cache);
kfree(codec);
return 0;
}
#if defined(CONFIG_PM)
static int uda134x_soc_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->codec;
uda134x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
uda134x_set_bias_level(codec, SND_SOC_BIAS_OFF);
return 0;
}
static int uda134x_soc_resume(struct platform_device *pdev)
{
struct snd_soc_device *socdev = platform_get_drvdata(pdev);
struct snd_soc_codec *codec = socdev->codec;
uda134x_set_bias_level(codec, SND_SOC_BIAS_PREPARE);
uda134x_set_bias_level(codec, SND_SOC_BIAS_ON);
return 0;
}
#else
#define uda134x_soc_suspend NULL
#define uda134x_soc_resume NULL
#endif /* CONFIG_PM */
struct snd_soc_codec_device soc_codec_dev_uda134x = {
.probe = uda134x_soc_probe,
.remove = uda134x_soc_remove,
.suspend = uda134x_soc_suspend,
.resume = uda134x_soc_resume,
};
EXPORT_SYMBOL_GPL(soc_codec_dev_uda134x);
MODULE_DESCRIPTION("UDA134X ALSA soc codec driver");
MODULE_AUTHOR("Zoltan Devai, Christian Pellegrin <chripell@evolware.org>");
MODULE_LICENSE("GPL");

Просмотреть файл

@ -0,0 +1,36 @@
#ifndef _UDA134X_CODEC_H
#define _UDA134X_CODEC_H
#define UDA134X_L3ADDR 5
#define UDA134X_DATA0_ADDR ((UDA134X_L3ADDR << 2) | 0)
#define UDA134X_DATA1_ADDR ((UDA134X_L3ADDR << 2) | 1)
#define UDA134X_STATUS_ADDR ((UDA134X_L3ADDR << 2) | 2)
#define UDA134X_EXTADDR_PREFIX 0xC0
#define UDA134X_EXTDATA_PREFIX 0xE0
/* UDA134X registers */
#define UDA134X_EA000 0
#define UDA134X_EA001 1
#define UDA134X_EA010 2
#define UDA134X_EA011 3
#define UDA134X_EA100 4
#define UDA134X_EA101 5
#define UDA134X_EA110 6
#define UDA134X_EA111 7
#define UDA134X_STATUS0 8
#define UDA134X_STATUS1 9
#define UDA134X_DATA000 10
#define UDA134X_DATA001 11
#define UDA134X_DATA010 12
#define UDA134X_DATA1 13
#define UDA134X_REGS_NUM 14
#define STATUS0_DAIFMT_MASK (~(7<<1))
#define STATUS0_SYSCLK_MASK (~(3<<4))
extern struct snd_soc_dai uda134x_dai;
extern struct snd_soc_codec_device soc_codec_dev_uda134x;
#endif