rtc: Improve performance of rtc_time64_to_tm(). Add tests.
The current implementation of rtc_time64_to_tm() contains unnecessary loops, branches and look-up tables. The new one uses an arithmetic-based algorithm appeared in [1] and is approximately 4.3 times faster (YMMV). The drawback is that the new code isn't intuitive and contains many 'magic numbers' (not unusual for this type of algorithm). However, [1] justifies all those numbers and, given this function's history, the code is unlikely to need much maintenance, if any at all. Add a KUnit test case that checks every day in a 160,000 years interval starting on 1970-01-01 against the expected result. Add a new config RTC_LIB_KUNIT_TEST symbol to give the option to run this test suite. [1] Neri, Schneider, "Euclidean Affine Functions and Applications to Calendar Algorithms". https://arxiv.org/abs/2102.06959 Signed-off-by: Cassio Neri <cassio.neri@gmail.com> Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Alexandre Belloni <alexandre.belloni@bootlin.com> Link: https://lore.kernel.org/r/20210624201343.85441-1-cassio.neri@gmail.com
This commit is contained in:
Родитель
fffd603ae9
Коммит
1d1bb12a8b
|
@ -10,6 +10,16 @@ config RTC_MC146818_LIB
|
|||
bool
|
||||
select RTC_LIB
|
||||
|
||||
config RTC_LIB_KUNIT_TEST
|
||||
tristate "KUnit test for RTC lib functions" if !KUNIT_ALL_TESTS
|
||||
depends on KUNIT
|
||||
default KUNIT_ALL_TESTS
|
||||
select RTC_LIB
|
||||
help
|
||||
Enable this option to test RTC library functions.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
menuconfig RTC_CLASS
|
||||
bool "Real Time Clock"
|
||||
default n
|
||||
|
|
|
@ -178,3 +178,4 @@ obj-$(CONFIG_RTC_DRV_WM8350) += rtc-wm8350.o
|
|||
obj-$(CONFIG_RTC_DRV_X1205) += rtc-x1205.o
|
||||
obj-$(CONFIG_RTC_DRV_XGENE) += rtc-xgene.o
|
||||
obj-$(CONFIG_RTC_DRV_ZYNQMP) += rtc-zynqmp.o
|
||||
obj-$(CONFIG_RTC_LIB_KUNIT_TEST) += lib_test.o
|
||||
|
|
|
@ -6,6 +6,8 @@
|
|||
* Author: Alessandro Zummo <a.zummo@towertech.it>
|
||||
*
|
||||
* based on arch/arm/common/rtctime.c and other bits
|
||||
*
|
||||
* Author: Cassio Neri <cassio.neri@gmail.com> (rtc_time64_to_tm)
|
||||
*/
|
||||
|
||||
#include <linux/export.h>
|
||||
|
@ -22,8 +24,6 @@ static const unsigned short rtc_ydays[2][13] = {
|
|||
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
|
||||
};
|
||||
|
||||
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
|
||||
|
||||
/*
|
||||
* The number of days in the month.
|
||||
*/
|
||||
|
@ -42,42 +42,95 @@ int rtc_year_days(unsigned int day, unsigned int month, unsigned int year)
|
|||
}
|
||||
EXPORT_SYMBOL(rtc_year_days);
|
||||
|
||||
/*
|
||||
* rtc_time64_to_tm - Converts time64_t to rtc_time.
|
||||
* Convert seconds since 01-01-1970 00:00:00 to Gregorian date.
|
||||
/**
|
||||
* rtc_time64_to_tm - converts time64_t to rtc_time.
|
||||
*
|
||||
* @time: The number of seconds since 01-01-1970 00:00:00.
|
||||
* (Must be positive.)
|
||||
* @tm: Pointer to the struct rtc_time.
|
||||
*/
|
||||
void rtc_time64_to_tm(time64_t time, struct rtc_time *tm)
|
||||
{
|
||||
unsigned int month, year, secs;
|
||||
unsigned int secs;
|
||||
int days;
|
||||
|
||||
u64 u64tmp;
|
||||
u32 u32tmp, udays, century, day_of_century, year_of_century, year,
|
||||
day_of_year, month, day;
|
||||
bool is_Jan_or_Feb, is_leap_year;
|
||||
|
||||
/* time must be positive */
|
||||
days = div_s64_rem(time, 86400, &secs);
|
||||
|
||||
/* day of the week, 1970-01-01 was a Thursday */
|
||||
tm->tm_wday = (days + 4) % 7;
|
||||
|
||||
year = 1970 + days / 365;
|
||||
days -= (year - 1970) * 365
|
||||
+ LEAPS_THRU_END_OF(year - 1)
|
||||
- LEAPS_THRU_END_OF(1970 - 1);
|
||||
while (days < 0) {
|
||||
year -= 1;
|
||||
days += 365 + is_leap_year(year);
|
||||
}
|
||||
tm->tm_year = year - 1900;
|
||||
tm->tm_yday = days + 1;
|
||||
/*
|
||||
* The following algorithm is, basically, Proposition 6.3 of Neri
|
||||
* and Schneider [1]. In a few words: it works on the computational
|
||||
* (fictitious) calendar where the year starts in March, month = 2
|
||||
* (*), and finishes in February, month = 13. This calendar is
|
||||
* mathematically convenient because the day of the year does not
|
||||
* depend on whether the year is leap or not. For instance:
|
||||
*
|
||||
* March 1st 0-th day of the year;
|
||||
* ...
|
||||
* April 1st 31-st day of the year;
|
||||
* ...
|
||||
* January 1st 306-th day of the year; (Important!)
|
||||
* ...
|
||||
* February 28th 364-th day of the year;
|
||||
* February 29th 365-th day of the year (if it exists).
|
||||
*
|
||||
* After having worked out the date in the computational calendar
|
||||
* (using just arithmetics) it's easy to convert it to the
|
||||
* corresponding date in the Gregorian calendar.
|
||||
*
|
||||
* [1] "Euclidean Affine Functions and Applications to Calendar
|
||||
* Algorithms". https://arxiv.org/abs/2102.06959
|
||||
*
|
||||
* (*) The numbering of months follows rtc_time more closely and
|
||||
* thus, is slightly different from [1].
|
||||
*/
|
||||
|
||||
for (month = 0; month < 11; month++) {
|
||||
int newdays;
|
||||
udays = ((u32) days) + 719468;
|
||||
|
||||
newdays = days - rtc_month_days(month, year);
|
||||
if (newdays < 0)
|
||||
break;
|
||||
days = newdays;
|
||||
}
|
||||
tm->tm_mon = month;
|
||||
tm->tm_mday = days + 1;
|
||||
u32tmp = 4 * udays + 3;
|
||||
century = u32tmp / 146097;
|
||||
day_of_century = u32tmp % 146097 / 4;
|
||||
|
||||
u32tmp = 4 * day_of_century + 3;
|
||||
u64tmp = 2939745ULL * u32tmp;
|
||||
year_of_century = upper_32_bits(u64tmp);
|
||||
day_of_year = lower_32_bits(u64tmp) / 2939745 / 4;
|
||||
|
||||
year = 100 * century + year_of_century;
|
||||
is_leap_year = year_of_century != 0 ?
|
||||
year_of_century % 4 == 0 : century % 4 == 0;
|
||||
|
||||
u32tmp = 2141 * day_of_year + 132377;
|
||||
month = u32tmp >> 16;
|
||||
day = ((u16) u32tmp) / 2141;
|
||||
|
||||
/*
|
||||
* Recall that January 01 is the 306-th day of the year in the
|
||||
* computational (not Gregorian) calendar.
|
||||
*/
|
||||
is_Jan_or_Feb = day_of_year >= 306;
|
||||
|
||||
/* Converts to the Gregorian calendar. */
|
||||
year = year + is_Jan_or_Feb;
|
||||
month = is_Jan_or_Feb ? month - 12 : month;
|
||||
day = day + 1;
|
||||
|
||||
day_of_year = is_Jan_or_Feb ?
|
||||
day_of_year - 306 : day_of_year + 31 + 28 + is_leap_year;
|
||||
|
||||
/* Converts to rtc_time's format. */
|
||||
tm->tm_year = (int) (year - 1900);
|
||||
tm->tm_mon = (int) month;
|
||||
tm->tm_mday = (int) day;
|
||||
tm->tm_yday = (int) day_of_year + 1;
|
||||
|
||||
tm->tm_hour = secs / 3600;
|
||||
secs -= tm->tm_hour * 3600;
|
||||
|
|
|
@ -0,0 +1,79 @@
|
|||
// SPDX-License-Identifier: LGPL-2.1+
|
||||
|
||||
#include <kunit/test.h>
|
||||
#include <linux/rtc.h>
|
||||
|
||||
/*
|
||||
* Advance a date by one day.
|
||||
*/
|
||||
static void advance_date(int *year, int *month, int *mday, int *yday)
|
||||
{
|
||||
if (*mday != rtc_month_days(*month - 1, *year)) {
|
||||
++*mday;
|
||||
++*yday;
|
||||
return;
|
||||
}
|
||||
|
||||
*mday = 1;
|
||||
if (*month != 12) {
|
||||
++*month;
|
||||
++*yday;
|
||||
return;
|
||||
}
|
||||
|
||||
*month = 1;
|
||||
*yday = 1;
|
||||
++*year;
|
||||
}
|
||||
|
||||
/*
|
||||
* Checks every day in a 160000 years interval starting on 1970-01-01
|
||||
* against the expected result.
|
||||
*/
|
||||
static void rtc_time64_to_tm_test_date_range(struct kunit *test)
|
||||
{
|
||||
/*
|
||||
* 160000 years = (160000 / 400) * 400 years
|
||||
* = (160000 / 400) * 146097 days
|
||||
* = (160000 / 400) * 146097 * 86400 seconds
|
||||
*/
|
||||
time64_t total_secs = ((time64_t) 160000) / 400 * 146097 * 86400;
|
||||
|
||||
int year = 1970;
|
||||
int month = 1;
|
||||
int mday = 1;
|
||||
int yday = 1;
|
||||
|
||||
struct rtc_time result;
|
||||
time64_t secs;
|
||||
s64 days;
|
||||
|
||||
for (secs = 0; secs <= total_secs; secs += 86400) {
|
||||
|
||||
rtc_time64_to_tm(secs, &result);
|
||||
|
||||
days = div_s64(secs, 86400);
|
||||
|
||||
#define FAIL_MSG "%d/%02d/%02d (%2d) : %ld", \
|
||||
year, month, mday, yday, days
|
||||
|
||||
KUNIT_ASSERT_EQ_MSG(test, year - 1900, result.tm_year, FAIL_MSG);
|
||||
KUNIT_ASSERT_EQ_MSG(test, month - 1, result.tm_mon, FAIL_MSG);
|
||||
KUNIT_ASSERT_EQ_MSG(test, mday, result.tm_mday, FAIL_MSG);
|
||||
KUNIT_ASSERT_EQ_MSG(test, yday, result.tm_yday, FAIL_MSG);
|
||||
|
||||
advance_date(&year, &month, &mday, &yday);
|
||||
}
|
||||
}
|
||||
|
||||
static struct kunit_case rtc_lib_test_cases[] = {
|
||||
KUNIT_CASE(rtc_time64_to_tm_test_date_range),
|
||||
{}
|
||||
};
|
||||
|
||||
static struct kunit_suite rtc_lib_test_suite = {
|
||||
.name = "rtc_lib_test_cases",
|
||||
.test_cases = rtc_lib_test_cases,
|
||||
};
|
||||
|
||||
kunit_test_suite(rtc_lib_test_suite);
|
Загрузка…
Ссылка в новой задаче