crypto: x86 - Add optimized AEGIS implementations

This patch adds optimized implementations of AEGIS-128, AEGIS-128L,
and AEGIS-256, utilizing the AES-NI and SSE2 x86 extensions.

Signed-off-by: Ondrej Mosnacek <omosnacek@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Ondrej Mosnacek 2018-05-11 14:12:51 +02:00 коммит произвёл Herbert Xu
Родитель b87dc20346
Коммит 1d373d4e8e
8 изменённых файлов: 3529 добавлений и 0 удалений

Просмотреть файл

@ -38,6 +38,10 @@ obj-$(CONFIG_CRYPTO_SHA512_SSSE3) += sha512-ssse3.o
obj-$(CONFIG_CRYPTO_CRCT10DIF_PCLMUL) += crct10dif-pclmul.o
obj-$(CONFIG_CRYPTO_POLY1305_X86_64) += poly1305-x86_64.o
obj-$(CONFIG_CRYPTO_AEGIS128_AESNI_SSE2) += aegis128-aesni.o
obj-$(CONFIG_CRYPTO_AEGIS128L_AESNI_SSE2) += aegis128l-aesni.o
obj-$(CONFIG_CRYPTO_AEGIS256_AESNI_SSE2) += aegis256-aesni.o
# These modules require assembler to support AVX.
ifeq ($(avx_supported),yes)
obj-$(CONFIG_CRYPTO_CAMELLIA_AESNI_AVX_X86_64) += \
@ -72,6 +76,10 @@ salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
chacha20-x86_64-y := chacha20-ssse3-x86_64.o chacha20_glue.o
serpent-sse2-x86_64-y := serpent-sse2-x86_64-asm_64.o serpent_sse2_glue.o
aegis128-aesni-y := aegis128-aesni-asm.o aegis128-aesni-glue.o
aegis128l-aesni-y := aegis128l-aesni-asm.o aegis128l-aesni-glue.o
aegis256-aesni-y := aegis256-aesni-asm.o aegis256-aesni-glue.o
ifeq ($(avx_supported),yes)
camellia-aesni-avx-x86_64-y := camellia-aesni-avx-asm_64.o \
camellia_aesni_avx_glue.o

Просмотреть файл

@ -0,0 +1,749 @@
/*
* AES-NI + SSE2 implementation of AEGIS-128
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <asm/frame.h>
#define STATE0 %xmm0
#define STATE1 %xmm1
#define STATE2 %xmm2
#define STATE3 %xmm3
#define STATE4 %xmm4
#define KEY %xmm5
#define MSG %xmm5
#define T0 %xmm6
#define T1 %xmm7
#define STATEP %rdi
#define LEN %rsi
#define SRC %rdx
#define DST %rcx
.section .rodata.cst16.aegis128_const, "aM", @progbits, 32
.align 16
.Laegis128_const_0:
.byte 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d
.byte 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62
.Laegis128_const_1:
.byte 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1
.byte 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd
.section .rodata.cst16.aegis128_counter, "aM", @progbits, 16
.align 16
.Laegis128_counter:
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
.text
/*
* aegis128_update
* input:
* STATE[0-4] - input state
* output:
* STATE[0-4] - output state (shifted positions)
* changed:
* T0
*/
.macro aegis128_update
movdqa STATE4, T0
aesenc STATE0, STATE4
aesenc STATE1, STATE0
aesenc STATE2, STATE1
aesenc STATE3, STATE2
aesenc T0, STATE3
.endm
/*
* __load_partial: internal ABI
* input:
* LEN - bytes
* SRC - src
* output:
* MSG - message block
* changed:
* T0
* %r8
* %r9
*/
__load_partial:
xor %r9, %r9
pxor MSG, MSG
mov LEN, %r8
and $0x1, %r8
jz .Lld_partial_1
mov LEN, %r8
and $0x1E, %r8
add SRC, %r8
mov (%r8), %r9b
.Lld_partial_1:
mov LEN, %r8
and $0x2, %r8
jz .Lld_partial_2
mov LEN, %r8
and $0x1C, %r8
add SRC, %r8
shl $0x10, %r9
mov (%r8), %r9w
.Lld_partial_2:
mov LEN, %r8
and $0x4, %r8
jz .Lld_partial_4
mov LEN, %r8
and $0x18, %r8
add SRC, %r8
shl $32, %r9
mov (%r8), %r8d
xor %r8, %r9
.Lld_partial_4:
movq %r9, MSG
mov LEN, %r8
and $0x8, %r8
jz .Lld_partial_8
mov LEN, %r8
and $0x10, %r8
add SRC, %r8
pslldq $8, MSG
movq (%r8), T0
pxor T0, MSG
.Lld_partial_8:
ret
ENDPROC(__load_partial)
/*
* __store_partial: internal ABI
* input:
* LEN - bytes
* DST - dst
* output:
* T0 - message block
* changed:
* %r8
* %r9
* %r10
*/
__store_partial:
mov LEN, %r8
mov DST, %r9
movq T0, %r10
cmp $8, %r8
jl .Lst_partial_8
mov %r10, (%r9)
psrldq $8, T0
movq T0, %r10
sub $8, %r8
add $8, %r9
.Lst_partial_8:
cmp $4, %r8
jl .Lst_partial_4
mov %r10d, (%r9)
shr $32, %r10
sub $4, %r8
add $4, %r9
.Lst_partial_4:
cmp $2, %r8
jl .Lst_partial_2
mov %r10w, (%r9)
shr $0x10, %r10
sub $2, %r8
add $2, %r9
.Lst_partial_2:
cmp $1, %r8
jl .Lst_partial_1
mov %r10b, (%r9)
.Lst_partial_1:
ret
ENDPROC(__store_partial)
/*
* void crypto_aegis128_aesni_init(void *state, const void *key, const void *iv);
*/
ENTRY(crypto_aegis128_aesni_init)
FRAME_BEGIN
/* load IV: */
movdqu (%rdx), T1
/* load key: */
movdqa (%rsi), KEY
pxor KEY, T1
movdqa T1, STATE0
movdqa KEY, STATE3
movdqa KEY, STATE4
/* load the constants: */
movdqa .Laegis128_const_0, STATE2
movdqa .Laegis128_const_1, STATE1
pxor STATE2, STATE3
pxor STATE1, STATE4
/* update 10 times with KEY / KEY xor IV: */
aegis128_update; pxor KEY, STATE4
aegis128_update; pxor T1, STATE3
aegis128_update; pxor KEY, STATE2
aegis128_update; pxor T1, STATE1
aegis128_update; pxor KEY, STATE0
aegis128_update; pxor T1, STATE4
aegis128_update; pxor KEY, STATE3
aegis128_update; pxor T1, STATE2
aegis128_update; pxor KEY, STATE1
aegis128_update; pxor T1, STATE0
/* store the state: */
movdqu STATE0, 0x00(STATEP)
movdqu STATE1, 0x10(STATEP)
movdqu STATE2, 0x20(STATEP)
movdqu STATE3, 0x30(STATEP)
movdqu STATE4, 0x40(STATEP)
FRAME_END
ret
ENDPROC(crypto_aegis128_aesni_init)
/*
* void crypto_aegis128_aesni_ad(void *state, unsigned int length,
* const void *data);
*/
ENTRY(crypto_aegis128_aesni_ad)
FRAME_BEGIN
cmp $0x10, LEN
jb .Lad_out
/* load the state: */
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
mov SRC, %r8
and $0xF, %r8
jnz .Lad_u_loop
.align 8
.Lad_a_loop:
movdqa 0x00(SRC), MSG
aegis128_update
pxor MSG, STATE4
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_1
movdqa 0x10(SRC), MSG
aegis128_update
pxor MSG, STATE3
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_2
movdqa 0x20(SRC), MSG
aegis128_update
pxor MSG, STATE2
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_3
movdqa 0x30(SRC), MSG
aegis128_update
pxor MSG, STATE1
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_4
movdqa 0x40(SRC), MSG
aegis128_update
pxor MSG, STATE0
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_0
add $0x50, SRC
jmp .Lad_a_loop
.align 8
.Lad_u_loop:
movdqu 0x00(SRC), MSG
aegis128_update
pxor MSG, STATE4
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_1
movdqu 0x10(SRC), MSG
aegis128_update
pxor MSG, STATE3
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_2
movdqu 0x20(SRC), MSG
aegis128_update
pxor MSG, STATE2
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_3
movdqu 0x30(SRC), MSG
aegis128_update
pxor MSG, STATE1
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_4
movdqu 0x40(SRC), MSG
aegis128_update
pxor MSG, STATE0
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_0
add $0x50, SRC
jmp .Lad_u_loop
/* store the state: */
.Lad_out_0:
movdqu STATE0, 0x00(STATEP)
movdqu STATE1, 0x10(STATEP)
movdqu STATE2, 0x20(STATEP)
movdqu STATE3, 0x30(STATEP)
movdqu STATE4, 0x40(STATEP)
FRAME_END
ret
.Lad_out_1:
movdqu STATE4, 0x00(STATEP)
movdqu STATE0, 0x10(STATEP)
movdqu STATE1, 0x20(STATEP)
movdqu STATE2, 0x30(STATEP)
movdqu STATE3, 0x40(STATEP)
FRAME_END
ret
.Lad_out_2:
movdqu STATE3, 0x00(STATEP)
movdqu STATE4, 0x10(STATEP)
movdqu STATE0, 0x20(STATEP)
movdqu STATE1, 0x30(STATEP)
movdqu STATE2, 0x40(STATEP)
FRAME_END
ret
.Lad_out_3:
movdqu STATE2, 0x00(STATEP)
movdqu STATE3, 0x10(STATEP)
movdqu STATE4, 0x20(STATEP)
movdqu STATE0, 0x30(STATEP)
movdqu STATE1, 0x40(STATEP)
FRAME_END
ret
.Lad_out_4:
movdqu STATE1, 0x00(STATEP)
movdqu STATE2, 0x10(STATEP)
movdqu STATE3, 0x20(STATEP)
movdqu STATE4, 0x30(STATEP)
movdqu STATE0, 0x40(STATEP)
FRAME_END
ret
.Lad_out:
FRAME_END
ret
ENDPROC(crypto_aegis128_aesni_ad)
.macro encrypt_block a s0 s1 s2 s3 s4 i
movdq\a (\i * 0x10)(SRC), MSG
movdqa MSG, T0
pxor \s1, T0
pxor \s4, T0
movdqa \s2, T1
pand \s3, T1
pxor T1, T0
movdq\a T0, (\i * 0x10)(DST)
aegis128_update
pxor MSG, \s4
sub $0x10, LEN
cmp $0x10, LEN
jl .Lenc_out_\i
.endm
/*
* void crypto_aegis128_aesni_enc(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128_aesni_enc)
FRAME_BEGIN
cmp $0x10, LEN
jb .Lenc_out
/* load the state: */
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
mov SRC, %r8
or DST, %r8
and $0xF, %r8
jnz .Lenc_u_loop
.align 8
.Lenc_a_loop:
encrypt_block a STATE0 STATE1 STATE2 STATE3 STATE4 0
encrypt_block a STATE4 STATE0 STATE1 STATE2 STATE3 1
encrypt_block a STATE3 STATE4 STATE0 STATE1 STATE2 2
encrypt_block a STATE2 STATE3 STATE4 STATE0 STATE1 3
encrypt_block a STATE1 STATE2 STATE3 STATE4 STATE0 4
add $0x50, SRC
add $0x50, DST
jmp .Lenc_a_loop
.align 8
.Lenc_u_loop:
encrypt_block u STATE0 STATE1 STATE2 STATE3 STATE4 0
encrypt_block u STATE4 STATE0 STATE1 STATE2 STATE3 1
encrypt_block u STATE3 STATE4 STATE0 STATE1 STATE2 2
encrypt_block u STATE2 STATE3 STATE4 STATE0 STATE1 3
encrypt_block u STATE1 STATE2 STATE3 STATE4 STATE0 4
add $0x50, SRC
add $0x50, DST
jmp .Lenc_u_loop
/* store the state: */
.Lenc_out_0:
movdqu STATE4, 0x00(STATEP)
movdqu STATE0, 0x10(STATEP)
movdqu STATE1, 0x20(STATEP)
movdqu STATE2, 0x30(STATEP)
movdqu STATE3, 0x40(STATEP)
FRAME_END
ret
.Lenc_out_1:
movdqu STATE3, 0x00(STATEP)
movdqu STATE4, 0x10(STATEP)
movdqu STATE0, 0x20(STATEP)
movdqu STATE1, 0x30(STATEP)
movdqu STATE2, 0x40(STATEP)
FRAME_END
ret
.Lenc_out_2:
movdqu STATE2, 0x00(STATEP)
movdqu STATE3, 0x10(STATEP)
movdqu STATE4, 0x20(STATEP)
movdqu STATE0, 0x30(STATEP)
movdqu STATE1, 0x40(STATEP)
FRAME_END
ret
.Lenc_out_3:
movdqu STATE1, 0x00(STATEP)
movdqu STATE2, 0x10(STATEP)
movdqu STATE3, 0x20(STATEP)
movdqu STATE4, 0x30(STATEP)
movdqu STATE0, 0x40(STATEP)
FRAME_END
ret
.Lenc_out_4:
movdqu STATE0, 0x00(STATEP)
movdqu STATE1, 0x10(STATEP)
movdqu STATE2, 0x20(STATEP)
movdqu STATE3, 0x30(STATEP)
movdqu STATE4, 0x40(STATEP)
FRAME_END
ret
.Lenc_out:
FRAME_END
ret
ENDPROC(crypto_aegis128_aesni_enc)
/*
* void crypto_aegis128_aesni_enc_tail(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128_aesni_enc_tail)
FRAME_BEGIN
/* load the state: */
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
/* encrypt message: */
call __load_partial
movdqa MSG, T0
pxor STATE1, T0
pxor STATE4, T0
movdqa STATE2, T1
pand STATE3, T1
pxor T1, T0
call __store_partial
aegis128_update
pxor MSG, STATE4
/* store the state: */
movdqu STATE4, 0x00(STATEP)
movdqu STATE0, 0x10(STATEP)
movdqu STATE1, 0x20(STATEP)
movdqu STATE2, 0x30(STATEP)
movdqu STATE3, 0x40(STATEP)
FRAME_END
ENDPROC(crypto_aegis128_aesni_enc_tail)
.macro decrypt_block a s0 s1 s2 s3 s4 i
movdq\a (\i * 0x10)(SRC), MSG
pxor \s1, MSG
pxor \s4, MSG
movdqa \s2, T1
pand \s3, T1
pxor T1, MSG
movdq\a MSG, (\i * 0x10)(DST)
aegis128_update
pxor MSG, \s4
sub $0x10, LEN
cmp $0x10, LEN
jl .Ldec_out_\i
.endm
/*
* void crypto_aegis128_aesni_dec(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128_aesni_dec)
FRAME_BEGIN
cmp $0x10, LEN
jb .Ldec_out
/* load the state: */
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
mov SRC, %r8
or DST, %r8
and $0xF, %r8
jnz .Ldec_u_loop
.align 8
.Ldec_a_loop:
decrypt_block a STATE0 STATE1 STATE2 STATE3 STATE4 0
decrypt_block a STATE4 STATE0 STATE1 STATE2 STATE3 1
decrypt_block a STATE3 STATE4 STATE0 STATE1 STATE2 2
decrypt_block a STATE2 STATE3 STATE4 STATE0 STATE1 3
decrypt_block a STATE1 STATE2 STATE3 STATE4 STATE0 4
add $0x50, SRC
add $0x50, DST
jmp .Ldec_a_loop
.align 8
.Ldec_u_loop:
decrypt_block u STATE0 STATE1 STATE2 STATE3 STATE4 0
decrypt_block u STATE4 STATE0 STATE1 STATE2 STATE3 1
decrypt_block u STATE3 STATE4 STATE0 STATE1 STATE2 2
decrypt_block u STATE2 STATE3 STATE4 STATE0 STATE1 3
decrypt_block u STATE1 STATE2 STATE3 STATE4 STATE0 4
add $0x50, SRC
add $0x50, DST
jmp .Ldec_u_loop
/* store the state: */
.Ldec_out_0:
movdqu STATE4, 0x00(STATEP)
movdqu STATE0, 0x10(STATEP)
movdqu STATE1, 0x20(STATEP)
movdqu STATE2, 0x30(STATEP)
movdqu STATE3, 0x40(STATEP)
FRAME_END
ret
.Ldec_out_1:
movdqu STATE3, 0x00(STATEP)
movdqu STATE4, 0x10(STATEP)
movdqu STATE0, 0x20(STATEP)
movdqu STATE1, 0x30(STATEP)
movdqu STATE2, 0x40(STATEP)
FRAME_END
ret
.Ldec_out_2:
movdqu STATE2, 0x00(STATEP)
movdqu STATE3, 0x10(STATEP)
movdqu STATE4, 0x20(STATEP)
movdqu STATE0, 0x30(STATEP)
movdqu STATE1, 0x40(STATEP)
FRAME_END
ret
.Ldec_out_3:
movdqu STATE1, 0x00(STATEP)
movdqu STATE2, 0x10(STATEP)
movdqu STATE3, 0x20(STATEP)
movdqu STATE4, 0x30(STATEP)
movdqu STATE0, 0x40(STATEP)
FRAME_END
ret
.Ldec_out_4:
movdqu STATE0, 0x00(STATEP)
movdqu STATE1, 0x10(STATEP)
movdqu STATE2, 0x20(STATEP)
movdqu STATE3, 0x30(STATEP)
movdqu STATE4, 0x40(STATEP)
FRAME_END
ret
.Ldec_out:
FRAME_END
ret
ENDPROC(crypto_aegis128_aesni_dec)
/*
* void crypto_aegis128_aesni_dec_tail(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128_aesni_dec_tail)
FRAME_BEGIN
/* load the state: */
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
/* decrypt message: */
call __load_partial
pxor STATE1, MSG
pxor STATE4, MSG
movdqa STATE2, T1
pand STATE3, T1
pxor T1, MSG
movdqa MSG, T0
call __store_partial
/* mask with byte count: */
movq LEN, T0
punpcklbw T0, T0
punpcklbw T0, T0
punpcklbw T0, T0
punpcklbw T0, T0
movdqa .Laegis128_counter, T1
pcmpgtb T1, T0
pand T0, MSG
aegis128_update
pxor MSG, STATE4
/* store the state: */
movdqu STATE4, 0x00(STATEP)
movdqu STATE0, 0x10(STATEP)
movdqu STATE1, 0x20(STATEP)
movdqu STATE2, 0x30(STATEP)
movdqu STATE3, 0x40(STATEP)
FRAME_END
ret
ENDPROC(crypto_aegis128_aesni_dec_tail)
/*
* void crypto_aegis128_aesni_final(void *state, void *tag_xor,
* u64 assoclen, u64 cryptlen);
*/
ENTRY(crypto_aegis128_aesni_final)
FRAME_BEGIN
/* load the state: */
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
/* prepare length block: */
movq %rdx, MSG
movq %rcx, T0
pslldq $8, T0
pxor T0, MSG
psllq $3, MSG /* multiply by 8 (to get bit count) */
pxor STATE3, MSG
/* update state: */
aegis128_update; pxor MSG, STATE4
aegis128_update; pxor MSG, STATE3
aegis128_update; pxor MSG, STATE2
aegis128_update; pxor MSG, STATE1
aegis128_update; pxor MSG, STATE0
aegis128_update; pxor MSG, STATE4
aegis128_update; pxor MSG, STATE3
/* xor tag: */
movdqu (%rsi), MSG
pxor STATE0, MSG
pxor STATE1, MSG
pxor STATE2, MSG
pxor STATE3, MSG
pxor STATE4, MSG
movdqu MSG, (%rsi)
FRAME_END
ret
ENDPROC(crypto_aegis128_aesni_final)

Просмотреть файл

@ -0,0 +1,407 @@
/*
* The AEGIS-128 Authenticated-Encryption Algorithm
* Glue for AES-NI + SSE2 implementation
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <asm/fpu/api.h>
#include <asm/cpu_device_id.h>
#define AEGIS128_BLOCK_ALIGN 16
#define AEGIS128_BLOCK_SIZE 16
#define AEGIS128_NONCE_SIZE 16
#define AEGIS128_STATE_BLOCKS 5
#define AEGIS128_KEY_SIZE 16
#define AEGIS128_MIN_AUTH_SIZE 8
#define AEGIS128_MAX_AUTH_SIZE 16
asmlinkage void crypto_aegis128_aesni_init(void *state, void *key, void *iv);
asmlinkage void crypto_aegis128_aesni_ad(
void *state, unsigned int length, const void *data);
asmlinkage void crypto_aegis128_aesni_enc(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128_aesni_dec(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128_aesni_enc_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128_aesni_dec_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128_aesni_final(
void *state, void *tag_xor, unsigned int cryptlen,
unsigned int assoclen);
struct aegis_block {
u8 bytes[AEGIS128_BLOCK_SIZE] __aligned(AEGIS128_BLOCK_ALIGN);
};
struct aegis_state {
struct aegis_block blocks[AEGIS128_STATE_BLOCKS];
};
struct aegis_ctx {
struct aegis_block key;
};
struct aegis_crypt_ops {
int (*skcipher_walk_init)(struct skcipher_walk *walk,
struct aead_request *req, bool atomic);
void (*crypt_blocks)(void *state, unsigned int length, const void *src,
void *dst);
void (*crypt_tail)(void *state, unsigned int length, const void *src,
void *dst);
};
static void crypto_aegis128_aesni_process_ad(
struct aegis_state *state, struct scatterlist *sg_src,
unsigned int assoclen)
{
struct scatter_walk walk;
struct aegis_block buf;
unsigned int pos = 0;
scatterwalk_start(&walk, sg_src);
while (assoclen != 0) {
unsigned int size = scatterwalk_clamp(&walk, assoclen);
unsigned int left = size;
void *mapped = scatterwalk_map(&walk);
const u8 *src = (const u8 *)mapped;
if (pos + size >= AEGIS128_BLOCK_SIZE) {
if (pos > 0) {
unsigned int fill = AEGIS128_BLOCK_SIZE - pos;
memcpy(buf.bytes + pos, src, fill);
crypto_aegis128_aesni_ad(state,
AEGIS128_BLOCK_SIZE,
buf.bytes);
pos = 0;
left -= fill;
src += fill;
}
crypto_aegis128_aesni_ad(state, left, src);
src += left & ~(AEGIS128_BLOCK_SIZE - 1);
left &= AEGIS128_BLOCK_SIZE - 1;
}
memcpy(buf.bytes + pos, src, left);
pos += left;
assoclen -= size;
scatterwalk_unmap(mapped);
scatterwalk_advance(&walk, size);
scatterwalk_done(&walk, 0, assoclen);
}
if (pos > 0) {
memset(buf.bytes + pos, 0, AEGIS128_BLOCK_SIZE - pos);
crypto_aegis128_aesni_ad(state, AEGIS128_BLOCK_SIZE, buf.bytes);
}
}
static void crypto_aegis128_aesni_process_crypt(
struct aegis_state *state, struct aead_request *req,
const struct aegis_crypt_ops *ops)
{
struct skcipher_walk walk;
u8 *src, *dst;
unsigned int chunksize, base;
ops->skcipher_walk_init(&walk, req, false);
while (walk.nbytes) {
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
chunksize = walk.nbytes;
ops->crypt_blocks(state, chunksize, src, dst);
base = chunksize & ~(AEGIS128_BLOCK_SIZE - 1);
src += base;
dst += base;
chunksize &= AEGIS128_BLOCK_SIZE - 1;
if (chunksize > 0)
ops->crypt_tail(state, chunksize, src, dst);
skcipher_walk_done(&walk, 0);
}
}
static struct aegis_ctx *crypto_aegis128_aesni_ctx(struct crypto_aead *aead)
{
u8 *ctx = crypto_aead_ctx(aead);
ctx = PTR_ALIGN(ctx, __alignof__(struct aegis_ctx));
return (void *)ctx;
}
static int crypto_aegis128_aesni_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(aead);
if (keylen != AEGIS128_KEY_SIZE) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key.bytes, key, AEGIS128_KEY_SIZE);
return 0;
}
static int crypto_aegis128_aesni_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
if (authsize > AEGIS128_MAX_AUTH_SIZE)
return -EINVAL;
if (authsize < AEGIS128_MIN_AUTH_SIZE)
return -EINVAL;
return 0;
}
static void crypto_aegis128_aesni_crypt(struct aead_request *req,
struct aegis_block *tag_xor,
unsigned int cryptlen,
const struct aegis_crypt_ops *ops)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_ctx *ctx = crypto_aegis128_aesni_ctx(tfm);
struct aegis_state state;
kernel_fpu_begin();
crypto_aegis128_aesni_init(&state, ctx->key.bytes, req->iv);
crypto_aegis128_aesni_process_ad(&state, req->src, req->assoclen);
crypto_aegis128_aesni_process_crypt(&state, req, ops);
crypto_aegis128_aesni_final(&state, tag_xor, req->assoclen, cryptlen);
kernel_fpu_end();
}
static int crypto_aegis128_aesni_encrypt(struct aead_request *req)
{
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_encrypt,
.crypt_blocks = crypto_aegis128_aesni_enc,
.crypt_tail = crypto_aegis128_aesni_enc_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag = {};
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen;
crypto_aegis128_aesni_crypt(req, &tag, cryptlen, &OPS);
scatterwalk_map_and_copy(tag.bytes, req->dst,
req->assoclen + cryptlen, authsize, 1);
return 0;
}
static int crypto_aegis128_aesni_decrypt(struct aead_request *req)
{
static const struct aegis_block zeros = {};
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_decrypt,
.crypt_blocks = crypto_aegis128_aesni_dec,
.crypt_tail = crypto_aegis128_aesni_dec_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag;
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen - authsize;
scatterwalk_map_and_copy(tag.bytes, req->src,
req->assoclen + cryptlen, authsize, 0);
crypto_aegis128_aesni_crypt(req, &tag, cryptlen, &OPS);
return crypto_memneq(tag.bytes, zeros.bytes, authsize) ? -EBADMSG : 0;
}
static int crypto_aegis128_aesni_init_tfm(struct crypto_aead *aead)
{
return 0;
}
static void crypto_aegis128_aesni_exit_tfm(struct crypto_aead *aead)
{
}
static int cryptd_aegis128_aesni_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setkey(&cryptd_tfm->base, key, keylen);
}
static int cryptd_aegis128_aesni_setauthsize(struct crypto_aead *aead,
unsigned int authsize)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}
static int cryptd_aegis128_aesni_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_encrypt(req);
}
static int cryptd_aegis128_aesni_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_decrypt(req);
}
static int cryptd_aegis128_aesni_init_tfm(struct crypto_aead *aead)
{
struct cryptd_aead *cryptd_tfm;
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_tfm = cryptd_alloc_aead("__aegis128-aesni", CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
*ctx = cryptd_tfm;
crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
return 0;
}
static void cryptd_aegis128_aesni_exit_tfm(struct crypto_aead *aead)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_free_aead(*ctx);
}
static struct aead_alg crypto_aegis128_aesni_alg[] = {
{
.setkey = crypto_aegis128_aesni_setkey,
.setauthsize = crypto_aegis128_aesni_setauthsize,
.encrypt = crypto_aegis128_aesni_encrypt,
.decrypt = crypto_aegis128_aesni_decrypt,
.init = crypto_aegis128_aesni_init_tfm,
.exit = crypto_aegis128_aesni_exit_tfm,
.ivsize = AEGIS128_NONCE_SIZE,
.maxauthsize = AEGIS128_MAX_AUTH_SIZE,
.chunksize = AEGIS128_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aegis_ctx) +
__alignof__(struct aegis_ctx),
.cra_alignmask = 0,
.cra_name = "__aegis128",
.cra_driver_name = "__aegis128-aesni",
.cra_module = THIS_MODULE,
}
}, {
.setkey = cryptd_aegis128_aesni_setkey,
.setauthsize = cryptd_aegis128_aesni_setauthsize,
.encrypt = cryptd_aegis128_aesni_encrypt,
.decrypt = cryptd_aegis128_aesni_decrypt,
.init = cryptd_aegis128_aesni_init_tfm,
.exit = cryptd_aegis128_aesni_exit_tfm,
.ivsize = AEGIS128_NONCE_SIZE,
.maxauthsize = AEGIS128_MAX_AUTH_SIZE,
.chunksize = AEGIS128_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct cryptd_aead *),
.cra_alignmask = 0,
.cra_priority = 400,
.cra_name = "aegis128",
.cra_driver_name = "aegis128-aesni",
.cra_module = THIS_MODULE,
}
}
};
static const struct x86_cpu_id aesni_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_AES),
X86_FEATURE_MATCH(X86_FEATURE_XMM2),
{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static int __init crypto_aegis128_aesni_module_init(void)
{
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
return crypto_register_aeads(crypto_aegis128_aesni_alg,
ARRAY_SIZE(crypto_aegis128_aesni_alg));
}
static void __exit crypto_aegis128_aesni_module_exit(void)
{
crypto_unregister_aeads(crypto_aegis128_aesni_alg,
ARRAY_SIZE(crypto_aegis128_aesni_alg));
}
module_init(crypto_aegis128_aesni_module_init);
module_exit(crypto_aegis128_aesni_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
MODULE_DESCRIPTION("AEGIS-128 AEAD algorithm -- AESNI+SSE2 implementation");
MODULE_ALIAS_CRYPTO("aegis128");
MODULE_ALIAS_CRYPTO("aegis128-aesni");

Просмотреть файл

@ -0,0 +1,825 @@
/*
* AES-NI + SSE2 implementation of AEGIS-128L
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <asm/frame.h>
#define STATE0 %xmm0
#define STATE1 %xmm1
#define STATE2 %xmm2
#define STATE3 %xmm3
#define STATE4 %xmm4
#define STATE5 %xmm5
#define STATE6 %xmm6
#define STATE7 %xmm7
#define MSG0 %xmm8
#define MSG1 %xmm9
#define T0 %xmm10
#define T1 %xmm11
#define T2 %xmm12
#define T3 %xmm13
#define STATEP %rdi
#define LEN %rsi
#define SRC %rdx
#define DST %rcx
.section .rodata.cst16.aegis128l_const, "aM", @progbits, 32
.align 16
.Laegis128l_const_0:
.byte 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d
.byte 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62
.Laegis128l_const_1:
.byte 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1
.byte 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd
.section .rodata.cst16.aegis128l_counter, "aM", @progbits, 16
.align 16
.Laegis128l_counter0:
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
.Laegis128l_counter1:
.byte 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17
.byte 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
.text
/*
* __load_partial: internal ABI
* input:
* LEN - bytes
* SRC - src
* output:
* MSG0 - first message block
* MSG1 - second message block
* changed:
* T0
* %r8
* %r9
*/
__load_partial:
xor %r9, %r9
pxor MSG0, MSG0
pxor MSG1, MSG1
mov LEN, %r8
and $0x1, %r8
jz .Lld_partial_1
mov LEN, %r8
and $0x1E, %r8
add SRC, %r8
mov (%r8), %r9b
.Lld_partial_1:
mov LEN, %r8
and $0x2, %r8
jz .Lld_partial_2
mov LEN, %r8
and $0x1C, %r8
add SRC, %r8
shl $0x10, %r9
mov (%r8), %r9w
.Lld_partial_2:
mov LEN, %r8
and $0x4, %r8
jz .Lld_partial_4
mov LEN, %r8
and $0x18, %r8
add SRC, %r8
shl $32, %r9
mov (%r8), %r8d
xor %r8, %r9
.Lld_partial_4:
movq %r9, MSG0
mov LEN, %r8
and $0x8, %r8
jz .Lld_partial_8
mov LEN, %r8
and $0x10, %r8
add SRC, %r8
pslldq $8, MSG0
movq (%r8), T0
pxor T0, MSG0
.Lld_partial_8:
mov LEN, %r8
and $0x10, %r8
jz .Lld_partial_16
movdqa MSG0, MSG1
movdqu (SRC), MSG0
.Lld_partial_16:
ret
ENDPROC(__load_partial)
/*
* __store_partial: internal ABI
* input:
* LEN - bytes
* DST - dst
* output:
* T0 - first message block
* T1 - second message block
* changed:
* %r8
* %r9
* %r10
*/
__store_partial:
mov LEN, %r8
mov DST, %r9
cmp $16, %r8
jl .Lst_partial_16
movdqu T0, (%r9)
movdqa T1, T0
sub $16, %r8
add $16, %r9
.Lst_partial_16:
movq T0, %r10
cmp $8, %r8
jl .Lst_partial_8
mov %r10, (%r9)
psrldq $8, T0
movq T0, %r10
sub $8, %r8
add $8, %r9
.Lst_partial_8:
cmp $4, %r8
jl .Lst_partial_4
mov %r10d, (%r9)
shr $32, %r10
sub $4, %r8
add $4, %r9
.Lst_partial_4:
cmp $2, %r8
jl .Lst_partial_2
mov %r10w, (%r9)
shr $0x10, %r10
sub $2, %r8
add $2, %r9
.Lst_partial_2:
cmp $1, %r8
jl .Lst_partial_1
mov %r10b, (%r9)
.Lst_partial_1:
ret
ENDPROC(__store_partial)
.macro update
movdqa STATE7, T0
aesenc STATE0, STATE7
aesenc STATE1, STATE0
aesenc STATE2, STATE1
aesenc STATE3, STATE2
aesenc STATE4, STATE3
aesenc STATE5, STATE4
aesenc STATE6, STATE5
aesenc T0, STATE6
.endm
.macro update0
update
pxor MSG0, STATE7
pxor MSG1, STATE3
.endm
.macro update1
update
pxor MSG0, STATE6
pxor MSG1, STATE2
.endm
.macro update2
update
pxor MSG0, STATE5
pxor MSG1, STATE1
.endm
.macro update3
update
pxor MSG0, STATE4
pxor MSG1, STATE0
.endm
.macro update4
update
pxor MSG0, STATE3
pxor MSG1, STATE7
.endm
.macro update5
update
pxor MSG0, STATE2
pxor MSG1, STATE6
.endm
.macro update6
update
pxor MSG0, STATE1
pxor MSG1, STATE5
.endm
.macro update7
update
pxor MSG0, STATE0
pxor MSG1, STATE4
.endm
.macro state_load
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
movdqu 0x50(STATEP), STATE5
movdqu 0x60(STATEP), STATE6
movdqu 0x70(STATEP), STATE7
.endm
.macro state_store s0 s1 s2 s3 s4 s5 s6 s7
movdqu \s7, 0x00(STATEP)
movdqu \s0, 0x10(STATEP)
movdqu \s1, 0x20(STATEP)
movdqu \s2, 0x30(STATEP)
movdqu \s3, 0x40(STATEP)
movdqu \s4, 0x50(STATEP)
movdqu \s5, 0x60(STATEP)
movdqu \s6, 0x70(STATEP)
.endm
.macro state_store0
state_store STATE0 STATE1 STATE2 STATE3 STATE4 STATE5 STATE6 STATE7
.endm
.macro state_store1
state_store STATE7 STATE0 STATE1 STATE2 STATE3 STATE4 STATE5 STATE6
.endm
.macro state_store2
state_store STATE6 STATE7 STATE0 STATE1 STATE2 STATE3 STATE4 STATE5
.endm
.macro state_store3
state_store STATE5 STATE6 STATE7 STATE0 STATE1 STATE2 STATE3 STATE4
.endm
.macro state_store4
state_store STATE4 STATE5 STATE6 STATE7 STATE0 STATE1 STATE2 STATE3
.endm
.macro state_store5
state_store STATE3 STATE4 STATE5 STATE6 STATE7 STATE0 STATE1 STATE2
.endm
.macro state_store6
state_store STATE2 STATE3 STATE4 STATE5 STATE6 STATE7 STATE0 STATE1
.endm
.macro state_store7
state_store STATE1 STATE2 STATE3 STATE4 STATE5 STATE6 STATE7 STATE0
.endm
/*
* void crypto_aegis128l_aesni_init(void *state, const void *key, const void *iv);
*/
ENTRY(crypto_aegis128l_aesni_init)
FRAME_BEGIN
/* load key: */
movdqa (%rsi), MSG1
movdqa MSG1, STATE0
movdqa MSG1, STATE4
movdqa MSG1, STATE5
movdqa MSG1, STATE6
movdqa MSG1, STATE7
/* load IV: */
movdqu (%rdx), MSG0
pxor MSG0, STATE0
pxor MSG0, STATE4
/* load the constants: */
movdqa .Laegis128l_const_0, STATE2
movdqa .Laegis128l_const_1, STATE1
movdqa STATE1, STATE3
pxor STATE2, STATE5
pxor STATE1, STATE6
pxor STATE2, STATE7
/* update 10 times with IV and KEY: */
update0
update1
update2
update3
update4
update5
update6
update7
update0
update1
state_store1
FRAME_END
ret
ENDPROC(crypto_aegis128l_aesni_init)
.macro ad_block a i
movdq\a (\i * 0x20 + 0x00)(SRC), MSG0
movdq\a (\i * 0x20 + 0x10)(SRC), MSG1
update\i
sub $0x20, LEN
cmp $0x20, LEN
jl .Lad_out_\i
.endm
/*
* void crypto_aegis128l_aesni_ad(void *state, unsigned int length,
* const void *data);
*/
ENTRY(crypto_aegis128l_aesni_ad)
FRAME_BEGIN
cmp $0x20, LEN
jb .Lad_out
state_load
mov SRC, %r8
and $0xf, %r8
jnz .Lad_u_loop
.align 8
.Lad_a_loop:
ad_block a 0
ad_block a 1
ad_block a 2
ad_block a 3
ad_block a 4
ad_block a 5
ad_block a 6
ad_block a 7
add $0x100, SRC
jmp .Lad_a_loop
.align 8
.Lad_u_loop:
ad_block u 0
ad_block u 1
ad_block u 2
ad_block u 3
ad_block u 4
ad_block u 5
ad_block u 6
ad_block u 7
add $0x100, SRC
jmp .Lad_u_loop
.Lad_out_0:
state_store0
FRAME_END
ret
.Lad_out_1:
state_store1
FRAME_END
ret
.Lad_out_2:
state_store2
FRAME_END
ret
.Lad_out_3:
state_store3
FRAME_END
ret
.Lad_out_4:
state_store4
FRAME_END
ret
.Lad_out_5:
state_store5
FRAME_END
ret
.Lad_out_6:
state_store6
FRAME_END
ret
.Lad_out_7:
state_store7
FRAME_END
ret
.Lad_out:
FRAME_END
ret
ENDPROC(crypto_aegis128l_aesni_ad)
.macro crypt m0 m1 s0 s1 s2 s3 s4 s5 s6 s7
pxor \s1, \m0
pxor \s6, \m0
movdqa \s2, T3
pand \s3, T3
pxor T3, \m0
pxor \s2, \m1
pxor \s5, \m1
movdqa \s6, T3
pand \s7, T3
pxor T3, \m1
.endm
.macro crypt0 m0 m1
crypt \m0 \m1 STATE0 STATE1 STATE2 STATE3 STATE4 STATE5 STATE6 STATE7
.endm
.macro crypt1 m0 m1
crypt \m0 \m1 STATE7 STATE0 STATE1 STATE2 STATE3 STATE4 STATE5 STATE6
.endm
.macro crypt2 m0 m1
crypt \m0 \m1 STATE6 STATE7 STATE0 STATE1 STATE2 STATE3 STATE4 STATE5
.endm
.macro crypt3 m0 m1
crypt \m0 \m1 STATE5 STATE6 STATE7 STATE0 STATE1 STATE2 STATE3 STATE4
.endm
.macro crypt4 m0 m1
crypt \m0 \m1 STATE4 STATE5 STATE6 STATE7 STATE0 STATE1 STATE2 STATE3
.endm
.macro crypt5 m0 m1
crypt \m0 \m1 STATE3 STATE4 STATE5 STATE6 STATE7 STATE0 STATE1 STATE2
.endm
.macro crypt6 m0 m1
crypt \m0 \m1 STATE2 STATE3 STATE4 STATE5 STATE6 STATE7 STATE0 STATE1
.endm
.macro crypt7 m0 m1
crypt \m0 \m1 STATE1 STATE2 STATE3 STATE4 STATE5 STATE6 STATE7 STATE0
.endm
.macro encrypt_block a i
movdq\a (\i * 0x20 + 0x00)(SRC), MSG0
movdq\a (\i * 0x20 + 0x10)(SRC), MSG1
movdqa MSG0, T0
movdqa MSG1, T1
crypt\i T0, T1
movdq\a T0, (\i * 0x20 + 0x00)(DST)
movdq\a T1, (\i * 0x20 + 0x10)(DST)
update\i
sub $0x20, LEN
cmp $0x20, LEN
jl .Lenc_out_\i
.endm
.macro decrypt_block a i
movdq\a (\i * 0x20 + 0x00)(SRC), MSG0
movdq\a (\i * 0x20 + 0x10)(SRC), MSG1
crypt\i MSG0, MSG1
movdq\a MSG0, (\i * 0x20 + 0x00)(DST)
movdq\a MSG1, (\i * 0x20 + 0x10)(DST)
update\i
sub $0x20, LEN
cmp $0x20, LEN
jl .Ldec_out_\i
.endm
/*
* void crypto_aegis128l_aesni_enc(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128l_aesni_enc)
FRAME_BEGIN
cmp $0x20, LEN
jb .Lenc_out
state_load
mov SRC, %r8
or DST, %r8
and $0xf, %r8
jnz .Lenc_u_loop
.align 8
.Lenc_a_loop:
encrypt_block a 0
encrypt_block a 1
encrypt_block a 2
encrypt_block a 3
encrypt_block a 4
encrypt_block a 5
encrypt_block a 6
encrypt_block a 7
add $0x100, SRC
add $0x100, DST
jmp .Lenc_a_loop
.align 8
.Lenc_u_loop:
encrypt_block u 0
encrypt_block u 1
encrypt_block u 2
encrypt_block u 3
encrypt_block u 4
encrypt_block u 5
encrypt_block u 6
encrypt_block u 7
add $0x100, SRC
add $0x100, DST
jmp .Lenc_u_loop
.Lenc_out_0:
state_store0
FRAME_END
ret
.Lenc_out_1:
state_store1
FRAME_END
ret
.Lenc_out_2:
state_store2
FRAME_END
ret
.Lenc_out_3:
state_store3
FRAME_END
ret
.Lenc_out_4:
state_store4
FRAME_END
ret
.Lenc_out_5:
state_store5
FRAME_END
ret
.Lenc_out_6:
state_store6
FRAME_END
ret
.Lenc_out_7:
state_store7
FRAME_END
ret
.Lenc_out:
FRAME_END
ret
ENDPROC(crypto_aegis128l_aesni_enc)
/*
* void crypto_aegis128l_aesni_enc_tail(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128l_aesni_enc_tail)
FRAME_BEGIN
state_load
/* encrypt message: */
call __load_partial
movdqa MSG0, T0
movdqa MSG1, T1
crypt0 T0, T1
call __store_partial
update0
state_store0
FRAME_END
ENDPROC(crypto_aegis128l_aesni_enc_tail)
/*
* void crypto_aegis128l_aesni_dec(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128l_aesni_dec)
FRAME_BEGIN
cmp $0x20, LEN
jb .Ldec_out
state_load
mov SRC, %r8
or DST, %r8
and $0xF, %r8
jnz .Ldec_u_loop
.align 8
.Ldec_a_loop:
decrypt_block a 0
decrypt_block a 1
decrypt_block a 2
decrypt_block a 3
decrypt_block a 4
decrypt_block a 5
decrypt_block a 6
decrypt_block a 7
add $0x100, SRC
add $0x100, DST
jmp .Ldec_a_loop
.align 8
.Ldec_u_loop:
decrypt_block u 0
decrypt_block u 1
decrypt_block u 2
decrypt_block u 3
decrypt_block u 4
decrypt_block u 5
decrypt_block u 6
decrypt_block u 7
add $0x100, SRC
add $0x100, DST
jmp .Ldec_u_loop
.Ldec_out_0:
state_store0
FRAME_END
ret
.Ldec_out_1:
state_store1
FRAME_END
ret
.Ldec_out_2:
state_store2
FRAME_END
ret
.Ldec_out_3:
state_store3
FRAME_END
ret
.Ldec_out_4:
state_store4
FRAME_END
ret
.Ldec_out_5:
state_store5
FRAME_END
ret
.Ldec_out_6:
state_store6
FRAME_END
ret
.Ldec_out_7:
state_store7
FRAME_END
ret
.Ldec_out:
FRAME_END
ret
ENDPROC(crypto_aegis128l_aesni_dec)
/*
* void crypto_aegis128l_aesni_dec_tail(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis128l_aesni_dec_tail)
FRAME_BEGIN
state_load
/* decrypt message: */
call __load_partial
crypt0 MSG0, MSG1
movdqa MSG0, T0
movdqa MSG1, T1
call __store_partial
/* mask with byte count: */
movq LEN, T0
punpcklbw T0, T0
punpcklbw T0, T0
punpcklbw T0, T0
punpcklbw T0, T0
movdqa T0, T1
movdqa .Laegis128l_counter0, T2
movdqa .Laegis128l_counter1, T3
pcmpgtb T2, T0
pcmpgtb T3, T1
pand T0, MSG0
pand T1, MSG1
update0
state_store0
FRAME_END
ret
ENDPROC(crypto_aegis128l_aesni_dec_tail)
/*
* void crypto_aegis128l_aesni_final(void *state, void *tag_xor,
* u64 assoclen, u64 cryptlen);
*/
ENTRY(crypto_aegis128l_aesni_final)
FRAME_BEGIN
state_load
/* prepare length block: */
movq %rdx, MSG0
movq %rcx, T0
pslldq $8, T0
pxor T0, MSG0
psllq $3, MSG0 /* multiply by 8 (to get bit count) */
pxor STATE2, MSG0
movdqa MSG0, MSG1
/* update state: */
update0
update1
update2
update3
update4
update5
update6
/* xor tag: */
movdqu (%rsi), T0
pxor STATE1, T0
pxor STATE2, T0
pxor STATE3, T0
pxor STATE4, T0
pxor STATE5, T0
pxor STATE6, T0
pxor STATE7, T0
movdqu T0, (%rsi)
FRAME_END
ret
ENDPROC(crypto_aegis128l_aesni_final)

Просмотреть файл

@ -0,0 +1,407 @@
/*
* The AEGIS-128L Authenticated-Encryption Algorithm
* Glue for AES-NI + SSE2 implementation
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <asm/fpu/api.h>
#include <asm/cpu_device_id.h>
#define AEGIS128L_BLOCK_ALIGN 16
#define AEGIS128L_BLOCK_SIZE 32
#define AEGIS128L_NONCE_SIZE 16
#define AEGIS128L_STATE_BLOCKS 8
#define AEGIS128L_KEY_SIZE 16
#define AEGIS128L_MIN_AUTH_SIZE 8
#define AEGIS128L_MAX_AUTH_SIZE 16
asmlinkage void crypto_aegis128l_aesni_init(void *state, void *key, void *iv);
asmlinkage void crypto_aegis128l_aesni_ad(
void *state, unsigned int length, const void *data);
asmlinkage void crypto_aegis128l_aesni_enc(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128l_aesni_dec(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128l_aesni_enc_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128l_aesni_dec_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis128l_aesni_final(
void *state, void *tag_xor, unsigned int cryptlen,
unsigned int assoclen);
struct aegis_block {
u8 bytes[AEGIS128L_BLOCK_SIZE] __aligned(AEGIS128L_BLOCK_ALIGN);
};
struct aegis_state {
struct aegis_block blocks[AEGIS128L_STATE_BLOCKS];
};
struct aegis_ctx {
struct aegis_block key;
};
struct aegis_crypt_ops {
int (*skcipher_walk_init)(struct skcipher_walk *walk,
struct aead_request *req, bool atomic);
void (*crypt_blocks)(void *state, unsigned int length, const void *src,
void *dst);
void (*crypt_tail)(void *state, unsigned int length, const void *src,
void *dst);
};
static void crypto_aegis128l_aesni_process_ad(
struct aegis_state *state, struct scatterlist *sg_src,
unsigned int assoclen)
{
struct scatter_walk walk;
struct aegis_block buf;
unsigned int pos = 0;
scatterwalk_start(&walk, sg_src);
while (assoclen != 0) {
unsigned int size = scatterwalk_clamp(&walk, assoclen);
unsigned int left = size;
void *mapped = scatterwalk_map(&walk);
const u8 *src = (const u8 *)mapped;
if (pos + size >= AEGIS128L_BLOCK_SIZE) {
if (pos > 0) {
unsigned int fill = AEGIS128L_BLOCK_SIZE - pos;
memcpy(buf.bytes + pos, src, fill);
crypto_aegis128l_aesni_ad(state,
AEGIS128L_BLOCK_SIZE,
buf.bytes);
pos = 0;
left -= fill;
src += fill;
}
crypto_aegis128l_aesni_ad(state, left, src);
src += left & ~(AEGIS128L_BLOCK_SIZE - 1);
left &= AEGIS128L_BLOCK_SIZE - 1;
}
memcpy(buf.bytes + pos, src, left);
pos += left;
assoclen -= size;
scatterwalk_unmap(mapped);
scatterwalk_advance(&walk, size);
scatterwalk_done(&walk, 0, assoclen);
}
if (pos > 0) {
memset(buf.bytes + pos, 0, AEGIS128L_BLOCK_SIZE - pos);
crypto_aegis128l_aesni_ad(state, AEGIS128L_BLOCK_SIZE, buf.bytes);
}
}
static void crypto_aegis128l_aesni_process_crypt(
struct aegis_state *state, struct aead_request *req,
const struct aegis_crypt_ops *ops)
{
struct skcipher_walk walk;
u8 *src, *dst;
unsigned int chunksize, base;
ops->skcipher_walk_init(&walk, req, false);
while (walk.nbytes) {
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
chunksize = walk.nbytes;
ops->crypt_blocks(state, chunksize, src, dst);
base = chunksize & ~(AEGIS128L_BLOCK_SIZE - 1);
src += base;
dst += base;
chunksize &= AEGIS128L_BLOCK_SIZE - 1;
if (chunksize > 0)
ops->crypt_tail(state, chunksize, src, dst);
skcipher_walk_done(&walk, 0);
}
}
static struct aegis_ctx *crypto_aegis128l_aesni_ctx(struct crypto_aead *aead)
{
u8 *ctx = crypto_aead_ctx(aead);
ctx = PTR_ALIGN(ctx, __alignof__(struct aegis_ctx));
return (void *)ctx;
}
static int crypto_aegis128l_aesni_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct aegis_ctx *ctx = crypto_aegis128l_aesni_ctx(aead);
if (keylen != AEGIS128L_KEY_SIZE) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key.bytes, key, AEGIS128L_KEY_SIZE);
return 0;
}
static int crypto_aegis128l_aesni_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
if (authsize > AEGIS128L_MAX_AUTH_SIZE)
return -EINVAL;
if (authsize < AEGIS128L_MIN_AUTH_SIZE)
return -EINVAL;
return 0;
}
static void crypto_aegis128l_aesni_crypt(struct aead_request *req,
struct aegis_block *tag_xor,
unsigned int cryptlen,
const struct aegis_crypt_ops *ops)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_ctx *ctx = crypto_aegis128l_aesni_ctx(tfm);
struct aegis_state state;
kernel_fpu_begin();
crypto_aegis128l_aesni_init(&state, ctx->key.bytes, req->iv);
crypto_aegis128l_aesni_process_ad(&state, req->src, req->assoclen);
crypto_aegis128l_aesni_process_crypt(&state, req, ops);
crypto_aegis128l_aesni_final(&state, tag_xor, req->assoclen, cryptlen);
kernel_fpu_end();
}
static int crypto_aegis128l_aesni_encrypt(struct aead_request *req)
{
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_encrypt,
.crypt_blocks = crypto_aegis128l_aesni_enc,
.crypt_tail = crypto_aegis128l_aesni_enc_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag = {};
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen;
crypto_aegis128l_aesni_crypt(req, &tag, cryptlen, &OPS);
scatterwalk_map_and_copy(tag.bytes, req->dst,
req->assoclen + cryptlen, authsize, 1);
return 0;
}
static int crypto_aegis128l_aesni_decrypt(struct aead_request *req)
{
static const struct aegis_block zeros = {};
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_decrypt,
.crypt_blocks = crypto_aegis128l_aesni_dec,
.crypt_tail = crypto_aegis128l_aesni_dec_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag;
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen - authsize;
scatterwalk_map_and_copy(tag.bytes, req->src,
req->assoclen + cryptlen, authsize, 0);
crypto_aegis128l_aesni_crypt(req, &tag, cryptlen, &OPS);
return crypto_memneq(tag.bytes, zeros.bytes, authsize) ? -EBADMSG : 0;
}
static int crypto_aegis128l_aesni_init_tfm(struct crypto_aead *aead)
{
return 0;
}
static void crypto_aegis128l_aesni_exit_tfm(struct crypto_aead *aead)
{
}
static int cryptd_aegis128l_aesni_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setkey(&cryptd_tfm->base, key, keylen);
}
static int cryptd_aegis128l_aesni_setauthsize(struct crypto_aead *aead,
unsigned int authsize)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}
static int cryptd_aegis128l_aesni_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_encrypt(req);
}
static int cryptd_aegis128l_aesni_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_decrypt(req);
}
static int cryptd_aegis128l_aesni_init_tfm(struct crypto_aead *aead)
{
struct cryptd_aead *cryptd_tfm;
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_tfm = cryptd_alloc_aead("__aegis128l-aesni", CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
*ctx = cryptd_tfm;
crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
return 0;
}
static void cryptd_aegis128l_aesni_exit_tfm(struct crypto_aead *aead)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_free_aead(*ctx);
}
static struct aead_alg crypto_aegis128l_aesni_alg[] = {
{
.setkey = crypto_aegis128l_aesni_setkey,
.setauthsize = crypto_aegis128l_aesni_setauthsize,
.encrypt = crypto_aegis128l_aesni_encrypt,
.decrypt = crypto_aegis128l_aesni_decrypt,
.init = crypto_aegis128l_aesni_init_tfm,
.exit = crypto_aegis128l_aesni_exit_tfm,
.ivsize = AEGIS128L_NONCE_SIZE,
.maxauthsize = AEGIS128L_MAX_AUTH_SIZE,
.chunksize = AEGIS128L_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aegis_ctx) +
__alignof__(struct aegis_ctx),
.cra_alignmask = 0,
.cra_name = "__aegis128l",
.cra_driver_name = "__aegis128l-aesni",
.cra_module = THIS_MODULE,
}
}, {
.setkey = cryptd_aegis128l_aesni_setkey,
.setauthsize = cryptd_aegis128l_aesni_setauthsize,
.encrypt = cryptd_aegis128l_aesni_encrypt,
.decrypt = cryptd_aegis128l_aesni_decrypt,
.init = cryptd_aegis128l_aesni_init_tfm,
.exit = cryptd_aegis128l_aesni_exit_tfm,
.ivsize = AEGIS128L_NONCE_SIZE,
.maxauthsize = AEGIS128L_MAX_AUTH_SIZE,
.chunksize = AEGIS128L_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct cryptd_aead *),
.cra_alignmask = 0,
.cra_priority = 400,
.cra_name = "aegis128l",
.cra_driver_name = "aegis128l-aesni",
.cra_module = THIS_MODULE,
}
}
};
static const struct x86_cpu_id aesni_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_AES),
X86_FEATURE_MATCH(X86_FEATURE_XMM2),
{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static int __init crypto_aegis128l_aesni_module_init(void)
{
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
return crypto_register_aeads(crypto_aegis128l_aesni_alg,
ARRAY_SIZE(crypto_aegis128l_aesni_alg));
}
static void __exit crypto_aegis128l_aesni_module_exit(void)
{
crypto_unregister_aeads(crypto_aegis128l_aesni_alg,
ARRAY_SIZE(crypto_aegis128l_aesni_alg));
}
module_init(crypto_aegis128l_aesni_module_init);
module_exit(crypto_aegis128l_aesni_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
MODULE_DESCRIPTION("AEGIS-128L AEAD algorithm -- AESNI+SSE2 implementation");
MODULE_ALIAS_CRYPTO("aegis128l");
MODULE_ALIAS_CRYPTO("aegis128l-aesni");

Просмотреть файл

@ -0,0 +1,702 @@
/*
* AES-NI + SSE2 implementation of AEGIS-128L
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/linkage.h>
#include <asm/frame.h>
#define STATE0 %xmm0
#define STATE1 %xmm1
#define STATE2 %xmm2
#define STATE3 %xmm3
#define STATE4 %xmm4
#define STATE5 %xmm5
#define MSG %xmm6
#define T0 %xmm7
#define T1 %xmm8
#define T2 %xmm9
#define T3 %xmm10
#define STATEP %rdi
#define LEN %rsi
#define SRC %rdx
#define DST %rcx
.section .rodata.cst16.aegis256_const, "aM", @progbits, 32
.align 16
.Laegis256_const_0:
.byte 0x00, 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0d
.byte 0x15, 0x22, 0x37, 0x59, 0x90, 0xe9, 0x79, 0x62
.Laegis256_const_1:
.byte 0xdb, 0x3d, 0x18, 0x55, 0x6d, 0xc2, 0x2f, 0xf1
.byte 0x20, 0x11, 0x31, 0x42, 0x73, 0xb5, 0x28, 0xdd
.section .rodata.cst16.aegis256_counter, "aM", @progbits, 16
.align 16
.Laegis256_counter:
.byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
.byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f
.text
/*
* __load_partial: internal ABI
* input:
* LEN - bytes
* SRC - src
* output:
* MSG - message block
* changed:
* T0
* %r8
* %r9
*/
__load_partial:
xor %r9, %r9
pxor MSG, MSG
mov LEN, %r8
and $0x1, %r8
jz .Lld_partial_1
mov LEN, %r8
and $0x1E, %r8
add SRC, %r8
mov (%r8), %r9b
.Lld_partial_1:
mov LEN, %r8
and $0x2, %r8
jz .Lld_partial_2
mov LEN, %r8
and $0x1C, %r8
add SRC, %r8
shl $0x10, %r9
mov (%r8), %r9w
.Lld_partial_2:
mov LEN, %r8
and $0x4, %r8
jz .Lld_partial_4
mov LEN, %r8
and $0x18, %r8
add SRC, %r8
shl $32, %r9
mov (%r8), %r8d
xor %r8, %r9
.Lld_partial_4:
movq %r9, MSG
mov LEN, %r8
and $0x8, %r8
jz .Lld_partial_8
mov LEN, %r8
and $0x10, %r8
add SRC, %r8
pslldq $8, MSG
movq (%r8), T0
pxor T0, MSG
.Lld_partial_8:
ret
ENDPROC(__load_partial)
/*
* __store_partial: internal ABI
* input:
* LEN - bytes
* DST - dst
* output:
* T0 - message block
* changed:
* %r8
* %r9
* %r10
*/
__store_partial:
mov LEN, %r8
mov DST, %r9
movq T0, %r10
cmp $8, %r8
jl .Lst_partial_8
mov %r10, (%r9)
psrldq $8, T0
movq T0, %r10
sub $8, %r8
add $8, %r9
.Lst_partial_8:
cmp $4, %r8
jl .Lst_partial_4
mov %r10d, (%r9)
shr $32, %r10
sub $4, %r8
add $4, %r9
.Lst_partial_4:
cmp $2, %r8
jl .Lst_partial_2
mov %r10w, (%r9)
shr $0x10, %r10
sub $2, %r8
add $2, %r9
.Lst_partial_2:
cmp $1, %r8
jl .Lst_partial_1
mov %r10b, (%r9)
.Lst_partial_1:
ret
ENDPROC(__store_partial)
.macro update
movdqa STATE5, T0
aesenc STATE0, STATE5
aesenc STATE1, STATE0
aesenc STATE2, STATE1
aesenc STATE3, STATE2
aesenc STATE4, STATE3
aesenc T0, STATE4
.endm
.macro update0 m
update
pxor \m, STATE5
.endm
.macro update1 m
update
pxor \m, STATE4
.endm
.macro update2 m
update
pxor \m, STATE3
.endm
.macro update3 m
update
pxor \m, STATE2
.endm
.macro update4 m
update
pxor \m, STATE1
.endm
.macro update5 m
update
pxor \m, STATE0
.endm
.macro state_load
movdqu 0x00(STATEP), STATE0
movdqu 0x10(STATEP), STATE1
movdqu 0x20(STATEP), STATE2
movdqu 0x30(STATEP), STATE3
movdqu 0x40(STATEP), STATE4
movdqu 0x50(STATEP), STATE5
.endm
.macro state_store s0 s1 s2 s3 s4 s5
movdqu \s5, 0x00(STATEP)
movdqu \s0, 0x10(STATEP)
movdqu \s1, 0x20(STATEP)
movdqu \s2, 0x30(STATEP)
movdqu \s3, 0x40(STATEP)
movdqu \s4, 0x50(STATEP)
.endm
.macro state_store0
state_store STATE0 STATE1 STATE2 STATE3 STATE4 STATE5
.endm
.macro state_store1
state_store STATE5 STATE0 STATE1 STATE2 STATE3 STATE4
.endm
.macro state_store2
state_store STATE4 STATE5 STATE0 STATE1 STATE2 STATE3
.endm
.macro state_store3
state_store STATE3 STATE4 STATE5 STATE0 STATE1 STATE2
.endm
.macro state_store4
state_store STATE2 STATE3 STATE4 STATE5 STATE0 STATE1
.endm
.macro state_store5
state_store STATE1 STATE2 STATE3 STATE4 STATE5 STATE0
.endm
/*
* void crypto_aegis256_aesni_init(void *state, const void *key, const void *iv);
*/
ENTRY(crypto_aegis256_aesni_init)
FRAME_BEGIN
/* load key: */
movdqa 0x00(%rsi), MSG
movdqa 0x10(%rsi), T1
movdqa MSG, STATE4
movdqa T1, STATE5
/* load IV: */
movdqu 0x00(%rdx), T2
movdqu 0x10(%rdx), T3
pxor MSG, T2
pxor T1, T3
movdqa T2, STATE0
movdqa T3, STATE1
/* load the constants: */
movdqa .Laegis256_const_0, STATE3
movdqa .Laegis256_const_1, STATE2
pxor STATE3, STATE4
pxor STATE2, STATE5
/* update 10 times with IV and KEY: */
update0 MSG
update1 T1
update2 T2
update3 T3
update4 MSG
update5 T1
update0 T2
update1 T3
update2 MSG
update3 T1
update4 T2
update5 T3
update0 MSG
update1 T1
update2 T2
update3 T3
state_store3
FRAME_END
ret
ENDPROC(crypto_aegis256_aesni_init)
.macro ad_block a i
movdq\a (\i * 0x10)(SRC), MSG
update\i MSG
sub $0x10, LEN
cmp $0x10, LEN
jl .Lad_out_\i
.endm
/*
* void crypto_aegis256_aesni_ad(void *state, unsigned int length,
* const void *data);
*/
ENTRY(crypto_aegis256_aesni_ad)
FRAME_BEGIN
cmp $0x10, LEN
jb .Lad_out
state_load
mov SRC, %r8
and $0xf, %r8
jnz .Lad_u_loop
.align 8
.Lad_a_loop:
ad_block a 0
ad_block a 1
ad_block a 2
ad_block a 3
ad_block a 4
ad_block a 5
add $0x60, SRC
jmp .Lad_a_loop
.align 8
.Lad_u_loop:
ad_block u 0
ad_block u 1
ad_block u 2
ad_block u 3
ad_block u 4
ad_block u 5
add $0x60, SRC
jmp .Lad_u_loop
.Lad_out_0:
state_store0
FRAME_END
ret
.Lad_out_1:
state_store1
FRAME_END
ret
.Lad_out_2:
state_store2
FRAME_END
ret
.Lad_out_3:
state_store3
FRAME_END
ret
.Lad_out_4:
state_store4
FRAME_END
ret
.Lad_out_5:
state_store5
FRAME_END
ret
.Lad_out:
FRAME_END
ret
ENDPROC(crypto_aegis256_aesni_ad)
.macro crypt m s0 s1 s2 s3 s4 s5
pxor \s1, \m
pxor \s4, \m
pxor \s5, \m
movdqa \s2, T3
pand \s3, T3
pxor T3, \m
.endm
.macro crypt0 m
crypt \m STATE0 STATE1 STATE2 STATE3 STATE4 STATE5
.endm
.macro crypt1 m
crypt \m STATE5 STATE0 STATE1 STATE2 STATE3 STATE4
.endm
.macro crypt2 m
crypt \m STATE4 STATE5 STATE0 STATE1 STATE2 STATE3
.endm
.macro crypt3 m
crypt \m STATE3 STATE4 STATE5 STATE0 STATE1 STATE2
.endm
.macro crypt4 m
crypt \m STATE2 STATE3 STATE4 STATE5 STATE0 STATE1
.endm
.macro crypt5 m
crypt \m STATE1 STATE2 STATE3 STATE4 STATE5 STATE0
.endm
.macro encrypt_block a i
movdq\a (\i * 0x10)(SRC), MSG
movdqa MSG, T0
crypt\i T0
movdq\a T0, (\i * 0x10)(DST)
update\i MSG
sub $0x10, LEN
cmp $0x10, LEN
jl .Lenc_out_\i
.endm
.macro decrypt_block a i
movdq\a (\i * 0x10)(SRC), MSG
crypt\i MSG
movdq\a MSG, (\i * 0x10)(DST)
update\i MSG
sub $0x10, LEN
cmp $0x10, LEN
jl .Ldec_out_\i
.endm
/*
* void crypto_aegis256_aesni_enc(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis256_aesni_enc)
FRAME_BEGIN
cmp $0x10, LEN
jb .Lenc_out
state_load
mov SRC, %r8
or DST, %r8
and $0xf, %r8
jnz .Lenc_u_loop
.align 8
.Lenc_a_loop:
encrypt_block a 0
encrypt_block a 1
encrypt_block a 2
encrypt_block a 3
encrypt_block a 4
encrypt_block a 5
add $0x60, SRC
add $0x60, DST
jmp .Lenc_a_loop
.align 8
.Lenc_u_loop:
encrypt_block u 0
encrypt_block u 1
encrypt_block u 2
encrypt_block u 3
encrypt_block u 4
encrypt_block u 5
add $0x60, SRC
add $0x60, DST
jmp .Lenc_u_loop
.Lenc_out_0:
state_store0
FRAME_END
ret
.Lenc_out_1:
state_store1
FRAME_END
ret
.Lenc_out_2:
state_store2
FRAME_END
ret
.Lenc_out_3:
state_store3
FRAME_END
ret
.Lenc_out_4:
state_store4
FRAME_END
ret
.Lenc_out_5:
state_store5
FRAME_END
ret
.Lenc_out:
FRAME_END
ret
ENDPROC(crypto_aegis256_aesni_enc)
/*
* void crypto_aegis256_aesni_enc_tail(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis256_aesni_enc_tail)
FRAME_BEGIN
state_load
/* encrypt message: */
call __load_partial
movdqa MSG, T0
crypt0 T0
call __store_partial
update0 MSG
state_store0
FRAME_END
ENDPROC(crypto_aegis256_aesni_enc_tail)
/*
* void crypto_aegis256_aesni_dec(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis256_aesni_dec)
FRAME_BEGIN
cmp $0x10, LEN
jb .Ldec_out
state_load
mov SRC, %r8
or DST, %r8
and $0xF, %r8
jnz .Ldec_u_loop
.align 8
.Ldec_a_loop:
decrypt_block a 0
decrypt_block a 1
decrypt_block a 2
decrypt_block a 3
decrypt_block a 4
decrypt_block a 5
add $0x60, SRC
add $0x60, DST
jmp .Ldec_a_loop
.align 8
.Ldec_u_loop:
decrypt_block u 0
decrypt_block u 1
decrypt_block u 2
decrypt_block u 3
decrypt_block u 4
decrypt_block u 5
add $0x60, SRC
add $0x60, DST
jmp .Ldec_u_loop
.Ldec_out_0:
state_store0
FRAME_END
ret
.Ldec_out_1:
state_store1
FRAME_END
ret
.Ldec_out_2:
state_store2
FRAME_END
ret
.Ldec_out_3:
state_store3
FRAME_END
ret
.Ldec_out_4:
state_store4
FRAME_END
ret
.Ldec_out_5:
state_store5
FRAME_END
ret
.Ldec_out:
FRAME_END
ret
ENDPROC(crypto_aegis256_aesni_dec)
/*
* void crypto_aegis256_aesni_dec_tail(void *state, unsigned int length,
* const void *src, void *dst);
*/
ENTRY(crypto_aegis256_aesni_dec_tail)
FRAME_BEGIN
state_load
/* decrypt message: */
call __load_partial
crypt0 MSG
movdqa MSG, T0
call __store_partial
/* mask with byte count: */
movq LEN, T0
punpcklbw T0, T0
punpcklbw T0, T0
punpcklbw T0, T0
punpcklbw T0, T0
movdqa .Laegis256_counter, T1
pcmpgtb T1, T0
pand T0, MSG
update0 MSG
state_store0
FRAME_END
ret
ENDPROC(crypto_aegis256_aesni_dec_tail)
/*
* void crypto_aegis256_aesni_final(void *state, void *tag_xor,
* u64 assoclen, u64 cryptlen);
*/
ENTRY(crypto_aegis256_aesni_final)
FRAME_BEGIN
state_load
/* prepare length block: */
movq %rdx, MSG
movq %rcx, T0
pslldq $8, T0
pxor T0, MSG
psllq $3, MSG /* multiply by 8 (to get bit count) */
pxor STATE3, MSG
/* update state: */
update0 MSG
update1 MSG
update2 MSG
update3 MSG
update4 MSG
update5 MSG
update0 MSG
/* xor tag: */
movdqu (%rsi), MSG
pxor STATE0, MSG
pxor STATE1, MSG
pxor STATE2, MSG
pxor STATE3, MSG
pxor STATE4, MSG
pxor STATE5, MSG
movdqu MSG, (%rsi)
FRAME_END
ret
ENDPROC(crypto_aegis256_aesni_final)

Просмотреть файл

@ -0,0 +1,407 @@
/*
* The AEGIS-256 Authenticated-Encryption Algorithm
* Glue for AES-NI + SSE2 implementation
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <asm/fpu/api.h>
#include <asm/cpu_device_id.h>
#define AEGIS256_BLOCK_ALIGN 16
#define AEGIS256_BLOCK_SIZE 16
#define AEGIS256_NONCE_SIZE 32
#define AEGIS256_STATE_BLOCKS 6
#define AEGIS256_KEY_SIZE 32
#define AEGIS256_MIN_AUTH_SIZE 8
#define AEGIS256_MAX_AUTH_SIZE 16
asmlinkage void crypto_aegis256_aesni_init(void *state, void *key, void *iv);
asmlinkage void crypto_aegis256_aesni_ad(
void *state, unsigned int length, const void *data);
asmlinkage void crypto_aegis256_aesni_enc(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_dec(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_enc_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_dec_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_final(
void *state, void *tag_xor, unsigned int cryptlen,
unsigned int assoclen);
struct aegis_block {
u8 bytes[AEGIS256_BLOCK_SIZE] __aligned(AEGIS256_BLOCK_ALIGN);
};
struct aegis_state {
struct aegis_block blocks[AEGIS256_STATE_BLOCKS];
};
struct aegis_ctx {
struct aegis_block key;
};
struct aegis_crypt_ops {
int (*skcipher_walk_init)(struct skcipher_walk *walk,
struct aead_request *req, bool atomic);
void (*crypt_blocks)(void *state, unsigned int length, const void *src,
void *dst);
void (*crypt_tail)(void *state, unsigned int length, const void *src,
void *dst);
};
static void crypto_aegis256_aesni_process_ad(
struct aegis_state *state, struct scatterlist *sg_src,
unsigned int assoclen)
{
struct scatter_walk walk;
struct aegis_block buf;
unsigned int pos = 0;
scatterwalk_start(&walk, sg_src);
while (assoclen != 0) {
unsigned int size = scatterwalk_clamp(&walk, assoclen);
unsigned int left = size;
void *mapped = scatterwalk_map(&walk);
const u8 *src = (const u8 *)mapped;
if (pos + size >= AEGIS256_BLOCK_SIZE) {
if (pos > 0) {
unsigned int fill = AEGIS256_BLOCK_SIZE - pos;
memcpy(buf.bytes + pos, src, fill);
crypto_aegis256_aesni_ad(state,
AEGIS256_BLOCK_SIZE,
buf.bytes);
pos = 0;
left -= fill;
src += fill;
}
crypto_aegis256_aesni_ad(state, left, src);
src += left & ~(AEGIS256_BLOCK_SIZE - 1);
left &= AEGIS256_BLOCK_SIZE - 1;
}
memcpy(buf.bytes + pos, src, left);
pos += left;
assoclen -= size;
scatterwalk_unmap(mapped);
scatterwalk_advance(&walk, size);
scatterwalk_done(&walk, 0, assoclen);
}
if (pos > 0) {
memset(buf.bytes + pos, 0, AEGIS256_BLOCK_SIZE - pos);
crypto_aegis256_aesni_ad(state, AEGIS256_BLOCK_SIZE, buf.bytes);
}
}
static void crypto_aegis256_aesni_process_crypt(
struct aegis_state *state, struct aead_request *req,
const struct aegis_crypt_ops *ops)
{
struct skcipher_walk walk;
u8 *src, *dst;
unsigned int chunksize, base;
ops->skcipher_walk_init(&walk, req, false);
while (walk.nbytes) {
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
chunksize = walk.nbytes;
ops->crypt_blocks(state, chunksize, src, dst);
base = chunksize & ~(AEGIS256_BLOCK_SIZE - 1);
src += base;
dst += base;
chunksize &= AEGIS256_BLOCK_SIZE - 1;
if (chunksize > 0)
ops->crypt_tail(state, chunksize, src, dst);
skcipher_walk_done(&walk, 0);
}
}
static struct aegis_ctx *crypto_aegis256_aesni_ctx(struct crypto_aead *aead)
{
u8 *ctx = crypto_aead_ctx(aead);
ctx = PTR_ALIGN(ctx, __alignof__(struct aegis_ctx));
return (void *)ctx;
}
static int crypto_aegis256_aesni_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct aegis_ctx *ctx = crypto_aegis256_aesni_ctx(aead);
if (keylen != AEGIS256_KEY_SIZE) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key.bytes, key, AEGIS256_KEY_SIZE);
return 0;
}
static int crypto_aegis256_aesni_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
if (authsize > AEGIS256_MAX_AUTH_SIZE)
return -EINVAL;
if (authsize < AEGIS256_MIN_AUTH_SIZE)
return -EINVAL;
return 0;
}
static void crypto_aegis256_aesni_crypt(struct aead_request *req,
struct aegis_block *tag_xor,
unsigned int cryptlen,
const struct aegis_crypt_ops *ops)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_ctx *ctx = crypto_aegis256_aesni_ctx(tfm);
struct aegis_state state;
kernel_fpu_begin();
crypto_aegis256_aesni_init(&state, ctx->key.bytes, req->iv);
crypto_aegis256_aesni_process_ad(&state, req->src, req->assoclen);
crypto_aegis256_aesni_process_crypt(&state, req, ops);
crypto_aegis256_aesni_final(&state, tag_xor, req->assoclen, cryptlen);
kernel_fpu_end();
}
static int crypto_aegis256_aesni_encrypt(struct aead_request *req)
{
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_encrypt,
.crypt_blocks = crypto_aegis256_aesni_enc,
.crypt_tail = crypto_aegis256_aesni_enc_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag = {};
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen;
crypto_aegis256_aesni_crypt(req, &tag, cryptlen, &OPS);
scatterwalk_map_and_copy(tag.bytes, req->dst,
req->assoclen + cryptlen, authsize, 1);
return 0;
}
static int crypto_aegis256_aesni_decrypt(struct aead_request *req)
{
static const struct aegis_block zeros = {};
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_decrypt,
.crypt_blocks = crypto_aegis256_aesni_dec,
.crypt_tail = crypto_aegis256_aesni_dec_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag;
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen - authsize;
scatterwalk_map_and_copy(tag.bytes, req->src,
req->assoclen + cryptlen, authsize, 0);
crypto_aegis256_aesni_crypt(req, &tag, cryptlen, &OPS);
return crypto_memneq(tag.bytes, zeros.bytes, authsize) ? -EBADMSG : 0;
}
static int crypto_aegis256_aesni_init_tfm(struct crypto_aead *aead)
{
return 0;
}
static void crypto_aegis256_aesni_exit_tfm(struct crypto_aead *aead)
{
}
static int cryptd_aegis256_aesni_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setkey(&cryptd_tfm->base, key, keylen);
}
static int cryptd_aegis256_aesni_setauthsize(struct crypto_aead *aead,
unsigned int authsize)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}
static int cryptd_aegis256_aesni_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_encrypt(req);
}
static int cryptd_aegis256_aesni_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_decrypt(req);
}
static int cryptd_aegis256_aesni_init_tfm(struct crypto_aead *aead)
{
struct cryptd_aead *cryptd_tfm;
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_tfm = cryptd_alloc_aead("__aegis256-aesni", CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
*ctx = cryptd_tfm;
crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
return 0;
}
static void cryptd_aegis256_aesni_exit_tfm(struct crypto_aead *aead)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_free_aead(*ctx);
}
static struct aead_alg crypto_aegis256_aesni_alg[] = {
{
.setkey = crypto_aegis256_aesni_setkey,
.setauthsize = crypto_aegis256_aesni_setauthsize,
.encrypt = crypto_aegis256_aesni_encrypt,
.decrypt = crypto_aegis256_aesni_decrypt,
.init = crypto_aegis256_aesni_init_tfm,
.exit = crypto_aegis256_aesni_exit_tfm,
.ivsize = AEGIS256_NONCE_SIZE,
.maxauthsize = AEGIS256_MAX_AUTH_SIZE,
.chunksize = AEGIS256_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aegis_ctx) +
__alignof__(struct aegis_ctx),
.cra_alignmask = 0,
.cra_name = "__aegis256",
.cra_driver_name = "__aegis256-aesni",
.cra_module = THIS_MODULE,
}
}, {
.setkey = cryptd_aegis256_aesni_setkey,
.setauthsize = cryptd_aegis256_aesni_setauthsize,
.encrypt = cryptd_aegis256_aesni_encrypt,
.decrypt = cryptd_aegis256_aesni_decrypt,
.init = cryptd_aegis256_aesni_init_tfm,
.exit = cryptd_aegis256_aesni_exit_tfm,
.ivsize = AEGIS256_NONCE_SIZE,
.maxauthsize = AEGIS256_MAX_AUTH_SIZE,
.chunksize = AEGIS256_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct cryptd_aead *),
.cra_alignmask = 0,
.cra_priority = 400,
.cra_name = "aegis256",
.cra_driver_name = "aegis256-aesni",
.cra_module = THIS_MODULE,
}
}
};
static const struct x86_cpu_id aesni_cpu_id[] = {
X86_FEATURE_MATCH(X86_FEATURE_AES),
X86_FEATURE_MATCH(X86_FEATURE_XMM2),
{}
};
MODULE_DEVICE_TABLE(x86cpu, aesni_cpu_id);
static int __init crypto_aegis256_aesni_module_init(void)
{
if (!x86_match_cpu(aesni_cpu_id))
return -ENODEV;
return crypto_register_aeads(crypto_aegis256_aesni_alg,
ARRAY_SIZE(crypto_aegis256_aesni_alg));
}
static void __exit crypto_aegis256_aesni_module_exit(void)
{
crypto_unregister_aeads(crypto_aegis256_aesni_alg,
ARRAY_SIZE(crypto_aegis256_aesni_alg));
}
module_init(crypto_aegis256_aesni_module_init);
module_exit(crypto_aegis256_aesni_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
MODULE_DESCRIPTION("AEGIS-256 AEAD algorithm -- AESNI+SSE2 implementation");
MODULE_ALIAS_CRYPTO("aegis256");
MODULE_ALIAS_CRYPTO("aegis256-aesni");

Просмотреть файл

@ -310,6 +310,30 @@ config CRYPTO_AEGIS256
help
Support for the AEGIS-256 dedicated AEAD algorithm.
config CRYPTO_AEGIS128_AESNI_SSE2
tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_AEAD
select CRYPTO_CRYPTD
help
AESNI+SSE2 implementation of the AEGSI-128 dedicated AEAD algorithm.
config CRYPTO_AEGIS128L_AESNI_SSE2
tristate "AEGIS-128L AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_AEAD
select CRYPTO_CRYPTD
help
AESNI+SSE2 implementation of the AEGSI-128L dedicated AEAD algorithm.
config CRYPTO_AEGIS256_AESNI_SSE2
tristate "AEGIS-256 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
depends on X86 && 64BIT
select CRYPTO_AEAD
select CRYPTO_CRYPTD
help
AESNI+SSE2 implementation of the AEGSI-256 dedicated AEAD algorithm.
config CRYPTO_SEQIV
tristate "Sequence Number IV Generator"
select CRYPTO_AEAD