Documentation: Add SLIMbus summary
SLIMbus (Serial Low Power Interchip Media Bus) is a specification developed by MIPI (Mobile Industry Processor Interface) alliance. SLIMbus is a 2-wire implementation, which is used to communicate with peripheral components like audio-codec. The summary of SLIMbus and API is documented in the 'summary' file. Signed-off-by: Sagar Dharia <sdharia@codeaurora.org> Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Reviwed-by: Mark Brown <broonie@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Родитель
73945a8579
Коммит
202318d376
|
@ -47,6 +47,7 @@ available subsections can be seen below.
|
|||
gpio
|
||||
misc_devices
|
||||
dmaengine/index
|
||||
slimbus
|
||||
|
||||
.. only:: subproject and html
|
||||
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
============================
|
||||
Linux kernel SLIMbus support
|
||||
============================
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
What is SLIMbus?
|
||||
----------------
|
||||
SLIMbus (Serial Low Power Interchip Media Bus) is a specification developed by
|
||||
MIPI (Mobile Industry Processor Interface) alliance. The bus uses master/slave
|
||||
configuration, and is a 2-wire multi-drop implementation (clock, and data).
|
||||
|
||||
Currently, SLIMbus is used to interface between application processors of SoCs
|
||||
(System-on-Chip) and peripheral components (typically codec). SLIMbus uses
|
||||
Time-Division-Multiplexing to accommodate multiple data channels, and
|
||||
a control channel.
|
||||
|
||||
The control channel is used for various control functions such as bus
|
||||
management, configuration and status updates. These messages can be unicast (e.g.
|
||||
reading/writing device specific values), or multicast (e.g. data channel
|
||||
reconfiguration sequence is a broadcast message announced to all devices)
|
||||
|
||||
A data channel is used for data-transfer between 2 SLIMbus devices. Data
|
||||
channel uses dedicated ports on the device.
|
||||
|
||||
Hardware description:
|
||||
---------------------
|
||||
SLIMbus specification has different types of device classifications based on
|
||||
their capabilities.
|
||||
A manager device is responsible for enumeration, configuration, and dynamic
|
||||
channel allocation. Every bus has 1 active manager.
|
||||
|
||||
A generic device is a device providing application functionality (e.g. codec).
|
||||
|
||||
Framer device is responsible for clocking the bus, and transmitting frame-sync
|
||||
and framing information on the bus.
|
||||
|
||||
Each SLIMbus component has an interface device for monitoring physical layer.
|
||||
|
||||
Typically each SoC contains SLIMbus component having 1 manager, 1 framer device,
|
||||
1 generic device (for data channel support), and 1 interface device.
|
||||
External peripheral SLIMbus component usually has 1 generic device (for
|
||||
functionality/data channel support), and an associated interface device.
|
||||
The generic device's registers are mapped as 'value elements' so that they can
|
||||
be written/read using SLIMbus control channel exchanging control/status type of
|
||||
information.
|
||||
In case there are multiple framer devices on the same bus, manager device is
|
||||
responsible to select the active-framer for clocking the bus.
|
||||
|
||||
Per specification, SLIMbus uses "clock gears" to do power management based on
|
||||
current frequency and bandwidth requirements. There are 10 clock gears and each
|
||||
gear changes the SLIMbus frequency to be twice its previous gear.
|
||||
|
||||
Each device has a 6-byte enumeration-address and the manager assigns every
|
||||
device with a 1-byte logical address after the devices report presence on the
|
||||
bus.
|
||||
|
||||
Software description:
|
||||
---------------------
|
||||
There are 2 types of SLIMbus drivers:
|
||||
|
||||
slim_controller represents a 'controller' for SLIMbus. This driver should
|
||||
implement duties needed by the SoC (manager device, associated
|
||||
interface device for monitoring the layers and reporting errors, default
|
||||
framer device).
|
||||
|
||||
slim_device represents the 'generic device/component' for SLIMbus, and a
|
||||
slim_driver should implement driver for that slim_device.
|
||||
|
||||
Device notifications to the driver:
|
||||
-----------------------------------
|
||||
Since SLIMbus devices have mechanisms for reporting their presence, the
|
||||
framework allows drivers to bind when corresponding devices report their
|
||||
presence on the bus.
|
||||
However, it is possible that the driver needs to be probed
|
||||
first so that it can enable corresponding SLIMbus device (e.g. power it up and/or
|
||||
take it out of reset). To support that behavior, the framework allows drivers
|
||||
to probe first as well (e.g. using standard DeviceTree compatibility field).
|
||||
This creates the necessity for the driver to know when the device is functional
|
||||
(i.e. reported present). device_up callback is used for that reason when the
|
||||
device reports present and is assigned a logical address by the controller.
|
||||
|
||||
Similarly, SLIMbus devices 'report absent' when they go down. A 'device_down'
|
||||
callback notifies the driver when the device reports absent and its logical
|
||||
address assignment is invalidated by the controller.
|
||||
|
||||
Another notification "boot_device" is used to notify the slim_driver when
|
||||
controller resets the bus. This notification allows the driver to take necessary
|
||||
steps to boot the device so that it's functional after the bus has been reset.
|
||||
|
||||
Driver and Controller APIs:
|
||||
--------------------------
|
||||
.. kernel-doc:: include/linux/slimbus.h
|
||||
:internal:
|
||||
|
||||
.. kernel-doc:: drivers/slimbus/slimbus.h
|
||||
:internal:
|
||||
|
||||
.. kernel-doc:: drivers/slimbus/core.c
|
||||
:export:
|
||||
|
||||
Clock-pause:
|
||||
------------
|
||||
SLIMbus mandates that a reconfiguration sequence (known as clock-pause) be
|
||||
broadcast to all active devices on the bus before the bus can enter low-power
|
||||
mode. Controller uses this sequence when it decides to enter low-power mode so
|
||||
that corresponding clocks and/or power-rails can be turned off to save power.
|
||||
Clock-pause is exited by waking up framer device (if controller driver initiates
|
||||
exiting low power mode), or by toggling the data line (if a slave device wants
|
||||
to initiate it).
|
||||
|
||||
Clock-pause APIs:
|
||||
~~~~~~~~~~~~~~~~~
|
||||
.. kernel-doc:: drivers/slimbus/sched.c
|
||||
:export:
|
||||
|
||||
Messaging:
|
||||
----------
|
||||
The framework supports regmap and read/write apis to exchange control-information
|
||||
with a SLIMbus device. APIs can be synchronous or asynchronous.
|
||||
The header file <linux/slimbus.h> has more documentation about messaging APIs.
|
||||
|
||||
Messaging APIs:
|
||||
~~~~~~~~~~~~~~~
|
||||
.. kernel-doc:: drivers/slimbus/messaging.c
|
||||
:export:
|
Загрузка…
Ссылка в новой задаче