fec: Codingstyle cleanups
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
8d4dd5cff8
Коммит
22f6b860da
|
@ -86,8 +86,7 @@ static unsigned char fec_mac_default[] = {
|
|||
#endif
|
||||
#endif /* CONFIG_M5272 */
|
||||
|
||||
/* Forward declarations of some structures to support different PHYs
|
||||
*/
|
||||
/* Forward declarations of some structures to support different PHYs */
|
||||
|
||||
typedef struct {
|
||||
uint mii_data;
|
||||
|
@ -123,8 +122,7 @@ typedef struct {
|
|||
#error "FEC: descriptor ring size constants too large"
|
||||
#endif
|
||||
|
||||
/* Interrupt events/masks.
|
||||
*/
|
||||
/* Interrupt events/masks. */
|
||||
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
|
||||
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
|
||||
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
|
||||
|
@ -177,15 +175,14 @@ struct fec_enet_private {
|
|||
ushort skb_cur;
|
||||
ushort skb_dirty;
|
||||
|
||||
/* CPM dual port RAM relative addresses.
|
||||
*/
|
||||
/* CPM dual port RAM relative addresses */
|
||||
dma_addr_t bd_dma;
|
||||
/* Address of Rx and Tx buffers. */
|
||||
/* Address of Rx and Tx buffers */
|
||||
struct bufdesc *rx_bd_base;
|
||||
struct bufdesc *tx_bd_base;
|
||||
/* The next free ring entry */
|
||||
struct bufdesc *cur_rx, *cur_tx;
|
||||
/* The ring entries to be free()ed. */
|
||||
/* The ring entries to be free()ed */
|
||||
struct bufdesc *dirty_tx;
|
||||
|
||||
uint tx_full;
|
||||
|
@ -245,19 +242,16 @@ static mii_list_t *mii_tail;
|
|||
static int mii_queue(struct net_device *dev, int request,
|
||||
void (*func)(uint, struct net_device *));
|
||||
|
||||
/* Make MII read/write commands for the FEC.
|
||||
*/
|
||||
/* Make MII read/write commands for the FEC */
|
||||
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
|
||||
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
|
||||
(VAL & 0xffff))
|
||||
#define mk_mii_end 0
|
||||
|
||||
/* Transmitter timeout.
|
||||
*/
|
||||
#define TX_TIMEOUT (2*HZ)
|
||||
/* Transmitter timeout */
|
||||
#define TX_TIMEOUT (2 * HZ)
|
||||
|
||||
/* Register definitions for the PHY.
|
||||
*/
|
||||
/* Register definitions for the PHY */
|
||||
|
||||
#define MII_REG_CR 0 /* Control Register */
|
||||
#define MII_REG_SR 1 /* Status Register */
|
||||
|
@ -307,7 +301,7 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|||
bdp = fep->cur_tx;
|
||||
|
||||
status = bdp->cbd_sc;
|
||||
#ifndef final_version
|
||||
|
||||
if (status & BD_ENET_TX_READY) {
|
||||
/* Ooops. All transmit buffers are full. Bail out.
|
||||
* This should not happen, since dev->tbusy should be set.
|
||||
|
@ -316,21 +310,18 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|||
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
||||
return 1;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Clear all of the status flags.
|
||||
*/
|
||||
/* Clear all of the status flags */
|
||||
status &= ~BD_ENET_TX_STATS;
|
||||
|
||||
/* Set buffer length and buffer pointer.
|
||||
*/
|
||||
/* Set buffer length and buffer pointer */
|
||||
bdp->cbd_bufaddr = __pa(skb->data);
|
||||
bdp->cbd_datlen = skb->len;
|
||||
|
||||
/*
|
||||
* On some FEC implementations data must be aligned on
|
||||
* 4-byte boundaries. Use bounce buffers to copy data
|
||||
* and get it aligned. Ugh.
|
||||
* On some FEC implementations data must be aligned on
|
||||
* 4-byte boundaries. Use bounce buffers to copy data
|
||||
* and get it aligned. Ugh.
|
||||
*/
|
||||
if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
|
||||
unsigned int index;
|
||||
|
@ -339,8 +330,7 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|||
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
|
||||
}
|
||||
|
||||
/* Save skb pointer.
|
||||
*/
|
||||
/* Save skb pointer */
|
||||
fep->tx_skbuff[fep->skb_cur] = skb;
|
||||
|
||||
dev->stats.tx_bytes += skb->len;
|
||||
|
@ -355,7 +345,6 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|||
/* Send it on its way. Tell FEC it's ready, interrupt when done,
|
||||
* it's the last BD of the frame, and to put the CRC on the end.
|
||||
*/
|
||||
|
||||
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
|
||||
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
||||
bdp->cbd_sc = status;
|
||||
|
@ -365,13 +354,11 @@ fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|||
/* Trigger transmission start */
|
||||
writel(0, fep->hwp + FEC_X_DES_ACTIVE);
|
||||
|
||||
/* If this was the last BD in the ring, start at the beginning again.
|
||||
*/
|
||||
if (status & BD_ENET_TX_WRAP) {
|
||||
/* If this was the last BD in the ring, start at the beginning again. */
|
||||
if (status & BD_ENET_TX_WRAP)
|
||||
bdp = fep->tx_bd_base;
|
||||
} else {
|
||||
else
|
||||
bdp++;
|
||||
}
|
||||
|
||||
if (bdp == fep->dirty_tx) {
|
||||
fep->tx_full = 1;
|
||||
|
@ -429,9 +416,6 @@ fec_timeout(struct net_device *dev)
|
|||
netif_wake_queue(dev);
|
||||
}
|
||||
|
||||
/* The interrupt handler.
|
||||
* This is called from the MPC core interrupt.
|
||||
*/
|
||||
static irqreturn_t
|
||||
fec_enet_interrupt(int irq, void * dev_id)
|
||||
{
|
||||
|
@ -440,12 +424,10 @@ fec_enet_interrupt(int irq, void * dev_id)
|
|||
uint int_events;
|
||||
irqreturn_t ret = IRQ_NONE;
|
||||
|
||||
/* Get the interrupt events that caused us to be here. */
|
||||
do {
|
||||
int_events = readl(fep->hwp + FEC_IEVENT);
|
||||
writel(int_events, fep->hwp + FEC_IEVENT);
|
||||
|
||||
/* Handle receive event in its own function. */
|
||||
if (int_events & FEC_ENET_RXF) {
|
||||
ret = IRQ_HANDLED;
|
||||
fec_enet_rx(dev);
|
||||
|
@ -506,31 +488,27 @@ fec_enet_tx(struct net_device *dev)
|
|||
dev->stats.tx_packets++;
|
||||
}
|
||||
|
||||
#ifndef final_version
|
||||
if (status & BD_ENET_TX_READY)
|
||||
printk("HEY! Enet xmit interrupt and TX_READY.\n");
|
||||
#endif
|
||||
|
||||
/* Deferred means some collisions occurred during transmit,
|
||||
* but we eventually sent the packet OK.
|
||||
*/
|
||||
if (status & BD_ENET_TX_DEF)
|
||||
dev->stats.collisions++;
|
||||
|
||||
/* Free the sk buffer associated with this last transmit.
|
||||
*/
|
||||
/* Free the sk buffer associated with this last transmit */
|
||||
dev_kfree_skb_any(skb);
|
||||
fep->tx_skbuff[fep->skb_dirty] = NULL;
|
||||
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
||||
|
||||
/* Update pointer to next buffer descriptor to be transmitted.
|
||||
*/
|
||||
/* Update pointer to next buffer descriptor to be transmitted */
|
||||
if (status & BD_ENET_TX_WRAP)
|
||||
bdp = fep->tx_bd_base;
|
||||
else
|
||||
bdp++;
|
||||
|
||||
/* Since we have freed up a buffer, the ring is no longer
|
||||
* full.
|
||||
/* Since we have freed up a buffer, the ring is no longer full
|
||||
*/
|
||||
if (fep->tx_full) {
|
||||
fep->tx_full = 0;
|
||||
|
@ -569,114 +547,93 @@ fec_enet_rx(struct net_device *dev)
|
|||
*/
|
||||
bdp = fep->cur_rx;
|
||||
|
||||
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
|
||||
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
|
||||
|
||||
#ifndef final_version
|
||||
/* Since we have allocated space to hold a complete frame,
|
||||
* the last indicator should be set.
|
||||
*/
|
||||
if ((status & BD_ENET_RX_LAST) == 0)
|
||||
printk("FEC ENET: rcv is not +last\n");
|
||||
#endif
|
||||
/* Since we have allocated space to hold a complete frame,
|
||||
* the last indicator should be set.
|
||||
*/
|
||||
if ((status & BD_ENET_RX_LAST) == 0)
|
||||
printk("FEC ENET: rcv is not +last\n");
|
||||
|
||||
if (!fep->opened)
|
||||
goto rx_processing_done;
|
||||
if (!fep->opened)
|
||||
goto rx_processing_done;
|
||||
|
||||
/* Check for errors. */
|
||||
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
||||
/* Check for errors. */
|
||||
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
||||
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
|
||||
dev->stats.rx_errors++;
|
||||
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
|
||||
/* Frame too long or too short. */
|
||||
dev->stats.rx_length_errors++;
|
||||
dev->stats.rx_errors++;
|
||||
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
|
||||
/* Frame too long or too short. */
|
||||
dev->stats.rx_length_errors++;
|
||||
}
|
||||
if (status & BD_ENET_RX_NO) /* Frame alignment */
|
||||
dev->stats.rx_frame_errors++;
|
||||
if (status & BD_ENET_RX_CR) /* CRC Error */
|
||||
dev->stats.rx_crc_errors++;
|
||||
if (status & BD_ENET_RX_OV) /* FIFO overrun */
|
||||
dev->stats.rx_fifo_errors++;
|
||||
}
|
||||
if (status & BD_ENET_RX_NO) /* Frame alignment */
|
||||
|
||||
/* Report late collisions as a frame error.
|
||||
* On this error, the BD is closed, but we don't know what we
|
||||
* have in the buffer. So, just drop this frame on the floor.
|
||||
*/
|
||||
if (status & BD_ENET_RX_CL) {
|
||||
dev->stats.rx_errors++;
|
||||
dev->stats.rx_frame_errors++;
|
||||
if (status & BD_ENET_RX_CR) /* CRC Error */
|
||||
dev->stats.rx_crc_errors++;
|
||||
if (status & BD_ENET_RX_OV) /* FIFO overrun */
|
||||
dev->stats.rx_fifo_errors++;
|
||||
}
|
||||
goto rx_processing_done;
|
||||
}
|
||||
|
||||
/* Report late collisions as a frame error.
|
||||
* On this error, the BD is closed, but we don't know what we
|
||||
* have in the buffer. So, just drop this frame on the floor.
|
||||
*/
|
||||
if (status & BD_ENET_RX_CL) {
|
||||
dev->stats.rx_errors++;
|
||||
dev->stats.rx_frame_errors++;
|
||||
goto rx_processing_done;
|
||||
}
|
||||
/* Process the incoming frame. */
|
||||
dev->stats.rx_packets++;
|
||||
pkt_len = bdp->cbd_datlen;
|
||||
dev->stats.rx_bytes += pkt_len;
|
||||
data = (__u8*)__va(bdp->cbd_bufaddr);
|
||||
|
||||
/* Process the incoming frame.
|
||||
*/
|
||||
dev->stats.rx_packets++;
|
||||
pkt_len = bdp->cbd_datlen;
|
||||
dev->stats.rx_bytes += pkt_len;
|
||||
data = (__u8*)__va(bdp->cbd_bufaddr);
|
||||
|
||||
dma_sync_single(NULL, (unsigned long)__pa(data),
|
||||
dma_sync_single(NULL, (unsigned long)__pa(data),
|
||||
pkt_len - 4, DMA_FROM_DEVICE);
|
||||
|
||||
/* This does 16 byte alignment, exactly what we need.
|
||||
* The packet length includes FCS, but we don't want to
|
||||
* include that when passing upstream as it messes up
|
||||
* bridging applications.
|
||||
*/
|
||||
skb = dev_alloc_skb(pkt_len-4);
|
||||
/* This does 16 byte alignment, exactly what we need.
|
||||
* The packet length includes FCS, but we don't want to
|
||||
* include that when passing upstream as it messes up
|
||||
* bridging applications.
|
||||
*/
|
||||
skb = dev_alloc_skb(pkt_len - 4);
|
||||
|
||||
if (skb == NULL) {
|
||||
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
|
||||
dev->stats.rx_dropped++;
|
||||
} else {
|
||||
skb_put(skb,pkt_len-4); /* Make room */
|
||||
skb_copy_to_linear_data(skb, data, pkt_len-4);
|
||||
skb->protocol=eth_type_trans(skb,dev);
|
||||
netif_rx(skb);
|
||||
if (skb == NULL) {
|
||||
printk("%s: Memory squeeze, dropping packet.\n",
|
||||
dev->name);
|
||||
dev->stats.rx_dropped++;
|
||||
} else {
|
||||
skb_put(skb, pkt_len - 4); /* Make room */
|
||||
skb_copy_to_linear_data(skb, data, pkt_len - 4);
|
||||
skb->protocol = eth_type_trans(skb, dev);
|
||||
netif_rx(skb);
|
||||
}
|
||||
rx_processing_done:
|
||||
/* Clear the status flags for this buffer */
|
||||
status &= ~BD_ENET_RX_STATS;
|
||||
|
||||
/* Mark the buffer empty */
|
||||
status |= BD_ENET_RX_EMPTY;
|
||||
bdp->cbd_sc = status;
|
||||
|
||||
/* Update BD pointer to next entry */
|
||||
if (status & BD_ENET_RX_WRAP)
|
||||
bdp = fep->rx_bd_base;
|
||||
else
|
||||
bdp++;
|
||||
/* Doing this here will keep the FEC running while we process
|
||||
* incoming frames. On a heavily loaded network, we should be
|
||||
* able to keep up at the expense of system resources.
|
||||
*/
|
||||
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
||||
}
|
||||
rx_processing_done:
|
||||
|
||||
/* Clear the status flags for this buffer.
|
||||
*/
|
||||
status &= ~BD_ENET_RX_STATS;
|
||||
|
||||
/* Mark the buffer empty.
|
||||
*/
|
||||
status |= BD_ENET_RX_EMPTY;
|
||||
bdp->cbd_sc = status;
|
||||
|
||||
/* Update BD pointer to next entry.
|
||||
*/
|
||||
if (status & BD_ENET_RX_WRAP)
|
||||
bdp = fep->rx_bd_base;
|
||||
else
|
||||
bdp++;
|
||||
|
||||
#if 1
|
||||
/* Doing this here will keep the FEC running while we process
|
||||
* incoming frames. On a heavily loaded network, we should be
|
||||
* able to keep up at the expense of system resources.
|
||||
*/
|
||||
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
||||
#endif
|
||||
} /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
|
||||
fep->cur_rx = bdp;
|
||||
|
||||
#if 0
|
||||
/* Doing this here will allow us to process all frames in the
|
||||
* ring before the FEC is allowed to put more there. On a heavily
|
||||
* loaded network, some frames may be lost. Unfortunately, this
|
||||
* increases the interrupt overhead since we can potentially work
|
||||
* our way back to the interrupt return only to come right back
|
||||
* here.
|
||||
*/
|
||||
fecp->fec_r_des_active = 0;
|
||||
#endif
|
||||
|
||||
spin_unlock_irq(&fep->hw_lock);
|
||||
}
|
||||
|
||||
|
||||
/* called from interrupt context */
|
||||
static void
|
||||
fec_enet_mii(struct net_device *dev)
|
||||
|
@ -714,8 +671,7 @@ mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_devi
|
|||
mii_list_t *mip;
|
||||
int retval;
|
||||
|
||||
/* Add PHY address to register command.
|
||||
*/
|
||||
/* Add PHY address to register command */
|
||||
fep = netdev_priv(dev);
|
||||
spin_lock_irqsave(&fep->mii_lock, flags);
|
||||
|
||||
|
@ -1358,11 +1314,6 @@ static void mii_relink(struct work_struct *work)
|
|||
fec_restart(dev, duplex);
|
||||
} else
|
||||
fec_stop(dev);
|
||||
|
||||
#if 0
|
||||
enable_irq(fep->mii_irq);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
|
||||
|
@ -1371,12 +1322,12 @@ static void mii_queue_relink(uint mii_reg, struct net_device *dev)
|
|||
struct fec_enet_private *fep = netdev_priv(dev);
|
||||
|
||||
/*
|
||||
** We cannot queue phy_task twice in the workqueue. It
|
||||
** would cause an endless loop in the workqueue.
|
||||
** Fortunately, if the last mii_relink entry has not yet been
|
||||
** executed now, it will do the job for the current interrupt,
|
||||
** which is just what we want.
|
||||
*/
|
||||
* We cannot queue phy_task twice in the workqueue. It
|
||||
* would cause an endless loop in the workqueue.
|
||||
* Fortunately, if the last mii_relink entry has not yet been
|
||||
* executed now, it will do the job for the current interrupt,
|
||||
* which is just what we want.
|
||||
*/
|
||||
if (fep->mii_phy_task_queued)
|
||||
return;
|
||||
|
||||
|
@ -1407,8 +1358,7 @@ phy_cmd_t const phy_cmd_config[] = {
|
|||
{ mk_mii_end, }
|
||||
};
|
||||
|
||||
/* Read remainder of PHY ID.
|
||||
*/
|
||||
/* Read remainder of PHY ID. */
|
||||
static void
|
||||
mii_discover_phy3(uint mii_reg, struct net_device *dev)
|
||||
{
|
||||
|
@ -1447,8 +1397,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev)
|
|||
if (fep->phy_addr < 32) {
|
||||
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
|
||||
|
||||
/* Got first part of ID, now get remainder.
|
||||
*/
|
||||
/* Got first part of ID, now get remainder */
|
||||
fep->phy_id = phytype << 16;
|
||||
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
|
||||
mii_discover_phy3);
|
||||
|
@ -1468,8 +1417,7 @@ mii_discover_phy(uint mii_reg, struct net_device *dev)
|
|||
}
|
||||
}
|
||||
|
||||
/* This interrupt occurs when the PHY detects a link change.
|
||||
*/
|
||||
/* This interrupt occurs when the PHY detects a link change */
|
||||
#ifdef HAVE_mii_link_interrupt
|
||||
static irqreturn_t
|
||||
mii_link_interrupt(int irq, void * dev_id)
|
||||
|
@ -1479,10 +1427,6 @@ mii_link_interrupt(int irq, void * dev_id)
|
|||
|
||||
fec_phy_ack_intr();
|
||||
|
||||
#if 0
|
||||
disable_irq(fep->mii_irq); /* disable now, enable later */
|
||||
#endif
|
||||
|
||||
mii_do_cmd(dev, fep->phy->ack_int);
|
||||
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
|
||||
|
||||
|
@ -1533,7 +1477,7 @@ fec_enet_open(struct net_device *dev)
|
|||
|
||||
netif_start_queue(dev);
|
||||
fep->opened = 1;
|
||||
return 0; /* Success */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
|
@ -1541,8 +1485,7 @@ fec_enet_close(struct net_device *dev)
|
|||
{
|
||||
struct fec_enet_private *fep = netdev_priv(dev);
|
||||
|
||||
/* Don't know what to do yet.
|
||||
*/
|
||||
/* Don't know what to do yet. */
|
||||
fep->opened = 0;
|
||||
netif_stop_queue(dev);
|
||||
fec_stop(dev);
|
||||
|
@ -1570,7 +1513,7 @@ static void set_multicast_list(struct net_device *dev)
|
|||
unsigned int i, j, bit, data, crc, tmp;
|
||||
unsigned char hash;
|
||||
|
||||
if (dev->flags&IFF_PROMISC) {
|
||||
if (dev->flags & IFF_PROMISC) {
|
||||
tmp = readl(fep->hwp + FEC_R_CNTRL);
|
||||
tmp |= 0x8;
|
||||
writel(tmp, fep->hwp + FEC_R_CNTRL);
|
||||
|
@ -1581,42 +1524,37 @@ static void set_multicast_list(struct net_device *dev)
|
|||
|
||||
if (dev->flags & IFF_ALLMULTI) {
|
||||
/* Catch all multicast addresses, so set the
|
||||
* filter to all 1's.
|
||||
* filter to all 1's
|
||||
*/
|
||||
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
||||
writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
||||
} else {
|
||||
/* Clear filter and add the addresses in hash register.
|
||||
*/
|
||||
/* Clear filter and add the addresses in hash register
|
||||
*/
|
||||
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
|
||||
writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
|
||||
|
||||
dmi = dev->mc_list;
|
||||
|
||||
for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
|
||||
{
|
||||
/* Only support group multicast for now.
|
||||
*/
|
||||
for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) {
|
||||
/* Only support group multicast for now */
|
||||
if (!(dmi->dmi_addr[0] & 1))
|
||||
continue;
|
||||
|
||||
/* calculate crc32 value of mac address
|
||||
*/
|
||||
/* calculate crc32 value of mac address */
|
||||
crc = 0xffffffff;
|
||||
|
||||
for (i = 0; i < dmi->dmi_addrlen; i++)
|
||||
{
|
||||
for (i = 0; i < dmi->dmi_addrlen; i++) {
|
||||
data = dmi->dmi_addr[i];
|
||||
for (bit = 0; bit < 8; bit++, data >>= 1)
|
||||
{
|
||||
for (bit = 0; bit < 8; bit++, data >>= 1) {
|
||||
crc = (crc >> 1) ^
|
||||
(((crc ^ data) & 1) ? CRC32_POLY : 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* only upper 6 bits (HASH_BITS) are used
|
||||
which point to specific bit in he hash registers
|
||||
*/
|
||||
* which point to specific bit in he hash registers
|
||||
*/
|
||||
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
|
||||
|
||||
if (hash > 31) {
|
||||
|
@ -1633,8 +1571,7 @@ static void set_multicast_list(struct net_device *dev)
|
|||
}
|
||||
}
|
||||
|
||||
/* Set a MAC change in hardware.
|
||||
*/
|
||||
/* Set a MAC change in hardware. */
|
||||
static void
|
||||
fec_set_mac_address(struct net_device *dev)
|
||||
{
|
||||
|
@ -1675,8 +1612,7 @@ int __init fec_enet_init(struct net_device *dev, int index)
|
|||
fep->hwp = (void __iomem *)dev->base_addr;
|
||||
fep->netdev = dev;
|
||||
|
||||
/* Whack a reset. We should wait for this.
|
||||
*/
|
||||
/* Whack a reset. We should wait for this. */
|
||||
writel(1, fep->hwp + FEC_ECNTRL);
|
||||
udelay(10);
|
||||
|
||||
|
@ -1706,18 +1642,15 @@ int __init fec_enet_init(struct net_device *dev, int index)
|
|||
|
||||
fep->skb_cur = fep->skb_dirty = 0;
|
||||
|
||||
/* Initialize the receive buffer descriptors.
|
||||
*/
|
||||
/* Initialize the receive buffer descriptors. */
|
||||
bdp = fep->rx_bd_base;
|
||||
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
|
||||
|
||||
/* Allocate a page.
|
||||
*/
|
||||
/* Allocate a page */
|
||||
mem_addr = __get_free_page(GFP_KERNEL);
|
||||
/* XXX: missing check for allocation failure */
|
||||
|
||||
/* Initialize the BD for every fragment in the page.
|
||||
*/
|
||||
/* Initialize the BD for every fragment in the page */
|
||||
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
|
||||
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
||||
bdp->cbd_bufaddr = __pa(mem_addr);
|
||||
|
@ -1726,13 +1659,11 @@ int __init fec_enet_init(struct net_device *dev, int index)
|
|||
}
|
||||
}
|
||||
|
||||
/* Set the last buffer to wrap.
|
||||
*/
|
||||
/* Set the last buffer to wrap */
|
||||
bdp--;
|
||||
bdp->cbd_sc |= BD_SC_WRAP;
|
||||
|
||||
/* ...and the same for transmmit.
|
||||
*/
|
||||
/* ...and the same for transmit */
|
||||
bdp = fep->tx_bd_base;
|
||||
for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
|
||||
if (j >= FEC_ENET_TX_FRPPG) {
|
||||
|
@ -1744,20 +1675,17 @@ int __init fec_enet_init(struct net_device *dev, int index)
|
|||
}
|
||||
fep->tx_bounce[i] = (unsigned char *) mem_addr;
|
||||
|
||||
/* Initialize the BD for every fragment in the page.
|
||||
*/
|
||||
/* Initialize the BD for every fragment in the page */
|
||||
bdp->cbd_sc = 0;
|
||||
bdp->cbd_bufaddr = 0;
|
||||
bdp++;
|
||||
}
|
||||
|
||||
/* Set the last buffer to wrap.
|
||||
*/
|
||||
/* Set the last buffer to wrap */
|
||||
bdp--;
|
||||
bdp->cbd_sc |= BD_SC_WRAP;
|
||||
|
||||
/* Set receive and transmit descriptor base.
|
||||
*/
|
||||
/* Set receive and transmit descriptor base */
|
||||
writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
|
||||
writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
|
||||
fep->hwp + FEC_X_DES_START);
|
||||
|
@ -1776,7 +1704,7 @@ int __init fec_enet_init(struct net_device *dev, int index)
|
|||
writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
|
||||
#endif
|
||||
|
||||
/* The FEC Ethernet specific entries in the device structure. */
|
||||
/* The FEC Ethernet specific entries in the device structure */
|
||||
dev->open = fec_enet_open;
|
||||
dev->hard_start_xmit = fec_enet_start_xmit;
|
||||
dev->tx_timeout = fec_timeout;
|
||||
|
@ -1792,9 +1720,7 @@ int __init fec_enet_init(struct net_device *dev, int index)
|
|||
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
|
||||
writel(0, fep->hwp + FEC_X_CNTRL);
|
||||
|
||||
/*
|
||||
* Set MII speed to 2.5 MHz
|
||||
*/
|
||||
/* Set MII speed to 2.5 MHz */
|
||||
fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
|
||||
/ 2500000) / 2) & 0x3F) << 1;
|
||||
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
||||
|
@ -1853,8 +1779,8 @@ fec_restart(struct net_device *dev, int duplex)
|
|||
|
||||
/* Reset SKB transmit buffers. */
|
||||
fep->skb_cur = fep->skb_dirty = 0;
|
||||
for (i=0; i<=TX_RING_MOD_MASK; i++) {
|
||||
if (fep->tx_skbuff[i] != NULL) {
|
||||
for (i = 0; i <= TX_RING_MOD_MASK; i++) {
|
||||
if (fep->tx_skbuff[i]) {
|
||||
dev_kfree_skb_any(fep->tx_skbuff[i]);
|
||||
fep->tx_skbuff[i] = NULL;
|
||||
}
|
||||
|
@ -1862,20 +1788,20 @@ fec_restart(struct net_device *dev, int duplex)
|
|||
|
||||
/* Initialize the receive buffer descriptors. */
|
||||
bdp = fep->rx_bd_base;
|
||||
for (i=0; i<RX_RING_SIZE; i++) {
|
||||
for (i = 0; i < RX_RING_SIZE; i++) {
|
||||
|
||||
/* Initialize the BD for every fragment in the page. */
|
||||
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
||||
bdp++;
|
||||
}
|
||||
|
||||
/* Set the last buffer to wrap. */
|
||||
/* Set the last buffer to wrap */
|
||||
bdp--;
|
||||
bdp->cbd_sc |= BD_SC_WRAP;
|
||||
|
||||
/* ...and the same for transmmit. */
|
||||
/* ...and the same for transmit */
|
||||
bdp = fep->tx_bd_base;
|
||||
for (i=0; i<TX_RING_SIZE; i++) {
|
||||
for (i = 0; i < TX_RING_SIZE; i++) {
|
||||
|
||||
/* Initialize the BD for every fragment in the page. */
|
||||
bdp->cbd_sc = 0;
|
||||
|
@ -1883,11 +1809,11 @@ fec_restart(struct net_device *dev, int duplex)
|
|||
bdp++;
|
||||
}
|
||||
|
||||
/* Set the last buffer to wrap. */
|
||||
/* Set the last buffer to wrap */
|
||||
bdp--;
|
||||
bdp->cbd_sc |= BD_SC_WRAP;
|
||||
|
||||
/* Enable MII mode. */
|
||||
/* Enable MII mode */
|
||||
if (duplex) {
|
||||
/* MII enable / FD enable */
|
||||
writel(OPT_FRAME_SIZE | 0x04, fep->hwp + FEC_R_CNTRL);
|
||||
|
@ -1899,14 +1825,14 @@ fec_restart(struct net_device *dev, int duplex)
|
|||
}
|
||||
fep->full_duplex = duplex;
|
||||
|
||||
/* Set MII speed. */
|
||||
/* Set MII speed */
|
||||
writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
|
||||
|
||||
/* And last, enable the transmit and receive processing. */
|
||||
/* And last, enable the transmit and receive processing */
|
||||
writel(2, fep->hwp + FEC_ECNTRL);
|
||||
writel(0, fep->hwp + FEC_R_DES_ACTIVE);
|
||||
|
||||
/* Enable interrupts we wish to service. */
|
||||
/* Enable interrupts we wish to service */
|
||||
writel(FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII,
|
||||
fep->hwp + FEC_IMASK);
|
||||
}
|
||||
|
@ -1916,9 +1842,7 @@ fec_stop(struct net_device *dev)
|
|||
{
|
||||
struct fec_enet_private *fep = netdev_priv(dev);
|
||||
|
||||
/*
|
||||
** We cannot expect a graceful transmit stop without link !!!
|
||||
*/
|
||||
/* We cannot expect a graceful transmit stop without link !!! */
|
||||
if (fep->link) {
|
||||
writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
|
||||
udelay(10);
|
||||
|
|
Загрузка…
Ссылка в новой задаче