ARM kprobes: core code
This is a full implementation of Kprobes including Jprobes and Kretprobes support. This ARM implementation does not follow the usual kprobes double- exception model. The traditional model is where the initial kprobes breakpoint calls kprobe_handler(), which returns from exception to execute the instruction in its original context, then immediately re-enters after a second breakpoint (or single-stepping exception) into post_kprobe_handler(), each time the probe is hit.. The ARM implementation only executes one kprobes exception per hit, so no post_kprobe_handler() phase. All side-effects from the kprobe'd instruction are resolved before returning from the initial exception. As a result, all instructions are _always_ effectively boosted regardless of the type of instruction, and even regardless of whether or not there is a post-handler for the probe. Signed-off-by: Abhishek Sagar <sagar.abhishek@gmail.com> Signed-off-by: Quentin Barnes <qbarnes@gmail.com> Signed-off-by: Nicolas Pitre <nico@marvell.com>
This commit is contained in:
Родитель
35aa1df432
Коммит
24ba613c9d
|
@ -19,7 +19,7 @@ obj-$(CONFIG_ISA_DMA) += dma-isa.o
|
|||
obj-$(CONFIG_PCI) += bios32.o isa.o
|
||||
obj-$(CONFIG_SMP) += smp.o
|
||||
obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o
|
||||
obj-$(CONFIG_KPROBES) += kprobes-decode.o
|
||||
obj-$(CONFIG_KPROBES) += kprobes.o kprobes-decode.o
|
||||
obj-$(CONFIG_OABI_COMPAT) += sys_oabi-compat.o
|
||||
|
||||
obj-$(CONFIG_CRUNCH) += crunch.o crunch-bits.o
|
||||
|
|
|
@ -0,0 +1,453 @@
|
|||
/*
|
||||
* arch/arm/kernel/kprobes.c
|
||||
*
|
||||
* Kprobes on ARM
|
||||
*
|
||||
* Abhishek Sagar <sagar.abhishek@gmail.com>
|
||||
* Copyright (C) 2006, 2007 Motorola Inc.
|
||||
*
|
||||
* Nicolas Pitre <nico@marvell.com>
|
||||
* Copyright (C) 2007 Marvell Ltd.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/stringify.h>
|
||||
#include <asm/traps.h>
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
/*
|
||||
* This undefined instruction must be unique and
|
||||
* reserved solely for kprobes' use.
|
||||
*/
|
||||
#define KPROBE_BREAKPOINT_INSTRUCTION 0xe7f001f8
|
||||
|
||||
#define MIN_STACK_SIZE(addr) \
|
||||
min((unsigned long)MAX_STACK_SIZE, \
|
||||
(unsigned long)current_thread_info() + THREAD_START_SP - (addr))
|
||||
|
||||
#define flush_insns(addr, cnt) \
|
||||
flush_icache_range((unsigned long)(addr), \
|
||||
(unsigned long)(addr) + \
|
||||
sizeof(kprobe_opcode_t) * (cnt))
|
||||
|
||||
/* Used as a marker in ARM_pc to note when we're in a jprobe. */
|
||||
#define JPROBE_MAGIC_ADDR 0xffffffff
|
||||
|
||||
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
||||
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||||
|
||||
|
||||
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
||||
{
|
||||
kprobe_opcode_t insn;
|
||||
kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
|
||||
unsigned long addr = (unsigned long)p->addr;
|
||||
int is;
|
||||
|
||||
if (addr & 0x3)
|
||||
return -EINVAL;
|
||||
|
||||
insn = *p->addr;
|
||||
p->opcode = insn;
|
||||
p->ainsn.insn = tmp_insn;
|
||||
|
||||
switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
|
||||
case INSN_REJECTED: /* not supported */
|
||||
return -EINVAL;
|
||||
|
||||
case INSN_GOOD: /* instruction uses slot */
|
||||
p->ainsn.insn = get_insn_slot();
|
||||
if (!p->ainsn.insn)
|
||||
return -ENOMEM;
|
||||
for (is = 0; is < MAX_INSN_SIZE; ++is)
|
||||
p->ainsn.insn[is] = tmp_insn[is];
|
||||
flush_insns(&p->ainsn.insn, MAX_INSN_SIZE);
|
||||
break;
|
||||
|
||||
case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
|
||||
p->ainsn.insn = NULL;
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
||||
{
|
||||
*p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
|
||||
flush_insns(p->addr, 1);
|
||||
}
|
||||
|
||||
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
||||
{
|
||||
*p->addr = p->opcode;
|
||||
flush_insns(p->addr, 1);
|
||||
}
|
||||
|
||||
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
||||
{
|
||||
if (p->ainsn.insn) {
|
||||
mutex_lock(&kprobe_mutex);
|
||||
free_insn_slot(p->ainsn.insn, 0);
|
||||
mutex_unlock(&kprobe_mutex);
|
||||
p->ainsn.insn = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
kcb->prev_kprobe.kp = kprobe_running();
|
||||
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||||
}
|
||||
|
||||
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
|
||||
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||||
}
|
||||
|
||||
static void __kprobes set_current_kprobe(struct kprobe *p)
|
||||
{
|
||||
__get_cpu_var(current_kprobe) = p;
|
||||
}
|
||||
|
||||
static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
|
||||
struct kprobe_ctlblk *kcb)
|
||||
{
|
||||
regs->ARM_pc += 4;
|
||||
p->ainsn.insn_handler(p, regs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called with IRQs disabled. IRQs must remain disabled from that point
|
||||
* all the way until processing this kprobe is complete. The current
|
||||
* kprobes implementation cannot process more than one nested level of
|
||||
* kprobe, and that level is reserved for user kprobe handlers, so we can't
|
||||
* risk encountering a new kprobe in an interrupt handler.
|
||||
*/
|
||||
void __kprobes kprobe_handler(struct pt_regs *regs)
|
||||
{
|
||||
struct kprobe *p, *cur;
|
||||
struct kprobe_ctlblk *kcb;
|
||||
kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
|
||||
|
||||
kcb = get_kprobe_ctlblk();
|
||||
cur = kprobe_running();
|
||||
p = get_kprobe(addr);
|
||||
|
||||
if (p) {
|
||||
if (cur) {
|
||||
/* Kprobe is pending, so we're recursing. */
|
||||
switch (kcb->kprobe_status) {
|
||||
case KPROBE_HIT_ACTIVE:
|
||||
case KPROBE_HIT_SSDONE:
|
||||
/* A pre- or post-handler probe got us here. */
|
||||
kprobes_inc_nmissed_count(p);
|
||||
save_previous_kprobe(kcb);
|
||||
set_current_kprobe(p);
|
||||
kcb->kprobe_status = KPROBE_REENTER;
|
||||
singlestep(p, regs, kcb);
|
||||
restore_previous_kprobe(kcb);
|
||||
break;
|
||||
default:
|
||||
/* impossible cases */
|
||||
BUG();
|
||||
}
|
||||
} else {
|
||||
set_current_kprobe(p);
|
||||
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||||
|
||||
/*
|
||||
* If we have no pre-handler or it returned 0, we
|
||||
* continue with normal processing. If we have a
|
||||
* pre-handler and it returned non-zero, it prepped
|
||||
* for calling the break_handler below on re-entry,
|
||||
* so get out doing nothing more here.
|
||||
*/
|
||||
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||
singlestep(p, regs, kcb);
|
||||
if (p->post_handler) {
|
||||
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||||
p->post_handler(p, regs, 0);
|
||||
}
|
||||
reset_current_kprobe();
|
||||
}
|
||||
}
|
||||
} else if (cur) {
|
||||
/* We probably hit a jprobe. Call its break handler. */
|
||||
if (cur->break_handler && cur->break_handler(cur, regs)) {
|
||||
kcb->kprobe_status = KPROBE_HIT_SS;
|
||||
singlestep(cur, regs, kcb);
|
||||
if (cur->post_handler) {
|
||||
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||||
cur->post_handler(cur, regs, 0);
|
||||
}
|
||||
}
|
||||
reset_current_kprobe();
|
||||
} else {
|
||||
/*
|
||||
* The probe was removed and a race is in progress.
|
||||
* There is nothing we can do about it. Let's restart
|
||||
* the instruction. By the time we can restart, the
|
||||
* real instruction will be there.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
static int kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
|
||||
{
|
||||
kprobe_handler(regs);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
|
||||
{
|
||||
struct kprobe *cur = kprobe_running();
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
|
||||
switch (kcb->kprobe_status) {
|
||||
case KPROBE_HIT_SS:
|
||||
case KPROBE_REENTER:
|
||||
/*
|
||||
* We are here because the instruction being single
|
||||
* stepped caused a page fault. We reset the current
|
||||
* kprobe and the PC to point back to the probe address
|
||||
* and allow the page fault handler to continue as a
|
||||
* normal page fault.
|
||||
*/
|
||||
regs->ARM_pc = (long)cur->addr;
|
||||
if (kcb->kprobe_status == KPROBE_REENTER) {
|
||||
restore_previous_kprobe(kcb);
|
||||
} else {
|
||||
reset_current_kprobe();
|
||||
}
|
||||
break;
|
||||
|
||||
case KPROBE_HIT_ACTIVE:
|
||||
case KPROBE_HIT_SSDONE:
|
||||
/*
|
||||
* We increment the nmissed count for accounting,
|
||||
* we can also use npre/npostfault count for accounting
|
||||
* these specific fault cases.
|
||||
*/
|
||||
kprobes_inc_nmissed_count(cur);
|
||||
|
||||
/*
|
||||
* We come here because instructions in the pre/post
|
||||
* handler caused the page_fault, this could happen
|
||||
* if handler tries to access user space by
|
||||
* copy_from_user(), get_user() etc. Let the
|
||||
* user-specified handler try to fix it.
|
||||
*/
|
||||
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
|
||||
return 1;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
||||
unsigned long val, void *data)
|
||||
{
|
||||
/*
|
||||
* notify_die() is currently never called on ARM,
|
||||
* so this callback is currently empty.
|
||||
*/
|
||||
return NOTIFY_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* When a retprobed function returns, trampoline_handler() is called,
|
||||
* calling the kretprobe's handler. We construct a struct pt_regs to
|
||||
* give a view of registers r0-r11 to the user return-handler. This is
|
||||
* not a complete pt_regs structure, but that should be plenty sufficient
|
||||
* for kretprobe handlers which should normally be interested in r0 only
|
||||
* anyway.
|
||||
*/
|
||||
static void __attribute__((naked)) __kprobes kretprobe_trampoline(void)
|
||||
{
|
||||
__asm__ __volatile__ (
|
||||
"stmdb sp!, {r0 - r11} \n\t"
|
||||
"mov r0, sp \n\t"
|
||||
"bl trampoline_handler \n\t"
|
||||
"mov lr, r0 \n\t"
|
||||
"ldmia sp!, {r0 - r11} \n\t"
|
||||
"mov pc, lr \n\t"
|
||||
: : : "memory");
|
||||
}
|
||||
|
||||
/* Called from kretprobe_trampoline */
|
||||
static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
|
||||
{
|
||||
struct kretprobe_instance *ri = NULL;
|
||||
struct hlist_head *head, empty_rp;
|
||||
struct hlist_node *node, *tmp;
|
||||
unsigned long flags, orig_ret_address = 0;
|
||||
unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
|
||||
|
||||
INIT_HLIST_HEAD(&empty_rp);
|
||||
spin_lock_irqsave(&kretprobe_lock, flags);
|
||||
head = kretprobe_inst_table_head(current);
|
||||
|
||||
/*
|
||||
* It is possible to have multiple instances associated with a given
|
||||
* task either because multiple functions in the call path have
|
||||
* a return probe installed on them, and/or more than one return
|
||||
* probe was registered for a target function.
|
||||
*
|
||||
* We can handle this because:
|
||||
* - instances are always inserted at the head of the list
|
||||
* - when multiple return probes are registered for the same
|
||||
* function, the first instance's ret_addr will point to the
|
||||
* real return address, and all the rest will point to
|
||||
* kretprobe_trampoline
|
||||
*/
|
||||
hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
|
||||
if (ri->task != current)
|
||||
/* another task is sharing our hash bucket */
|
||||
continue;
|
||||
|
||||
if (ri->rp && ri->rp->handler) {
|
||||
__get_cpu_var(current_kprobe) = &ri->rp->kp;
|
||||
get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
|
||||
ri->rp->handler(ri, regs);
|
||||
__get_cpu_var(current_kprobe) = NULL;
|
||||
}
|
||||
|
||||
orig_ret_address = (unsigned long)ri->ret_addr;
|
||||
recycle_rp_inst(ri, &empty_rp);
|
||||
|
||||
if (orig_ret_address != trampoline_address)
|
||||
/*
|
||||
* This is the real return address. Any other
|
||||
* instances associated with this task are for
|
||||
* other calls deeper on the call stack
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
kretprobe_assert(ri, orig_ret_address, trampoline_address);
|
||||
spin_unlock_irqrestore(&kretprobe_lock, flags);
|
||||
|
||||
hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
|
||||
hlist_del(&ri->hlist);
|
||||
kfree(ri);
|
||||
}
|
||||
|
||||
return (void *)orig_ret_address;
|
||||
}
|
||||
|
||||
/* Called with kretprobe_lock held. */
|
||||
void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
|
||||
struct pt_regs *regs)
|
||||
{
|
||||
ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
|
||||
|
||||
/* Replace the return addr with trampoline addr. */
|
||||
regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
|
||||
}
|
||||
|
||||
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
long sp_addr = regs->ARM_sp;
|
||||
|
||||
kcb->jprobe_saved_regs = *regs;
|
||||
memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
|
||||
regs->ARM_pc = (long)jp->entry;
|
||||
regs->ARM_cpsr |= PSR_I_BIT;
|
||||
preempt_disable();
|
||||
return 1;
|
||||
}
|
||||
|
||||
void __kprobes jprobe_return(void)
|
||||
{
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
|
||||
__asm__ __volatile__ (
|
||||
/*
|
||||
* Setup an empty pt_regs. Fill SP and PC fields as
|
||||
* they're needed by longjmp_break_handler.
|
||||
*/
|
||||
"sub sp, %0, %1 \n\t"
|
||||
"ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
|
||||
"str %0, [sp, %2] \n\t"
|
||||
"str r0, [sp, %3] \n\t"
|
||||
"mov r0, sp \n\t"
|
||||
"bl kprobe_handler \n\t"
|
||||
|
||||
/*
|
||||
* Return to the context saved by setjmp_pre_handler
|
||||
* and restored by longjmp_break_handler.
|
||||
*/
|
||||
"ldr r0, [sp, %4] \n\t"
|
||||
"msr cpsr_cxsf, r0 \n\t"
|
||||
"ldmia sp, {r0 - pc} \n\t"
|
||||
:
|
||||
: "r" (kcb->jprobe_saved_regs.ARM_sp),
|
||||
"I" (sizeof(struct pt_regs)),
|
||||
"J" (offsetof(struct pt_regs, ARM_sp)),
|
||||
"J" (offsetof(struct pt_regs, ARM_pc)),
|
||||
"J" (offsetof(struct pt_regs, ARM_cpsr))
|
||||
: "memory", "cc");
|
||||
}
|
||||
|
||||
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
||||
{
|
||||
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||||
long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
|
||||
long orig_sp = regs->ARM_sp;
|
||||
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
||||
|
||||
if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
|
||||
if (orig_sp != stack_addr) {
|
||||
struct pt_regs *saved_regs =
|
||||
(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
|
||||
printk("current sp %lx does not match saved sp %lx\n",
|
||||
orig_sp, stack_addr);
|
||||
printk("Saved registers for jprobe %p\n", jp);
|
||||
show_regs(saved_regs);
|
||||
printk("Current registers\n");
|
||||
show_regs(regs);
|
||||
BUG();
|
||||
}
|
||||
*regs = kcb->jprobe_saved_regs;
|
||||
memcpy((void *)stack_addr, kcb->jprobes_stack,
|
||||
MIN_STACK_SIZE(stack_addr));
|
||||
preempt_enable_no_resched();
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct undef_hook kprobes_break_hook = {
|
||||
.instr_mask = 0xffffffff,
|
||||
.instr_val = KPROBE_BREAKPOINT_INSTRUCTION,
|
||||
.cpsr_mask = MODE_MASK,
|
||||
.cpsr_val = SVC_MODE,
|
||||
.fn = kprobe_trap_handler,
|
||||
};
|
||||
|
||||
int __init arch_init_kprobes()
|
||||
{
|
||||
arm_kprobe_decode_init();
|
||||
register_undef_hook(&kprobes_break_hook);
|
||||
return 0;
|
||||
}
|
|
@ -18,6 +18,16 @@
|
|||
|
||||
#include <linux/types.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/percpu.h>
|
||||
|
||||
#define ARCH_SUPPORTS_KRETPROBES
|
||||
#define __ARCH_WANT_KPROBES_INSN_SLOT
|
||||
#define MAX_INSN_SIZE 2
|
||||
#define MAX_STACK_SIZE 64 /* 32 would probably be OK */
|
||||
|
||||
#define regs_return_value(regs) ((regs)->ARM_r0)
|
||||
#define flush_insn_slot(p) do { } while (0)
|
||||
#define kretprobe_blacklist_size 0
|
||||
|
||||
typedef u32 kprobe_opcode_t;
|
||||
|
||||
|
@ -30,6 +40,25 @@ struct arch_specific_insn {
|
|||
kprobe_insn_handler_t *insn_handler;
|
||||
};
|
||||
|
||||
struct prev_kprobe {
|
||||
struct kprobe *kp;
|
||||
unsigned int status;
|
||||
};
|
||||
|
||||
/* per-cpu kprobe control block */
|
||||
struct kprobe_ctlblk {
|
||||
unsigned int kprobe_status;
|
||||
struct prev_kprobe prev_kprobe;
|
||||
struct pt_regs jprobe_saved_regs;
|
||||
char jprobes_stack[MAX_STACK_SIZE];
|
||||
};
|
||||
|
||||
void arch_remove_kprobe(struct kprobe *);
|
||||
|
||||
int kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr);
|
||||
int kprobe_exceptions_notify(struct notifier_block *self,
|
||||
unsigned long val, void *data);
|
||||
|
||||
enum kprobe_insn {
|
||||
INSN_REJECTED,
|
||||
INSN_GOOD,
|
||||
|
|
Загрузка…
Ссылка в новой задаче