Refactors rslib and callers to provide a per-instance allocation area

instead of performing VLAs on the stack.
 -----BEGIN PGP SIGNATURE-----
 Comment: Kees Cook <kees@outflux.net>
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAlsUv+MWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJsL4D/0arl2+HZtG3GV6zMHbH1T3J0a3
 mZojEEZqgByx0vlN/Ai57YK4ADHKlF3oYqpXamc718iAmDfKgvbdG+IPv6hg0MQR
 c6F+ogSbcZ38vY7t08Iaa9cBQcKFJwJGAbYXyKV6dKp0ddPqNBBxHG0CLSWL+3DE
 ZxKRKQFQKZWJR587CjA9geZOImgYJG8Jq9Ue4fp1fKacBEBiZTtI/Y8C4XlrxZz6
 6p7BdarMXKqxW8B8vpE4xfCCkm8QGAfEuAXzMrqFLZhj48bg7+Tqd3d4AHm28hMp
 Q2eHyS9j4wWN+OxA1R+VIuzciz/vfWZJi1N7zSV8LznPPLICX8Vl4gXw+MkrELYV
 vzZRlRH67E993bsj0Xp65w7Zwc3MJKVfJOUq+3qR3I1JytCSOBsLs2w/VE2bzpeO
 jFD4gUJxYnl5s2UnCiHVgUzbgXE/n+JQS3Acf71qfAsb+Ld2/q9Tyjx7p7sm5IfB
 m/lokrSgBajtHPZfB6pQV2AvaoLIbWW9Lf1p84zA6XAwdAnAESffUGQHEK/W02a7
 ftwxXnOvjgRZJ/lUfOb0GQDgQniXO7cN7AcmKAfL+DNZb0j86esR6PuZDCIeDhTJ
 KcTVcwPtFnI4W+H3vagh+mLHf7bL/RgLngjUZd6PHqS+cVQfKFiNe43zlRl9+eRj
 U20+w5VfwSkrmAgfSw==
 =Z1if
 -----END PGP SIGNATURE-----

Merge tag 'rslib-v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull reed-salomon library updates from Kees Cook:
 "Refactors rslib and callers to provide a per-instance allocation area
  instead of performing VLAs on the stack"

* tag 'rslib-v4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  rslib: Allocate decoder buffers to avoid VLAs
  mtd: rawnand: diskonchip: Allocate rs control per instance
  rslib: Split rs control struct
  rslib: Simplify error path
  rslib: Remove GPL boilerplate
  rslib: Add SPDX identifiers
  rslib: Cleanup top level comments
  rslib: Cleanup whitespace damage
  dm/verity_fec: Use GFP aware reed solomon init
  rslib: Add GFP aware init function
This commit is contained in:
Linus Torvalds 2018-06-05 10:48:05 -07:00
Родитель a74e0c4c9c 45888b40d2
Коммит 25d80be86c
7 изменённых файлов: 243 добавлений и 196 удалений

Просмотреть файл

@ -570,7 +570,7 @@ static void *fec_rs_alloc(gfp_t gfp_mask, void *pool_data)
{
struct dm_verity *v = (struct dm_verity *)pool_data;
return init_rs(8, 0x11d, 0, 1, v->fec->roots);
return init_rs_gfp(8, 0x11d, 0, 1, v->fec->roots, gfp_mask);
}
static void fec_rs_free(void *element, void *pool_data)

Просмотреть файл

@ -394,12 +394,13 @@ static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
for (i=0; i<8; i+=2) {
uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2));
syn[i] = cafe->rs->index_of[tmp & 0xfff];
syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff];
syn[i] = cafe->rs->codec->index_of[tmp & 0xfff];
syn[i+1] = cafe->rs->codec->index_of[(tmp >> 16) & 0xfff];
}
n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0,
pat);
pat);
for (i = 0; i < n; i++) {
int p = pos[i];

Просмотреть файл

@ -66,6 +66,7 @@ struct doc_priv {
int curchip;
int mh0_page;
int mh1_page;
struct rs_control *rs_decoder;
struct mtd_info *nextdoc;
/* Handle the last stage of initialization (BBT scan, partitioning) */
@ -123,9 +124,6 @@ MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe
/* Number of symbols */
#define NN 1023
/* the Reed Solomon control structure */
static struct rs_control *rs_decoder;
/*
* The HW decoder in the DoC ASIC's provides us a error syndrome,
* which we must convert to a standard syndrome usable by the generic
@ -140,6 +138,7 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
int i, j, nerr, errpos[8];
uint8_t parity;
uint16_t ds[4], s[5], tmp, errval[8], syn[4];
struct rs_codec *cd = rs->codec;
memset(syn, 0, sizeof(syn));
/* Convert the ecc bytes into words */
@ -160,15 +159,15 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
for (j = 1; j < NROOTS; j++) {
if (ds[j] == 0)
continue;
tmp = rs->index_of[ds[j]];
tmp = cd->index_of[ds[j]];
for (i = 0; i < NROOTS; i++)
s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)];
}
/* Calc syn[i] = s[i] / alpha^(v + i) */
for (i = 0; i < NROOTS; i++) {
if (s[i])
syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i));
}
/* Call the decoder library */
nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
@ -930,7 +929,7 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
}
ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc);
if (ret > 0)
pr_err("doc200x_correct_data corrected %d errors\n",
ret);
@ -1421,10 +1420,10 @@ static inline int __init doc2001plus_init(struct mtd_info *mtd)
static int __init doc_probe(unsigned long physadr)
{
struct nand_chip *nand = NULL;
struct doc_priv *doc = NULL;
unsigned char ChipID;
struct mtd_info *mtd;
struct nand_chip *nand;
struct doc_priv *doc;
void __iomem *virtadr;
unsigned char save_control;
unsigned char tmp, tmpb, tmpc;
@ -1561,8 +1560,25 @@ static int __init doc_probe(unsigned long physadr)
goto fail;
}
/*
* Allocate a RS codec instance
*
* Symbolsize is 10 (bits)
* Primitve polynomial is x^10+x^3+1
* First consecutive root is 510
* Primitve element to generate roots = 1
* Generator polinomial degree = 4
*/
doc = (struct doc_priv *) (nand + 1);
doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!doc->rs_decoder) {
pr_err("DiskOnChip: Could not create a RS codec\n");
ret = -ENOMEM;
goto fail;
}
mtd = nand_to_mtd(nand);
doc = (struct doc_priv *) (nand + 1);
nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
nand->bbt_md = nand->bbt_td + 1;
@ -1612,7 +1628,6 @@ static int __init doc_probe(unsigned long physadr)
haven't yet added it. This is handled without incident by
mtd_device_unregister, as far as I can tell. */
nand_release(mtd);
kfree(nand);
goto fail;
}
@ -1625,6 +1640,9 @@ static int __init doc_probe(unsigned long physadr)
actually a DiskOnChip. */
WriteDOC(save_control, virtadr, DOCControl);
fail:
if (doc)
free_rs(doc->rs_decoder);
kfree(nand);
iounmap(virtadr);
error_ioremap:
@ -1647,6 +1665,7 @@ static void release_nanddoc(void)
nand_release(mtd);
iounmap(doc->virtadr);
release_mem_region(doc->physadr, DOC_IOREMAP_LEN);
free_rs(doc->rs_decoder);
kfree(nand);
}
}
@ -1655,27 +1674,12 @@ static int __init init_nanddoc(void)
{
int i, ret = 0;
/* We could create the decoder on demand, if memory is a concern.
* This way we have it handy, if an error happens
*
* Symbolsize is 10 (bits)
* Primitve polynomial is x^10+x^3+1
* first consecutive root is 510
* primitve element to generate roots = 1
* generator polinomial degree = 4
*/
rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
if (!rs_decoder) {
pr_err("DiskOnChip: Could not create a RS decoder\n");
return -ENOMEM;
}
if (doc_config_location) {
pr_info("Using configured DiskOnChip probe address 0x%lx\n",
doc_config_location);
ret = doc_probe(doc_config_location);
if (ret < 0)
goto outerr;
return ret;
} else {
for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
doc_probe(doc_locations[i]);
@ -1686,11 +1690,7 @@ static int __init init_nanddoc(void)
if (!doclist) {
pr_info("No valid DiskOnChip devices found\n");
ret = -ENODEV;
goto outerr;
}
return 0;
outerr:
free_rs(rs_decoder);
return ret;
}
@ -1698,11 +1698,6 @@ static void __exit cleanup_nanddoc(void)
{
/* Cleanup the nand/DoC resources */
release_nanddoc();
/* Free the reed solomon resources */
if (rs_decoder) {
free_rs(rs_decoder);
}
}
module_init(init_nanddoc);

Просмотреть файл

@ -1,28 +1,21 @@
// SPDX-License-Identifier: GPL-2.0
/*
* include/linux/rslib.h
*
* Overview:
* Generic Reed Solomon encoder / decoder library
* Generic Reed Solomon encoder / decoder library
*
* Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
*
* RS code lifted from reed solomon library written by Phil Karn
* Copyright 2002 Phil Karn, KA9Q
*
* $Id: rslib.h,v 1.4 2005/11/07 11:14:52 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _RSLIB_H_
#define _RSLIB_H_
#include <linux/list.h>
#include <linux/types.h> /* for gfp_t */
#include <linux/gfp.h> /* for GFP_KERNEL */
/**
* struct rs_control - rs control structure
* struct rs_codec - rs codec data
*
* @mm: Bits per symbol
* @nn: Symbols per block (= (1<<mm)-1)
@ -36,24 +29,34 @@
* @gfpoly: The primitive generator polynominal
* @gffunc: Function to generate the field, if non-canonical representation
* @users: Users of this structure
* @list: List entry for the rs control list
* @list: List entry for the rs codec list
*/
struct rs_control {
int mm;
int nn;
struct rs_codec {
int mm;
int nn;
uint16_t *alpha_to;
uint16_t *index_of;
uint16_t *genpoly;
int nroots;
int fcr;
int prim;
int iprim;
int nroots;
int fcr;
int prim;
int iprim;
int gfpoly;
int (*gffunc)(int);
int users;
struct list_head list;
};
/**
* struct rs_control - rs control structure per instance
* @codec: The codec used for this instance
* @buffers: Internal scratch buffers used in calls to decode_rs()
*/
struct rs_control {
struct rs_codec *codec;
uint16_t buffers[0];
};
/* General purpose RS codec, 8-bit data width, symbol width 1-15 bit */
#ifdef CONFIG_REED_SOLOMON_ENC8
int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
@ -76,18 +79,37 @@ int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
uint16_t *corr);
#endif
/* Create or get a matching rs control structure */
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
int nroots);
struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
int nroots, gfp_t gfp);
/**
* init_rs - Create a RS control struct and initialize it
* @symsize: the symbol size (number of bits)
* @gfpoly: the extended Galois field generator polynomial coefficients,
* with the 0th coefficient in the low order bit. The polynomial
* must be primitive;
* @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
*
* Allocations use GFP_KERNEL.
*/
static inline struct rs_control *init_rs(int symsize, int gfpoly, int fcr,
int prim, int nroots)
{
return init_rs_gfp(symsize, gfpoly, fcr, prim, nroots, GFP_KERNEL);
}
struct rs_control *init_rs_non_canonical(int symsize, int (*func)(int),
int fcr, int prim, int nroots);
int fcr, int prim, int nroots);
/* Release a rs control structure */
void free_rs(struct rs_control *rs);
/** modulo replacement for galois field arithmetics
*
* @rs: the rs control structure
* @rs: Pointer to the RS codec
* @x: the value to reduce
*
* where
@ -97,7 +119,7 @@ void free_rs(struct rs_control *rs);
* Simple arithmetic modulo would return a wrong result for values
* >= 3 * rs->nn
*/
static inline int rs_modnn(struct rs_control *rs, int x)
static inline int rs_modnn(struct rs_codec *rs, int x)
{
while (x >= rs->nn) {
x -= rs->nn;

Просмотреть файл

@ -1,22 +1,16 @@
// SPDX-License-Identifier: GPL-2.0
/*
* lib/reed_solomon/decode_rs.c
*
* Overview:
* Generic Reed Solomon encoder / decoder library
* Generic Reed Solomon encoder / decoder library
*
* Copyright 2002, Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
*
* Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
*
* $Id: decode_rs.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
*
*/
/* Generic data width independent code which is included by the
* wrappers.
* Generic data width independent code which is included by the wrappers.
*/
{
struct rs_codec *rs = rsc->codec;
int deg_lambda, el, deg_omega;
int i, j, r, k, pad;
int nn = rs->nn;
@ -27,16 +21,22 @@
uint16_t *alpha_to = rs->alpha_to;
uint16_t *index_of = rs->index_of;
uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
/* Err+Eras Locator poly and syndrome poly The maximum value
* of nroots is 8. So the necessary stack size will be about
* 220 bytes max.
*/
uint16_t lambda[nroots + 1], syn[nroots];
uint16_t b[nroots + 1], t[nroots + 1], omega[nroots + 1];
uint16_t root[nroots], reg[nroots + 1], loc[nroots];
int count = 0;
uint16_t msk = (uint16_t) rs->nn;
/*
* The decoder buffers are in the rs control struct. They are
* arrays sized [nroots + 1]
*/
uint16_t *lambda = rsc->buffers + RS_DECODE_LAMBDA * (nroots + 1);
uint16_t *syn = rsc->buffers + RS_DECODE_SYN * (nroots + 1);
uint16_t *b = rsc->buffers + RS_DECODE_B * (nroots + 1);
uint16_t *t = rsc->buffers + RS_DECODE_T * (nroots + 1);
uint16_t *omega = rsc->buffers + RS_DECODE_OMEGA * (nroots + 1);
uint16_t *root = rsc->buffers + RS_DECODE_ROOT * (nroots + 1);
uint16_t *reg = rsc->buffers + RS_DECODE_REG * (nroots + 1);
uint16_t *loc = rsc->buffers + RS_DECODE_LOC * (nroots + 1);
/* Check length parameter for validity */
pad = nn - nroots - len;
BUG_ON(pad < 0 || pad >= nn);

Просмотреть файл

@ -1,23 +1,16 @@
// SPDX-License-Identifier: GPL-2.0
/*
* lib/reed_solomon/encode_rs.c
*
* Overview:
* Generic Reed Solomon encoder / decoder library
* Generic Reed Solomon encoder / decoder library
*
* Copyright 2002, Phil Karn, KA9Q
* May be used under the terms of the GNU General Public License (GPL)
*
* Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
*
* $Id: encode_rs.c,v 1.5 2005/11/07 11:14:59 gleixner Exp $
*
*/
/* Generic data width independent code which is included by the
* wrappers.
* int encode_rsX (struct rs_control *rs, uintX_t *data, int len, uintY_t *par)
* Generic data width independent code which is included by the wrappers.
*/
{
struct rs_codec *rs = rsc->codec;
int i, j, pad;
int nn = rs->nn;
int nroots = rs->nroots;

Просмотреть файл

@ -1,43 +1,34 @@
// SPDX-License-Identifier: GPL-2.0
/*
* lib/reed_solomon/reed_solomon.c
*
* Overview:
* Generic Reed Solomon encoder / decoder library
* Generic Reed Solomon encoder / decoder library
*
* Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
*
* Reed Solomon code lifted from reed solomon library written by Phil Karn
* Copyright 2002 Phil Karn, KA9Q
*
* $Id: rslib.c,v 1.7 2005/11/07 11:14:59 gleixner Exp $
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Description:
*
* The generic Reed Solomon library provides runtime configurable
* encoding / decoding of RS codes.
* Each user must call init_rs to get a pointer to a rs_control
* structure for the given rs parameters. This structure is either
* generated or a already available matching control structure is used.
* If a structure is generated then the polynomial arrays for
* fast encoding / decoding are built. This can take some time so
* make sure not to call this function from a time critical path.
* Usually a module / driver should initialize the necessary
* rs_control structure on module / driver init and release it
* on exit.
* The encoding puts the calculated syndrome into a given syndrome
* buffer.
* The decoding is a two step process. The first step calculates
* the syndrome over the received (data + syndrome) and calls the
* second stage, which does the decoding / error correction itself.
* Many hw encoders provide a syndrome calculation over the received
* data + syndrome and can call the second stage directly.
*
* Each user must call init_rs to get a pointer to a rs_control structure
* for the given rs parameters. The control struct is unique per instance.
* It points to a codec which can be shared by multiple control structures.
* If a codec is newly allocated then the polynomial arrays for fast
* encoding / decoding are built. This can take some time so make sure not
* to call this function from a time critical path. Usually a module /
* driver should initialize the necessary rs_control structure on module /
* driver init and release it on exit.
*
* The encoding puts the calculated syndrome into a given syndrome buffer.
*
* The decoding is a two step process. The first step calculates the
* syndrome over the received (data + syndrome) and calls the second stage,
* which does the decoding / error correction itself. Many hw encoders
* provide a syndrome calculation over the received data + syndrome and can
* call the second stage directly.
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/init.h>
@ -46,32 +37,44 @@
#include <linux/slab.h>
#include <linux/mutex.h>
/* This list holds all currently allocated rs control structures */
static LIST_HEAD (rslist);
enum {
RS_DECODE_LAMBDA,
RS_DECODE_SYN,
RS_DECODE_B,
RS_DECODE_T,
RS_DECODE_OMEGA,
RS_DECODE_ROOT,
RS_DECODE_REG,
RS_DECODE_LOC,
RS_DECODE_NUM_BUFFERS
};
/* This list holds all currently allocated rs codec structures */
static LIST_HEAD(codec_list);
/* Protection for the list */
static DEFINE_MUTEX(rslistlock);
/**
* rs_init - Initialize a Reed-Solomon codec
* codec_init - Initialize a Reed-Solomon codec
* @symsize: symbol size, bits (1-8)
* @gfpoly: Field generator polynomial coefficients
* @gffunc: Field generator function
* @fcr: first root of RS code generator polynomial, index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
* @gfp: GFP_ flags for allocations
*
* Allocate a control structure and the polynom arrays for faster
* Allocate a codec structure and the polynom arrays for faster
* en/decoding. Fill the arrays according to the given parameters.
*/
static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
int fcr, int prim, int nroots)
static struct rs_codec *codec_init(int symsize, int gfpoly, int (*gffunc)(int),
int fcr, int prim, int nroots, gfp_t gfp)
{
struct rs_control *rs;
int i, j, sr, root, iprim;
struct rs_codec *rs;
/* Allocate the control structure */
rs = kmalloc(sizeof (struct rs_control), GFP_KERNEL);
if (rs == NULL)
rs = kzalloc(sizeof(*rs), gfp);
if (!rs)
return NULL;
INIT_LIST_HEAD(&rs->list);
@ -85,17 +88,17 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
rs->gffunc = gffunc;
/* Allocate the arrays */
rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
rs->alpha_to = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp);
if (rs->alpha_to == NULL)
goto errrs;
goto err;
rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), GFP_KERNEL);
rs->index_of = kmalloc(sizeof(uint16_t) * (rs->nn + 1), gfp);
if (rs->index_of == NULL)
goto erralp;
goto err;
rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), GFP_KERNEL);
rs->genpoly = kmalloc(sizeof(uint16_t) * (rs->nroots + 1), gfp);
if(rs->genpoly == NULL)
goto erridx;
goto err;
/* Generate Galois field lookup tables */
rs->index_of[0] = rs->nn; /* log(zero) = -inf */
@ -120,7 +123,7 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
}
/* If it's not primitive, exit */
if(sr != rs->alpha_to[0])
goto errpol;
goto err;
/* Find prim-th root of 1, used in decoding */
for(iprim = 1; (iprim % prim) != 0; iprim += rs->nn);
@ -148,42 +151,52 @@ static struct rs_control *rs_init(int symsize, int gfpoly, int (*gffunc)(int),
/* convert rs->genpoly[] to index form for quicker encoding */
for (i = 0; i <= nroots; i++)
rs->genpoly[i] = rs->index_of[rs->genpoly[i]];
rs->users = 1;
list_add(&rs->list, &codec_list);
return rs;
/* Error exit */
errpol:
err:
kfree(rs->genpoly);
erridx:
kfree(rs->index_of);
erralp:
kfree(rs->alpha_to);
errrs:
kfree(rs);
return NULL;
}
/**
* free_rs - Free the rs control structure, if it is no longer used
* @rs: the control structure which is not longer used by the
* free_rs - Free the rs control structure
* @rs: The control structure which is not longer used by the
* caller
*
* Free the control structure. If @rs is the last user of the associated
* codec, free the codec as well.
*/
void free_rs(struct rs_control *rs)
{
struct rs_codec *cd;
if (!rs)
return;
cd = rs->codec;
mutex_lock(&rslistlock);
rs->users--;
if(!rs->users) {
list_del(&rs->list);
kfree(rs->alpha_to);
kfree(rs->index_of);
kfree(rs->genpoly);
kfree(rs);
cd->users--;
if(!cd->users) {
list_del(&cd->list);
kfree(cd->alpha_to);
kfree(cd->index_of);
kfree(cd->genpoly);
kfree(cd);
}
mutex_unlock(&rslistlock);
kfree(rs);
}
EXPORT_SYMBOL_GPL(free_rs);
/**
* init_rs_internal - Find a matching or allocate a new rs control structure
* init_rs_internal - Allocate rs control, find a matching codec or allocate a new one
* @symsize: the symbol size (number of bits)
* @gfpoly: the extended Galois field generator polynomial coefficients,
* with the 0th coefficient in the low order bit. The polynomial
@ -191,55 +204,69 @@ void free_rs(struct rs_control *rs)
* @gffunc: pointer to function to generate the next field element,
* or the multiplicative identity element if given 0. Used
* instead of gfpoly if gfpoly is 0
* @fcr: the first consecutive root of the rs code generator polynomial
* @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
* @gfp: GFP_ flags for allocations
*/
static struct rs_control *init_rs_internal(int symsize, int gfpoly,
int (*gffunc)(int), int fcr,
int prim, int nroots)
int (*gffunc)(int), int fcr,
int prim, int nroots, gfp_t gfp)
{
struct list_head *tmp;
struct rs_control *rs;
struct list_head *tmp;
struct rs_control *rs;
unsigned int bsize;
/* Sanity checks */
if (symsize < 1)
return NULL;
if (fcr < 0 || fcr >= (1<<symsize))
return NULL;
return NULL;
if (prim <= 0 || prim >= (1<<symsize))
return NULL;
return NULL;
if (nroots < 0 || nroots >= (1<<symsize))
return NULL;
/*
* The decoder needs buffers in each control struct instance to
* avoid variable size or large fixed size allocations on
* stack. Size the buffers to arrays of [nroots + 1].
*/
bsize = sizeof(uint16_t) * RS_DECODE_NUM_BUFFERS * (nroots + 1);
rs = kzalloc(sizeof(*rs) + bsize, gfp);
if (!rs)
return NULL;
mutex_lock(&rslistlock);
/* Walk through the list and look for a matching entry */
list_for_each(tmp, &rslist) {
rs = list_entry(tmp, struct rs_control, list);
if (symsize != rs->mm)
list_for_each(tmp, &codec_list) {
struct rs_codec *cd = list_entry(tmp, struct rs_codec, list);
if (symsize != cd->mm)
continue;
if (gfpoly != rs->gfpoly)
if (gfpoly != cd->gfpoly)
continue;
if (gffunc != rs->gffunc)
if (gffunc != cd->gffunc)
continue;
if (fcr != rs->fcr)
if (fcr != cd->fcr)
continue;
if (prim != rs->prim)
if (prim != cd->prim)
continue;
if (nroots != rs->nroots)
if (nroots != cd->nroots)
continue;
/* We have a matching one already */
rs->users++;
cd->users++;
rs->codec = cd;
goto out;
}
/* Create a new one */
rs = rs_init(symsize, gfpoly, gffunc, fcr, prim, nroots);
if (rs) {
rs->users = 1;
list_add(&rs->list, &rslist);
rs->codec = codec_init(symsize, gfpoly, gffunc, fcr, prim, nroots, gfp);
if (!rs->codec) {
kfree(rs);
rs = NULL;
}
out:
mutex_unlock(&rslistlock);
@ -247,45 +274,48 @@ out:
}
/**
* init_rs - Find a matching or allocate a new rs control structure
* init_rs_gfp - Create a RS control struct and initialize it
* @symsize: the symbol size (number of bits)
* @gfpoly: the extended Galois field generator polynomial coefficients,
* with the 0th coefficient in the low order bit. The polynomial
* must be primitive;
* @fcr: the first consecutive root of the rs code generator polynomial
* @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
* @gfp: GFP_ flags for allocations
*/
struct rs_control *init_rs(int symsize, int gfpoly, int fcr, int prim,
int nroots)
struct rs_control *init_rs_gfp(int symsize, int gfpoly, int fcr, int prim,
int nroots, gfp_t gfp)
{
return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots);
return init_rs_internal(symsize, gfpoly, NULL, fcr, prim, nroots, gfp);
}
EXPORT_SYMBOL_GPL(init_rs_gfp);
/**
* init_rs_non_canonical - Find a matching or allocate a new rs control
* structure, for fields with non-canonical
* representation
* init_rs_non_canonical - Allocate rs control struct for fields with
* non-canonical representation
* @symsize: the symbol size (number of bits)
* @gffunc: pointer to function to generate the next field element,
* or the multiplicative identity element if given 0. Used
* instead of gfpoly if gfpoly is 0
* @fcr: the first consecutive root of the rs code generator polynomial
* @fcr: the first consecutive root of the rs code generator polynomial
* in index form
* @prim: primitive element to generate polynomial roots
* @nroots: RS code generator polynomial degree (number of roots)
*/
struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
int fcr, int prim, int nroots)
int fcr, int prim, int nroots)
{
return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots);
return init_rs_internal(symsize, 0, gffunc, fcr, prim, nroots,
GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(init_rs_non_canonical);
#ifdef CONFIG_REED_SOLOMON_ENC8
/**
* encode_rs8 - Calculate the parity for data values (8bit data width)
* @rs: the rs control structure
* @rsc: the rs control structure
* @data: data field of a given type
* @len: data length
* @par: parity data, must be initialized by caller (usually all 0)
@ -295,7 +325,7 @@ struct rs_control *init_rs_non_canonical(int symsize, int (*gffunc)(int),
* symbol size > 8. The calling code must take care of encoding of the
* syndrome result for storage itself.
*/
int encode_rs8(struct rs_control *rs, uint8_t *data, int len, uint16_t *par,
int encode_rs8(struct rs_control *rsc, uint8_t *data, int len, uint16_t *par,
uint16_t invmsk)
{
#include "encode_rs.c"
@ -306,7 +336,7 @@ EXPORT_SYMBOL_GPL(encode_rs8);
#ifdef CONFIG_REED_SOLOMON_DEC8
/**
* decode_rs8 - Decode codeword (8bit data width)
* @rs: the rs control structure
* @rsc: the rs control structure
* @data: data field of a given type
* @par: received parity data field
* @len: data length
@ -319,9 +349,14 @@ EXPORT_SYMBOL_GPL(encode_rs8);
* The syndrome and parity uses a uint16_t data type to enable
* symbol size > 8. The calling code must take care of decoding of the
* syndrome result and the received parity before calling this code.
*
* Note: The rs_control struct @rsc contains buffers which are used for
* decoding, so the caller has to ensure that decoder invocations are
* serialized.
*
* Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
*/
int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
int decode_rs8(struct rs_control *rsc, uint8_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
uint16_t *corr)
{
@ -333,7 +368,7 @@ EXPORT_SYMBOL_GPL(decode_rs8);
#ifdef CONFIG_REED_SOLOMON_ENC16
/**
* encode_rs16 - Calculate the parity for data values (16bit data width)
* @rs: the rs control structure
* @rsc: the rs control structure
* @data: data field of a given type
* @len: data length
* @par: parity data, must be initialized by caller (usually all 0)
@ -341,7 +376,7 @@ EXPORT_SYMBOL_GPL(decode_rs8);
*
* Each field in the data array contains up to symbol size bits of valid data.
*/
int encode_rs16(struct rs_control *rs, uint16_t *data, int len, uint16_t *par,
int encode_rs16(struct rs_control *rsc, uint16_t *data, int len, uint16_t *par,
uint16_t invmsk)
{
#include "encode_rs.c"
@ -352,7 +387,7 @@ EXPORT_SYMBOL_GPL(encode_rs16);
#ifdef CONFIG_REED_SOLOMON_DEC16
/**
* decode_rs16 - Decode codeword (16bit data width)
* @rs: the rs control structure
* @rsc: the rs control structure
* @data: data field of a given type
* @par: received parity data field
* @len: data length
@ -363,9 +398,14 @@ EXPORT_SYMBOL_GPL(encode_rs16);
* @corr: buffer to store correction bitmask on eras_pos
*
* Each field in the data array contains up to symbol size bits of valid data.
*
* Note: The rc_control struct @rsc contains buffers which are used for
* decoding, so the caller has to ensure that decoder invocations are
* serialized.
*
* Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
*/
int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
int decode_rs16(struct rs_control *rsc, uint16_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
uint16_t *corr)
{
@ -374,10 +414,6 @@ int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
EXPORT_SYMBOL_GPL(decode_rs16);
#endif
EXPORT_SYMBOL_GPL(init_rs);
EXPORT_SYMBOL_GPL(init_rs_non_canonical);
EXPORT_SYMBOL_GPL(free_rs);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Reed Solomon encoder/decoder");
MODULE_AUTHOR("Phil Karn, Thomas Gleixner");