Merge branch 'timers/range-hrtimers' into v28-range-hrtimers-for-linus-v2

Conflicts:

	kernel/time/tick-sched.c

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Thomas Gleixner 2008-10-22 09:48:06 +02:00
Родитель c4bd822e7b 592aa999d6
Коммит 268a3dcfea
30 изменённых файлов: 710 добавлений и 379 удалений

Просмотреть файл

@ -986,10 +986,12 @@ asmlinkage int
osf_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp, osf_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp,
struct timeval32 __user *tvp) struct timeval32 __user *tvp)
{ {
s64 timeout = MAX_SCHEDULE_TIMEOUT; struct timespec end_time, *to = NULL;
if (tvp) { if (tvp) {
time_t sec, usec; time_t sec, usec;
to = &end_time;
if (!access_ok(VERIFY_READ, tvp, sizeof(*tvp)) if (!access_ok(VERIFY_READ, tvp, sizeof(*tvp))
|| __get_user(sec, &tvp->tv_sec) || __get_user(sec, &tvp->tv_sec)
|| __get_user(usec, &tvp->tv_usec)) { || __get_user(usec, &tvp->tv_usec)) {
@ -999,14 +1001,13 @@ osf_select(int n, fd_set __user *inp, fd_set __user *outp, fd_set __user *exp,
if (sec < 0 || usec < 0) if (sec < 0 || usec < 0)
return -EINVAL; return -EINVAL;
if ((unsigned long) sec < MAX_SELECT_SECONDS) { if (poll_select_set_timeout(to, sec, usec * NSEC_PER_USEC))
timeout = (usec + 1000000/HZ - 1) / (1000000/HZ); return -EINVAL;
timeout += sec * (unsigned long) HZ;
}
} }
/* OSF does not copy back the remaining time. */ /* OSF does not copy back the remaining time. */
return core_sys_select(n, inp, outp, exp, &timeout); return core_sys_select(n, inp, outp, exp, to);
} }
struct rusage32 { struct rusage32 {

Просмотреть файл

@ -1114,7 +1114,7 @@ static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
struct hrtimer *p_ht = &vcpu->arch.hlt_timer; struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
if (hrtimer_cancel(p_ht)) if (hrtimer_cancel(p_ht))
hrtimer_start(p_ht, p_ht->expires, HRTIMER_MODE_ABS); hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
} }
static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data) static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)

Просмотреть файл

@ -196,7 +196,7 @@ int start_spu_profiling(unsigned int cycles_reset)
pr_debug("timer resolution: %lu\n", TICK_NSEC); pr_debug("timer resolution: %lu\n", TICK_NSEC);
kt = ktime_set(0, profiling_interval); kt = ktime_set(0, profiling_interval);
hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); hrtimer_init(&timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
timer.expires = kt; hrtimer_set_expires(&timer, kt);
timer.function = profile_spus; timer.function = profile_spus;
/* Allocate arrays for collecting SPU PC samples */ /* Allocate arrays for collecting SPU PC samples */

Просмотреть файл

@ -204,10 +204,10 @@ static int __pit_timer_fn(struct kvm_kpit_state *ps)
if (vcpu0 && waitqueue_active(&vcpu0->wq)) if (vcpu0 && waitqueue_active(&vcpu0->wq))
wake_up_interruptible(&vcpu0->wq); wake_up_interruptible(&vcpu0->wq);
pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period); hrtimer_add_expires_ns(&pt->timer, pt->period);
pt->scheduled = ktime_to_ns(pt->timer.expires); pt->scheduled = hrtimer_get_expires_ns(&pt->timer);
if (pt->period) if (pt->period)
ps->channels[0].count_load_time = pt->timer.expires; ps->channels[0].count_load_time = hrtimer_get_expires(&pt->timer);
return (pt->period == 0 ? 0 : 1); return (pt->period == 0 ? 0 : 1);
} }
@ -257,7 +257,7 @@ void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
timer = &pit->pit_state.pit_timer.timer; timer = &pit->pit_state.pit_timer.timer;
if (hrtimer_cancel(timer)) if (hrtimer_cancel(timer))
hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS); hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
} }
static void destroy_pit_timer(struct kvm_kpit_timer *pt) static void destroy_pit_timer(struct kvm_kpit_timer *pt)

Просмотреть файл

@ -946,9 +946,7 @@ static int __apic_timer_fn(struct kvm_lapic *apic)
if (apic_lvtt_period(apic)) { if (apic_lvtt_period(apic)) {
result = 1; result = 1;
apic->timer.dev.expires = ktime_add_ns( hrtimer_add_expires_ns(&apic->timer.dev, apic->timer.period);
apic->timer.dev.expires,
apic->timer.period);
} }
return result; return result;
} }
@ -1117,7 +1115,7 @@ void __kvm_migrate_apic_timer(struct kvm_vcpu *vcpu)
timer = &apic->timer.dev; timer = &apic->timer.dev;
if (hrtimer_cancel(timer)) if (hrtimer_cancel(timer))
hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS); hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
} }
void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu) void kvm_lapic_sync_from_vapic(struct kvm_vcpu *vcpu)

Просмотреть файл

@ -16,6 +16,7 @@
#include <linux/cpu.h> #include <linux/cpu.h>
#include <linux/cpuidle.h> #include <linux/cpuidle.h>
#include <linux/ktime.h> #include <linux/ktime.h>
#include <linux/hrtimer.h>
#include "cpuidle.h" #include "cpuidle.h"
@ -60,6 +61,12 @@ static void cpuidle_idle_call(void)
return; return;
} }
/*
* run any timers that can be run now, at this point
* before calculating the idle duration etc.
*/
hrtimer_peek_ahead_timers();
/* ask the governor for the next state */ /* ask the governor for the next state */
next_state = cpuidle_curr_governor->select(dev); next_state = cpuidle_curr_governor->select(dev);
if (need_resched()) if (need_resched())

Просмотреть файл

@ -659,9 +659,9 @@ static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
hr_time = ktime_set(0, poll_timeout); hr_time = ktime_set(0, poll_timeout);
if (!hrtimer_is_queued(&ap_poll_timer) || if (!hrtimer_is_queued(&ap_poll_timer) ||
!hrtimer_forward(&ap_poll_timer, ap_poll_timer.expires, hr_time)) { !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
ap_poll_timer.expires = hr_time; hrtimer_set_expires(&ap_poll_timer, hr_time);
hrtimer_start(&ap_poll_timer, hr_time, HRTIMER_MODE_ABS); hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
} }
return count; return count;
} }

Просмотреть файл

@ -1475,6 +1475,57 @@ out_ret:
#define __COMPAT_NFDBITS (8 * sizeof(compat_ulong_t)) #define __COMPAT_NFDBITS (8 * sizeof(compat_ulong_t))
static int poll_select_copy_remaining(struct timespec *end_time, void __user *p,
int timeval, int ret)
{
struct timespec ts;
if (!p)
return ret;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
/* No update for zero timeout */
if (!end_time->tv_sec && !end_time->tv_nsec)
return ret;
ktime_get_ts(&ts);
ts = timespec_sub(*end_time, ts);
if (ts.tv_sec < 0)
ts.tv_sec = ts.tv_nsec = 0;
if (timeval) {
struct compat_timeval rtv;
rtv.tv_sec = ts.tv_sec;
rtv.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
if (!copy_to_user(p, &rtv, sizeof(rtv)))
return ret;
} else {
struct compat_timespec rts;
rts.tv_sec = ts.tv_sec;
rts.tv_nsec = ts.tv_nsec;
if (!copy_to_user(p, &rts, sizeof(rts)))
return ret;
}
/*
* If an application puts its timeval in read-only memory, we
* don't want the Linux-specific update to the timeval to
* cause a fault after the select has completed
* successfully. However, because we're not updating the
* timeval, we can't restart the system call.
*/
sticky:
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
return ret;
}
/* /*
* Ooo, nasty. We need here to frob 32-bit unsigned longs to * Ooo, nasty. We need here to frob 32-bit unsigned longs to
* 64-bit unsigned longs. * 64-bit unsigned longs.
@ -1556,7 +1607,8 @@ int compat_set_fd_set(unsigned long nr, compat_ulong_t __user *ufdset,
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
int compat_core_sys_select(int n, compat_ulong_t __user *inp, int compat_core_sys_select(int n, compat_ulong_t __user *inp,
compat_ulong_t __user *outp, compat_ulong_t __user *exp, s64 *timeout) compat_ulong_t __user *outp, compat_ulong_t __user *exp,
struct timespec *end_time)
{ {
fd_set_bits fds; fd_set_bits fds;
void *bits; void *bits;
@ -1603,7 +1655,7 @@ int compat_core_sys_select(int n, compat_ulong_t __user *inp,
zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex); zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, timeout); ret = do_select(n, &fds, end_time);
if (ret < 0) if (ret < 0)
goto out; goto out;
@ -1629,7 +1681,7 @@ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp,
compat_ulong_t __user *outp, compat_ulong_t __user *exp, compat_ulong_t __user *outp, compat_ulong_t __user *exp,
struct compat_timeval __user *tvp) struct compat_timeval __user *tvp)
{ {
s64 timeout = -1; struct timespec end_time, *to = NULL;
struct compat_timeval tv; struct compat_timeval tv;
int ret; int ret;
@ -1637,43 +1689,14 @@ asmlinkage long compat_sys_select(int n, compat_ulong_t __user *inp,
if (copy_from_user(&tv, tvp, sizeof(tv))) if (copy_from_user(&tv, tvp, sizeof(tv)))
return -EFAULT; return -EFAULT;
if (tv.tv_sec < 0 || tv.tv_usec < 0) to = &end_time;
if (poll_select_set_timeout(to, tv.tv_sec,
tv.tv_usec * NSEC_PER_USEC))
return -EINVAL; return -EINVAL;
/* Cast to u64 to make GCC stop complaining */
if ((u64)tv.tv_sec >= (u64)MAX_INT64_SECONDS)
timeout = -1; /* infinite */
else {
timeout = DIV_ROUND_UP(tv.tv_usec, 1000000/HZ);
timeout += tv.tv_sec * HZ;
}
} }
ret = compat_core_sys_select(n, inp, outp, exp, &timeout); ret = compat_core_sys_select(n, inp, outp, exp, to);
ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
if (tvp) {
struct compat_timeval rtv;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
rtv.tv_usec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ));
rtv.tv_sec = timeout;
if (compat_timeval_compare(&rtv, &tv) >= 0)
rtv = tv;
if (copy_to_user(tvp, &rtv, sizeof(rtv))) {
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
}
}
return ret; return ret;
} }
@ -1686,15 +1709,16 @@ asmlinkage long compat_sys_pselect7(int n, compat_ulong_t __user *inp,
{ {
compat_sigset_t ss32; compat_sigset_t ss32;
sigset_t ksigmask, sigsaved; sigset_t ksigmask, sigsaved;
s64 timeout = MAX_SCHEDULE_TIMEOUT;
struct compat_timespec ts; struct compat_timespec ts;
struct timespec end_time, *to = NULL;
int ret; int ret;
if (tsp) { if (tsp) {
if (copy_from_user(&ts, tsp, sizeof(ts))) if (copy_from_user(&ts, tsp, sizeof(ts)))
return -EFAULT; return -EFAULT;
if (ts.tv_sec < 0 || ts.tv_nsec < 0) to = &end_time;
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
return -EINVAL; return -EINVAL;
} }
@ -1709,51 +1733,8 @@ asmlinkage long compat_sys_pselect7(int n, compat_ulong_t __user *inp,
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
} }
do { ret = compat_core_sys_select(n, inp, outp, exp, to);
if (tsp) { ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
if ((unsigned long)ts.tv_sec < MAX_SELECT_SECONDS) {
timeout = DIV_ROUND_UP(ts.tv_nsec, 1000000000/HZ);
timeout += ts.tv_sec * (unsigned long)HZ;
ts.tv_sec = 0;
ts.tv_nsec = 0;
} else {
ts.tv_sec -= MAX_SELECT_SECONDS;
timeout = MAX_SELECT_SECONDS * HZ;
}
}
ret = compat_core_sys_select(n, inp, outp, exp, &timeout);
} while (!ret && !timeout && tsp && (ts.tv_sec || ts.tv_nsec));
if (tsp) {
struct compat_timespec rts;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
rts.tv_sec = timeout / HZ;
rts.tv_nsec = (timeout % HZ) * (NSEC_PER_SEC/HZ);
if (rts.tv_nsec >= NSEC_PER_SEC) {
rts.tv_sec++;
rts.tv_nsec -= NSEC_PER_SEC;
}
if (compat_timespec_compare(&rts, &ts) >= 0)
rts = ts;
if (copy_to_user(tsp, &rts, sizeof(rts))) {
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
}
}
if (ret == -ERESTARTNOHAND) { if (ret == -ERESTARTNOHAND) {
/* /*
@ -1798,18 +1779,16 @@ asmlinkage long compat_sys_ppoll(struct pollfd __user *ufds,
compat_sigset_t ss32; compat_sigset_t ss32;
sigset_t ksigmask, sigsaved; sigset_t ksigmask, sigsaved;
struct compat_timespec ts; struct compat_timespec ts;
s64 timeout = -1; struct timespec end_time, *to = NULL;
int ret; int ret;
if (tsp) { if (tsp) {
if (copy_from_user(&ts, tsp, sizeof(ts))) if (copy_from_user(&ts, tsp, sizeof(ts)))
return -EFAULT; return -EFAULT;
/* We assume that ts.tv_sec is always lower than to = &end_time;
the number of seconds that can be expressed in if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
an s64. Otherwise the compiler bitches at us */ return -EINVAL;
timeout = DIV_ROUND_UP(ts.tv_nsec, 1000000000/HZ);
timeout += ts.tv_sec * HZ;
} }
if (sigmask) { if (sigmask) {
@ -1823,7 +1802,7 @@ asmlinkage long compat_sys_ppoll(struct pollfd __user *ufds,
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
} }
ret = do_sys_poll(ufds, nfds, &timeout); ret = do_sys_poll(ufds, nfds, to);
/* We can restart this syscall, usually */ /* We can restart this syscall, usually */
if (ret == -EINTR) { if (ret == -EINTR) {
@ -1841,31 +1820,7 @@ asmlinkage long compat_sys_ppoll(struct pollfd __user *ufds,
} else if (sigmask) } else if (sigmask)
sigprocmask(SIG_SETMASK, &sigsaved, NULL); sigprocmask(SIG_SETMASK, &sigsaved, NULL);
if (tsp && timeout >= 0) { ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
struct compat_timespec rts;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
/* Yes, we know it's actually an s64, but it's also positive. */
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
1000;
rts.tv_sec = timeout;
if (compat_timespec_compare(&rts, &ts) >= 0)
rts = ts;
if (copy_to_user(tsp, &rts, sizeof(rts))) {
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND && timeout >= 0)
ret = -EINTR;
}
}
return ret; return ret;
} }

Просмотреть файл

@ -24,9 +24,64 @@
#include <linux/fdtable.h> #include <linux/fdtable.h>
#include <linux/fs.h> #include <linux/fs.h>
#include <linux/rcupdate.h> #include <linux/rcupdate.h>
#include <linux/hrtimer.h>
#include <asm/uaccess.h> #include <asm/uaccess.h>
/*
* Estimate expected accuracy in ns from a timeval.
*
* After quite a bit of churning around, we've settled on
* a simple thing of taking 0.1% of the timeout as the
* slack, with a cap of 100 msec.
* "nice" tasks get a 0.5% slack instead.
*
* Consider this comment an open invitation to come up with even
* better solutions..
*/
static long __estimate_accuracy(struct timespec *tv)
{
long slack;
int divfactor = 1000;
if (task_nice(current) > 0)
divfactor = divfactor / 5;
slack = tv->tv_nsec / divfactor;
slack += tv->tv_sec * (NSEC_PER_SEC/divfactor);
if (slack > 100 * NSEC_PER_MSEC)
slack = 100 * NSEC_PER_MSEC;
if (slack < 0)
slack = 0;
return slack;
}
static long estimate_accuracy(struct timespec *tv)
{
unsigned long ret;
struct timespec now;
/*
* Realtime tasks get a slack of 0 for obvious reasons.
*/
if (rt_task(current))
return 0;
ktime_get_ts(&now);
now = timespec_sub(*tv, now);
ret = __estimate_accuracy(&now);
if (ret < current->timer_slack_ns)
return current->timer_slack_ns;
return ret;
}
struct poll_table_page { struct poll_table_page {
struct poll_table_page * next; struct poll_table_page * next;
struct poll_table_entry * entry; struct poll_table_entry * entry;
@ -130,6 +185,79 @@ static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,
add_wait_queue(wait_address, &entry->wait); add_wait_queue(wait_address, &entry->wait);
} }
/**
* poll_select_set_timeout - helper function to setup the timeout value
* @to: pointer to timespec variable for the final timeout
* @sec: seconds (from user space)
* @nsec: nanoseconds (from user space)
*
* Note, we do not use a timespec for the user space value here, That
* way we can use the function for timeval and compat interfaces as well.
*
* Returns -EINVAL if sec/nsec are not normalized. Otherwise 0.
*/
int poll_select_set_timeout(struct timespec *to, long sec, long nsec)
{
struct timespec ts = {.tv_sec = sec, .tv_nsec = nsec};
if (!timespec_valid(&ts))
return -EINVAL;
/* Optimize for the zero timeout value here */
if (!sec && !nsec) {
to->tv_sec = to->tv_nsec = 0;
} else {
ktime_get_ts(to);
*to = timespec_add_safe(*to, ts);
}
return 0;
}
static int poll_select_copy_remaining(struct timespec *end_time, void __user *p,
int timeval, int ret)
{
struct timespec rts;
struct timeval rtv;
if (!p)
return ret;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
/* No update for zero timeout */
if (!end_time->tv_sec && !end_time->tv_nsec)
return ret;
ktime_get_ts(&rts);
rts = timespec_sub(*end_time, rts);
if (rts.tv_sec < 0)
rts.tv_sec = rts.tv_nsec = 0;
if (timeval) {
rtv.tv_sec = rts.tv_sec;
rtv.tv_usec = rts.tv_nsec / NSEC_PER_USEC;
if (!copy_to_user(p, &rtv, sizeof(rtv)))
return ret;
} else if (!copy_to_user(p, &rts, sizeof(rts)))
return ret;
/*
* If an application puts its timeval in read-only memory, we
* don't want the Linux-specific update to the timeval to
* cause a fault after the select has completed
* successfully. However, because we're not updating the
* timeval, we can't restart the system call.
*/
sticky:
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
return ret;
}
#define FDS_IN(fds, n) (fds->in + n) #define FDS_IN(fds, n) (fds->in + n)
#define FDS_OUT(fds, n) (fds->out + n) #define FDS_OUT(fds, n) (fds->out + n)
#define FDS_EX(fds, n) (fds->ex + n) #define FDS_EX(fds, n) (fds->ex + n)
@ -182,11 +310,13 @@ get_max:
#define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR) #define POLLOUT_SET (POLLWRBAND | POLLWRNORM | POLLOUT | POLLERR)
#define POLLEX_SET (POLLPRI) #define POLLEX_SET (POLLPRI)
int do_select(int n, fd_set_bits *fds, s64 *timeout) int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{ {
ktime_t expire, *to = NULL;
struct poll_wqueues table; struct poll_wqueues table;
poll_table *wait; poll_table *wait;
int retval, i; int retval, i, timed_out = 0;
unsigned long slack = 0;
rcu_read_lock(); rcu_read_lock();
retval = max_select_fd(n, fds); retval = max_select_fd(n, fds);
@ -198,12 +328,17 @@ int do_select(int n, fd_set_bits *fds, s64 *timeout)
poll_initwait(&table); poll_initwait(&table);
wait = &table.pt; wait = &table.pt;
if (!*timeout) if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
wait = NULL; wait = NULL;
timed_out = 1;
}
if (end_time && !timed_out)
slack = estimate_accuracy(end_time);
retval = 0; retval = 0;
for (;;) { for (;;) {
unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp; unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
long __timeout;
set_current_state(TASK_INTERRUPTIBLE); set_current_state(TASK_INTERRUPTIBLE);
@ -259,27 +394,25 @@ int do_select(int n, fd_set_bits *fds, s64 *timeout)
cond_resched(); cond_resched();
} }
wait = NULL; wait = NULL;
if (retval || !*timeout || signal_pending(current)) if (retval || timed_out || signal_pending(current))
break; break;
if (table.error) { if (table.error) {
retval = table.error; retval = table.error;
break; break;
} }
if (*timeout < 0) { /*
/* Wait indefinitely */ * If this is the first loop and we have a timeout
__timeout = MAX_SCHEDULE_TIMEOUT; * given, then we convert to ktime_t and set the to
} else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT - 1)) { * pointer to the expiry value.
/* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in a loop */ */
__timeout = MAX_SCHEDULE_TIMEOUT - 1; if (end_time && !to) {
*timeout -= __timeout; expire = timespec_to_ktime(*end_time);
} else { to = &expire;
__timeout = *timeout;
*timeout = 0;
} }
__timeout = schedule_timeout(__timeout);
if (*timeout >= 0) if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
*timeout += __timeout; timed_out = 1;
} }
__set_current_state(TASK_RUNNING); __set_current_state(TASK_RUNNING);
@ -300,7 +433,7 @@ int do_select(int n, fd_set_bits *fds, s64 *timeout)
((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1)
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, s64 *timeout) fd_set __user *exp, struct timespec *end_time)
{ {
fd_set_bits fds; fd_set_bits fds;
void *bits; void *bits;
@ -351,7 +484,7 @@ int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_out);
zero_fd_set(n, fds.res_ex); zero_fd_set(n, fds.res_ex);
ret = do_select(n, &fds, timeout); ret = do_select(n, &fds, end_time);
if (ret < 0) if (ret < 0)
goto out; goto out;
@ -377,7 +510,7 @@ out_nofds:
asmlinkage long sys_select(int n, fd_set __user *inp, fd_set __user *outp, asmlinkage long sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timeval __user *tvp) fd_set __user *exp, struct timeval __user *tvp)
{ {
s64 timeout = -1; struct timespec end_time, *to = NULL;
struct timeval tv; struct timeval tv;
int ret; int ret;
@ -385,43 +518,14 @@ asmlinkage long sys_select(int n, fd_set __user *inp, fd_set __user *outp,
if (copy_from_user(&tv, tvp, sizeof(tv))) if (copy_from_user(&tv, tvp, sizeof(tv)))
return -EFAULT; return -EFAULT;
if (tv.tv_sec < 0 || tv.tv_usec < 0) to = &end_time;
if (poll_select_set_timeout(to, tv.tv_sec,
tv.tv_usec * NSEC_PER_USEC))
return -EINVAL; return -EINVAL;
/* Cast to u64 to make GCC stop complaining */
if ((u64)tv.tv_sec >= (u64)MAX_INT64_SECONDS)
timeout = -1; /* infinite */
else {
timeout = DIV_ROUND_UP(tv.tv_usec, USEC_PER_SEC/HZ);
timeout += tv.tv_sec * HZ;
}
} }
ret = core_sys_select(n, inp, outp, exp, &timeout); ret = core_sys_select(n, inp, outp, exp, to);
ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
if (tvp) {
struct timeval rtv;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
rtv.tv_usec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ));
rtv.tv_sec = timeout;
if (timeval_compare(&rtv, &tv) >= 0)
rtv = tv;
if (copy_to_user(tvp, &rtv, sizeof(rtv))) {
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
}
}
return ret; return ret;
} }
@ -431,25 +535,17 @@ asmlinkage long sys_pselect7(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, struct timespec __user *tsp, fd_set __user *exp, struct timespec __user *tsp,
const sigset_t __user *sigmask, size_t sigsetsize) const sigset_t __user *sigmask, size_t sigsetsize)
{ {
s64 timeout = MAX_SCHEDULE_TIMEOUT;
sigset_t ksigmask, sigsaved; sigset_t ksigmask, sigsaved;
struct timespec ts; struct timespec ts, end_time, *to = NULL;
int ret; int ret;
if (tsp) { if (tsp) {
if (copy_from_user(&ts, tsp, sizeof(ts))) if (copy_from_user(&ts, tsp, sizeof(ts)))
return -EFAULT; return -EFAULT;
if (ts.tv_sec < 0 || ts.tv_nsec < 0) to = &end_time;
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
return -EINVAL; return -EINVAL;
/* Cast to u64 to make GCC stop complaining */
if ((u64)ts.tv_sec >= (u64)MAX_INT64_SECONDS)
timeout = -1; /* infinite */
else {
timeout = DIV_ROUND_UP(ts.tv_nsec, NSEC_PER_SEC/HZ);
timeout += ts.tv_sec * HZ;
}
} }
if (sigmask) { if (sigmask) {
@ -463,32 +559,8 @@ asmlinkage long sys_pselect7(int n, fd_set __user *inp, fd_set __user *outp,
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
} }
ret = core_sys_select(n, inp, outp, exp, &timeout); ret = core_sys_select(n, inp, outp, exp, &end_time);
ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
if (tsp) {
struct timespec rts;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
1000;
rts.tv_sec = timeout;
if (timespec_compare(&rts, &ts) >= 0)
rts = ts;
if (copy_to_user(tsp, &rts, sizeof(rts))) {
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND)
ret = -EINTR;
}
}
if (ret == -ERESTARTNOHAND) { if (ret == -ERESTARTNOHAND) {
/* /*
@ -574,18 +646,24 @@ static inline unsigned int do_pollfd(struct pollfd *pollfd, poll_table *pwait)
} }
static int do_poll(unsigned int nfds, struct poll_list *list, static int do_poll(unsigned int nfds, struct poll_list *list,
struct poll_wqueues *wait, s64 *timeout) struct poll_wqueues *wait, struct timespec *end_time)
{ {
int count = 0;
poll_table* pt = &wait->pt; poll_table* pt = &wait->pt;
ktime_t expire, *to = NULL;
int timed_out = 0, count = 0;
unsigned long slack = 0;
/* Optimise the no-wait case */ /* Optimise the no-wait case */
if (!(*timeout)) if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
pt = NULL; pt = NULL;
timed_out = 1;
}
if (end_time && !timed_out)
slack = estimate_accuracy(end_time);
for (;;) { for (;;) {
struct poll_list *walk; struct poll_list *walk;
long __timeout;
set_current_state(TASK_INTERRUPTIBLE); set_current_state(TASK_INTERRUPTIBLE);
for (walk = list; walk != NULL; walk = walk->next) { for (walk = list; walk != NULL; walk = walk->next) {
@ -617,27 +695,21 @@ static int do_poll(unsigned int nfds, struct poll_list *list,
if (signal_pending(current)) if (signal_pending(current))
count = -EINTR; count = -EINTR;
} }
if (count || !*timeout) if (count || timed_out)
break; break;
if (*timeout < 0) {
/* Wait indefinitely */
__timeout = MAX_SCHEDULE_TIMEOUT;
} else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT-1)) {
/* /*
* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in * If this is the first loop and we have a timeout
* a loop * given, then we convert to ktime_t and set the to
* pointer to the expiry value.
*/ */
__timeout = MAX_SCHEDULE_TIMEOUT - 1; if (end_time && !to) {
*timeout -= __timeout; expire = timespec_to_ktime(*end_time);
} else { to = &expire;
__timeout = *timeout;
*timeout = 0;
} }
__timeout = schedule_timeout(__timeout); if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
if (*timeout >= 0) timed_out = 1;
*timeout += __timeout;
} }
__set_current_state(TASK_RUNNING); __set_current_state(TASK_RUNNING);
return count; return count;
@ -646,7 +718,8 @@ static int do_poll(unsigned int nfds, struct poll_list *list,
#define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \ #define N_STACK_PPS ((sizeof(stack_pps) - sizeof(struct poll_list)) / \
sizeof(struct pollfd)) sizeof(struct pollfd))
int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, s64 *timeout) int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds,
struct timespec *end_time)
{ {
struct poll_wqueues table; struct poll_wqueues table;
int err = -EFAULT, fdcount, len, size; int err = -EFAULT, fdcount, len, size;
@ -686,7 +759,7 @@ int do_sys_poll(struct pollfd __user *ufds, unsigned int nfds, s64 *timeout)
} }
poll_initwait(&table); poll_initwait(&table);
fdcount = do_poll(nfds, head, &table, timeout); fdcount = do_poll(nfds, head, &table, end_time);
poll_freewait(&table); poll_freewait(&table);
for (walk = head; walk; walk = walk->next) { for (walk = head; walk; walk = walk->next) {
@ -712,16 +785,21 @@ out_fds:
static long do_restart_poll(struct restart_block *restart_block) static long do_restart_poll(struct restart_block *restart_block)
{ {
struct pollfd __user *ufds = (struct pollfd __user*)restart_block->arg0; struct pollfd __user *ufds = restart_block->poll.ufds;
int nfds = restart_block->arg1; int nfds = restart_block->poll.nfds;
s64 timeout = ((s64)restart_block->arg3<<32) | (s64)restart_block->arg2; struct timespec *to = NULL, end_time;
int ret; int ret;
ret = do_sys_poll(ufds, nfds, &timeout); if (restart_block->poll.has_timeout) {
end_time.tv_sec = restart_block->poll.tv_sec;
end_time.tv_nsec = restart_block->poll.tv_nsec;
to = &end_time;
}
ret = do_sys_poll(ufds, nfds, to);
if (ret == -EINTR) { if (ret == -EINTR) {
restart_block->fn = do_restart_poll; restart_block->fn = do_restart_poll;
restart_block->arg2 = timeout & 0xFFFFFFFF;
restart_block->arg3 = (u64)timeout >> 32;
ret = -ERESTART_RESTARTBLOCK; ret = -ERESTART_RESTARTBLOCK;
} }
return ret; return ret;
@ -730,31 +808,32 @@ static long do_restart_poll(struct restart_block *restart_block)
asmlinkage long sys_poll(struct pollfd __user *ufds, unsigned int nfds, asmlinkage long sys_poll(struct pollfd __user *ufds, unsigned int nfds,
long timeout_msecs) long timeout_msecs)
{ {
s64 timeout_jiffies; struct timespec end_time, *to = NULL;
int ret; int ret;
if (timeout_msecs > 0) { if (timeout_msecs >= 0) {
#if HZ > 1000 to = &end_time;
/* We can only overflow if HZ > 1000 */ poll_select_set_timeout(to, timeout_msecs / MSEC_PER_SEC,
if (timeout_msecs / 1000 > (s64)0x7fffffffffffffffULL / (s64)HZ) NSEC_PER_MSEC * (timeout_msecs % MSEC_PER_SEC));
timeout_jiffies = -1;
else
#endif
timeout_jiffies = msecs_to_jiffies(timeout_msecs) + 1;
} else {
/* Infinite (< 0) or no (0) timeout */
timeout_jiffies = timeout_msecs;
} }
ret = do_sys_poll(ufds, nfds, &timeout_jiffies); ret = do_sys_poll(ufds, nfds, to);
if (ret == -EINTR) { if (ret == -EINTR) {
struct restart_block *restart_block; struct restart_block *restart_block;
restart_block = &current_thread_info()->restart_block; restart_block = &current_thread_info()->restart_block;
restart_block->fn = do_restart_poll; restart_block->fn = do_restart_poll;
restart_block->arg0 = (unsigned long)ufds; restart_block->poll.ufds = ufds;
restart_block->arg1 = nfds; restart_block->poll.nfds = nfds;
restart_block->arg2 = timeout_jiffies & 0xFFFFFFFF;
restart_block->arg3 = (u64)timeout_jiffies >> 32; if (timeout_msecs >= 0) {
restart_block->poll.tv_sec = end_time.tv_sec;
restart_block->poll.tv_nsec = end_time.tv_nsec;
restart_block->poll.has_timeout = 1;
} else
restart_block->poll.has_timeout = 0;
ret = -ERESTART_RESTARTBLOCK; ret = -ERESTART_RESTARTBLOCK;
} }
return ret; return ret;
@ -766,21 +845,16 @@ asmlinkage long sys_ppoll(struct pollfd __user *ufds, unsigned int nfds,
size_t sigsetsize) size_t sigsetsize)
{ {
sigset_t ksigmask, sigsaved; sigset_t ksigmask, sigsaved;
struct timespec ts; struct timespec ts, end_time, *to = NULL;
s64 timeout = -1;
int ret; int ret;
if (tsp) { if (tsp) {
if (copy_from_user(&ts, tsp, sizeof(ts))) if (copy_from_user(&ts, tsp, sizeof(ts)))
return -EFAULT; return -EFAULT;
/* Cast to u64 to make GCC stop complaining */ to = &end_time;
if ((u64)ts.tv_sec >= (u64)MAX_INT64_SECONDS) if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
timeout = -1; /* infinite */ return -EINVAL;
else {
timeout = DIV_ROUND_UP(ts.tv_nsec, NSEC_PER_SEC/HZ);
timeout += ts.tv_sec * HZ;
}
} }
if (sigmask) { if (sigmask) {
@ -794,7 +868,7 @@ asmlinkage long sys_ppoll(struct pollfd __user *ufds, unsigned int nfds,
sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
} }
ret = do_sys_poll(ufds, nfds, &timeout); ret = do_sys_poll(ufds, nfds, to);
/* We can restart this syscall, usually */ /* We can restart this syscall, usually */
if (ret == -EINTR) { if (ret == -EINTR) {
@ -812,31 +886,7 @@ asmlinkage long sys_ppoll(struct pollfd __user *ufds, unsigned int nfds,
} else if (sigmask) } else if (sigmask)
sigprocmask(SIG_SETMASK, &sigsaved, NULL); sigprocmask(SIG_SETMASK, &sigsaved, NULL);
if (tsp && timeout >= 0) { ret = poll_select_copy_remaining(&end_time, tsp, 0, ret);
struct timespec rts;
if (current->personality & STICKY_TIMEOUTS)
goto sticky;
/* Yes, we know it's actually an s64, but it's also positive. */
rts.tv_nsec = jiffies_to_usecs(do_div((*(u64*)&timeout), HZ)) *
1000;
rts.tv_sec = timeout;
if (timespec_compare(&rts, &ts) >= 0)
rts = ts;
if (copy_to_user(tsp, &rts, sizeof(rts))) {
sticky:
/*
* If an application puts its timeval in read-only
* memory, we don't want the Linux-specific update to
* the timeval to cause a fault after the select has
* completed successfully. However, because we're not
* updating the timeval, we can't restart the system
* call.
*/
if (ret == -ERESTARTNOHAND && timeout >= 0)
ret = -EINTR;
}
}
return ret; return ret;
} }

Просмотреть файл

@ -52,11 +52,9 @@ static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx) static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
{ {
ktime_t now, remaining; ktime_t remaining;
now = ctx->tmr.base->get_time();
remaining = ktime_sub(ctx->tmr.expires, now);
remaining = hrtimer_expires_remaining(&ctx->tmr);
return remaining.tv64 < 0 ? ktime_set(0, 0): remaining; return remaining.tv64 < 0 ? ktime_set(0, 0): remaining;
} }
@ -74,7 +72,7 @@ static void timerfd_setup(struct timerfd_ctx *ctx, int flags,
ctx->ticks = 0; ctx->ticks = 0;
ctx->tintv = timespec_to_ktime(ktmr->it_interval); ctx->tintv = timespec_to_ktime(ktmr->it_interval);
hrtimer_init(&ctx->tmr, ctx->clockid, htmode); hrtimer_init(&ctx->tmr, ctx->clockid, htmode);
ctx->tmr.expires = texp; hrtimer_set_expires(&ctx->tmr, texp);
ctx->tmr.function = timerfd_tmrproc; ctx->tmr.function = timerfd_tmrproc;
if (texp.tv64 != 0) if (texp.tv64 != 0)
hrtimer_start(&ctx->tmr, texp, htmode); hrtimer_start(&ctx->tmr, texp, htmode);

Просмотреть файл

@ -20,6 +20,8 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/list.h> #include <linux/list.h>
#include <linux/wait.h> #include <linux/wait.h>
#include <linux/percpu.h>
struct hrtimer_clock_base; struct hrtimer_clock_base;
struct hrtimer_cpu_base; struct hrtimer_cpu_base;
@ -101,9 +103,14 @@ enum hrtimer_cb_mode {
/** /**
* struct hrtimer - the basic hrtimer structure * struct hrtimer - the basic hrtimer structure
* @node: red black tree node for time ordered insertion * @node: red black tree node for time ordered insertion
* @expires: the absolute expiry time in the hrtimers internal * @_expires: the absolute expiry time in the hrtimers internal
* representation. The time is related to the clock on * representation. The time is related to the clock on
* which the timer is based. * which the timer is based. Is setup by adding
* slack to the _softexpires value. For non range timers
* identical to _softexpires.
* @_softexpires: the absolute earliest expiry time of the hrtimer.
* The time which was given as expiry time when the timer
* was armed.
* @function: timer expiry callback function * @function: timer expiry callback function
* @base: pointer to the timer base (per cpu and per clock) * @base: pointer to the timer base (per cpu and per clock)
* @state: state information (See bit values above) * @state: state information (See bit values above)
@ -121,7 +128,8 @@ enum hrtimer_cb_mode {
*/ */
struct hrtimer { struct hrtimer {
struct rb_node node; struct rb_node node;
ktime_t expires; ktime_t _expires;
ktime_t _softexpires;
enum hrtimer_restart (*function)(struct hrtimer *); enum hrtimer_restart (*function)(struct hrtimer *);
struct hrtimer_clock_base *base; struct hrtimer_clock_base *base;
unsigned long state; unsigned long state;
@ -201,6 +209,71 @@ struct hrtimer_cpu_base {
#endif #endif
}; };
static inline void hrtimer_set_expires(struct hrtimer *timer, ktime_t time)
{
timer->_expires = time;
timer->_softexpires = time;
}
static inline void hrtimer_set_expires_range(struct hrtimer *timer, ktime_t time, ktime_t delta)
{
timer->_softexpires = time;
timer->_expires = ktime_add_safe(time, delta);
}
static inline void hrtimer_set_expires_range_ns(struct hrtimer *timer, ktime_t time, unsigned long delta)
{
timer->_softexpires = time;
timer->_expires = ktime_add_safe(time, ns_to_ktime(delta));
}
static inline void hrtimer_set_expires_tv64(struct hrtimer *timer, s64 tv64)
{
timer->_expires.tv64 = tv64;
timer->_softexpires.tv64 = tv64;
}
static inline void hrtimer_add_expires(struct hrtimer *timer, ktime_t time)
{
timer->_expires = ktime_add_safe(timer->_expires, time);
timer->_softexpires = ktime_add_safe(timer->_softexpires, time);
}
static inline void hrtimer_add_expires_ns(struct hrtimer *timer, unsigned long ns)
{
timer->_expires = ktime_add_ns(timer->_expires, ns);
timer->_softexpires = ktime_add_ns(timer->_softexpires, ns);
}
static inline ktime_t hrtimer_get_expires(const struct hrtimer *timer)
{
return timer->_expires;
}
static inline ktime_t hrtimer_get_softexpires(const struct hrtimer *timer)
{
return timer->_softexpires;
}
static inline s64 hrtimer_get_expires_tv64(const struct hrtimer *timer)
{
return timer->_expires.tv64;
}
static inline s64 hrtimer_get_softexpires_tv64(const struct hrtimer *timer)
{
return timer->_softexpires.tv64;
}
static inline s64 hrtimer_get_expires_ns(const struct hrtimer *timer)
{
return ktime_to_ns(timer->_expires);
}
static inline ktime_t hrtimer_expires_remaining(const struct hrtimer *timer)
{
return ktime_sub(timer->_expires, timer->base->get_time());
}
#ifdef CONFIG_HIGH_RES_TIMERS #ifdef CONFIG_HIGH_RES_TIMERS
struct clock_event_device; struct clock_event_device;
@ -221,6 +294,8 @@ static inline int hrtimer_is_hres_active(struct hrtimer *timer)
return timer->base->cpu_base->hres_active; return timer->base->cpu_base->hres_active;
} }
extern void hrtimer_peek_ahead_timers(void);
/* /*
* The resolution of the clocks. The resolution value is returned in * The resolution of the clocks. The resolution value is returned in
* the clock_getres() system call to give application programmers an * the clock_getres() system call to give application programmers an
@ -243,6 +318,7 @@ static inline int hrtimer_is_hres_active(struct hrtimer *timer)
* is expired in the next softirq when the clock was advanced. * is expired in the next softirq when the clock was advanced.
*/ */
static inline void clock_was_set(void) { } static inline void clock_was_set(void) { }
static inline void hrtimer_peek_ahead_timers(void) { }
static inline void hres_timers_resume(void) { } static inline void hres_timers_resume(void) { }
@ -264,6 +340,10 @@ static inline int hrtimer_is_hres_active(struct hrtimer *timer)
extern ktime_t ktime_get(void); extern ktime_t ktime_get(void);
extern ktime_t ktime_get_real(void); extern ktime_t ktime_get_real(void);
DECLARE_PER_CPU(struct tick_device, tick_cpu_device);
/* Exported timer functions: */ /* Exported timer functions: */
/* Initialize timers: */ /* Initialize timers: */
@ -288,12 +368,25 @@ static inline void destroy_hrtimer_on_stack(struct hrtimer *timer) { }
/* Basic timer operations: */ /* Basic timer operations: */
extern int hrtimer_start(struct hrtimer *timer, ktime_t tim, extern int hrtimer_start(struct hrtimer *timer, ktime_t tim,
const enum hrtimer_mode mode); const enum hrtimer_mode mode);
extern int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
unsigned long range_ns, const enum hrtimer_mode mode);
extern int hrtimer_cancel(struct hrtimer *timer); extern int hrtimer_cancel(struct hrtimer *timer);
extern int hrtimer_try_to_cancel(struct hrtimer *timer); extern int hrtimer_try_to_cancel(struct hrtimer *timer);
static inline int hrtimer_start_expires(struct hrtimer *timer,
enum hrtimer_mode mode)
{
unsigned long delta;
ktime_t soft, hard;
soft = hrtimer_get_softexpires(timer);
hard = hrtimer_get_expires(timer);
delta = ktime_to_ns(ktime_sub(hard, soft));
return hrtimer_start_range_ns(timer, soft, delta, mode);
}
static inline int hrtimer_restart(struct hrtimer *timer) static inline int hrtimer_restart(struct hrtimer *timer)
{ {
return hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS); return hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
} }
/* Query timers: */ /* Query timers: */
@ -350,6 +443,10 @@ extern long hrtimer_nanosleep_restart(struct restart_block *restart_block);
extern void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, extern void hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
struct task_struct *tsk); struct task_struct *tsk);
extern int schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
const enum hrtimer_mode mode);
extern int schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode);
/* Soft interrupt function to run the hrtimer queues: */ /* Soft interrupt function to run the hrtimer queues: */
extern void hrtimer_run_queues(void); extern void hrtimer_run_queues(void);
extern void hrtimer_run_pending(void); extern void hrtimer_run_pending(void);

Просмотреть файл

@ -170,6 +170,7 @@ extern struct group_info init_groups;
.cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \ .cpu_timers = INIT_CPU_TIMERS(tsk.cpu_timers), \
.fs_excl = ATOMIC_INIT(0), \ .fs_excl = ATOMIC_INIT(0), \
.pi_lock = __SPIN_LOCK_UNLOCKED(tsk.pi_lock), \ .pi_lock = __SPIN_LOCK_UNLOCKED(tsk.pi_lock), \
.timer_slack_ns = 50000, /* 50 usec default slack */ \
.pids = { \ .pids = { \
[PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \ [PIDTYPE_PID] = INIT_PID_LINK(PIDTYPE_PID), \
[PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \ [PIDTYPE_PGID] = INIT_PID_LINK(PIDTYPE_PGID), \

Просмотреть файл

@ -114,11 +114,13 @@ void zero_fd_set(unsigned long nr, unsigned long *fdset)
#define MAX_INT64_SECONDS (((s64)(~((u64)0)>>1)/HZ)-1) #define MAX_INT64_SECONDS (((s64)(~((u64)0)>>1)/HZ)-1)
extern int do_select(int n, fd_set_bits *fds, s64 *timeout); extern int do_select(int n, fd_set_bits *fds, struct timespec *end_time);
extern int do_sys_poll(struct pollfd __user * ufds, unsigned int nfds, extern int do_sys_poll(struct pollfd __user * ufds, unsigned int nfds,
s64 *timeout); struct timespec *end_time);
extern int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp, extern int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
fd_set __user *exp, s64 *timeout); fd_set __user *exp, struct timespec *end_time);
extern int poll_select_set_timeout(struct timespec *to, long sec, long nsec);
#endif /* KERNEL */ #endif /* KERNEL */

Просмотреть файл

@ -78,4 +78,11 @@
#define PR_GET_SECUREBITS 27 #define PR_GET_SECUREBITS 27
#define PR_SET_SECUREBITS 28 #define PR_SET_SECUREBITS 28
/*
* Get/set the timerslack as used by poll/select/nanosleep
* A value of 0 means "use default"
*/
#define PR_SET_TIMERSLACK 29
#define PR_GET_TIMERSLACK 30
#endif /* _LINUX_PRCTL_H */ #endif /* _LINUX_PRCTL_H */

Просмотреть файл

@ -1346,6 +1346,12 @@ struct task_struct {
int latency_record_count; int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT]; struct latency_record latency_record[LT_SAVECOUNT];
#endif #endif
/*
* time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
unsigned long timer_slack_ns;
unsigned long default_timer_slack_ns;
}; };
/* /*

Просмотреть файл

@ -38,6 +38,14 @@ struct restart_block {
#endif #endif
u64 expires; u64 expires;
} nanosleep; } nanosleep;
/* For poll */
struct {
struct pollfd __user *ufds;
int nfds;
int has_timeout;
unsigned long tv_sec;
unsigned long tv_nsec;
} poll;
}; };
}; };

Просмотреть файл

@ -40,6 +40,8 @@ extern struct timezone sys_tz;
#define NSEC_PER_SEC 1000000000L #define NSEC_PER_SEC 1000000000L
#define FSEC_PER_SEC 1000000000000000L #define FSEC_PER_SEC 1000000000000000L
#define TIME_T_MAX (time_t)((1UL << ((sizeof(time_t) << 3) - 1)) - 1)
static inline int timespec_equal(const struct timespec *a, static inline int timespec_equal(const struct timespec *a,
const struct timespec *b) const struct timespec *b)
{ {
@ -74,6 +76,8 @@ extern unsigned long mktime(const unsigned int year, const unsigned int mon,
const unsigned int min, const unsigned int sec); const unsigned int min, const unsigned int sec);
extern void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec); extern void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec);
extern struct timespec timespec_add_safe(const struct timespec lhs,
const struct timespec rhs);
/* /*
* sub = lhs - rhs, in normalized form * sub = lhs - rhs, in normalized form

Просмотреть файл

@ -1018,6 +1018,8 @@ static struct task_struct *copy_process(unsigned long clone_flags,
p->prev_utime = cputime_zero; p->prev_utime = cputime_zero;
p->prev_stime = cputime_zero; p->prev_stime = cputime_zero;
p->default_timer_slack_ns = current->timer_slack_ns;
#ifdef CONFIG_DETECT_SOFTLOCKUP #ifdef CONFIG_DETECT_SOFTLOCKUP
p->last_switch_count = 0; p->last_switch_count = 0;
p->last_switch_timestamp = 0; p->last_switch_timestamp = 0;

Просмотреть файл

@ -1296,13 +1296,16 @@ static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
if (!abs_time) if (!abs_time)
schedule(); schedule();
else { else {
unsigned long slack;
slack = current->timer_slack_ns;
if (rt_task(current))
slack = 0;
hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
HRTIMER_MODE_ABS); HRTIMER_MODE_ABS);
hrtimer_init_sleeper(&t, current); hrtimer_init_sleeper(&t, current);
t.timer.expires = *abs_time; hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
hrtimer_start(&t.timer, t.timer.expires, hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
HRTIMER_MODE_ABS);
if (!hrtimer_active(&t.timer)) if (!hrtimer_active(&t.timer))
t.task = NULL; t.task = NULL;
@ -1404,7 +1407,7 @@ static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME, hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
HRTIMER_MODE_ABS); HRTIMER_MODE_ABS);
hrtimer_init_sleeper(to, current); hrtimer_init_sleeper(to, current);
to->timer.expires = *time; hrtimer_set_expires(&to->timer, *time);
} }
q.pi_state = NULL; q.pi_state = NULL;

Просмотреть файл

@ -517,7 +517,7 @@ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
if (!base->first) if (!base->first)
continue; continue;
timer = rb_entry(base->first, struct hrtimer, node); timer = rb_entry(base->first, struct hrtimer, node);
expires = ktime_sub(timer->expires, base->offset); expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
if (expires.tv64 < cpu_base->expires_next.tv64) if (expires.tv64 < cpu_base->expires_next.tv64)
cpu_base->expires_next = expires; cpu_base->expires_next = expires;
} }
@ -539,10 +539,10 @@ static int hrtimer_reprogram(struct hrtimer *timer,
struct hrtimer_clock_base *base) struct hrtimer_clock_base *base)
{ {
ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next; ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
ktime_t expires = ktime_sub(timer->expires, base->offset); ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
int res; int res;
WARN_ON_ONCE(timer->expires.tv64 < 0); WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
/* /*
* When the callback is running, we do not reprogram the clock event * When the callback is running, we do not reprogram the clock event
@ -795,7 +795,7 @@ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
u64 orun = 1; u64 orun = 1;
ktime_t delta; ktime_t delta;
delta = ktime_sub(now, timer->expires); delta = ktime_sub(now, hrtimer_get_expires(timer));
if (delta.tv64 < 0) if (delta.tv64 < 0)
return 0; return 0;
@ -807,8 +807,8 @@ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
s64 incr = ktime_to_ns(interval); s64 incr = ktime_to_ns(interval);
orun = ktime_divns(delta, incr); orun = ktime_divns(delta, incr);
timer->expires = ktime_add_ns(timer->expires, incr * orun); hrtimer_add_expires_ns(timer, incr * orun);
if (timer->expires.tv64 > now.tv64) if (hrtimer_get_expires_tv64(timer) > now.tv64)
return orun; return orun;
/* /*
* This (and the ktime_add() below) is the * This (and the ktime_add() below) is the
@ -816,7 +816,7 @@ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
*/ */
orun++; orun++;
} }
timer->expires = ktime_add_safe(timer->expires, interval); hrtimer_add_expires(timer, interval);
return orun; return orun;
} }
@ -848,7 +848,8 @@ static void enqueue_hrtimer(struct hrtimer *timer,
* We dont care about collisions. Nodes with * We dont care about collisions. Nodes with
* the same expiry time stay together. * the same expiry time stay together.
*/ */
if (timer->expires.tv64 < entry->expires.tv64) { if (hrtimer_get_expires_tv64(timer) <
hrtimer_get_expires_tv64(entry)) {
link = &(*link)->rb_left; link = &(*link)->rb_left;
} else { } else {
link = &(*link)->rb_right; link = &(*link)->rb_right;
@ -945,9 +946,10 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
} }
/** /**
* hrtimer_start - (re)start an relative timer on the current CPU * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
* @timer: the timer to be added * @timer: the timer to be added
* @tim: expiry time * @tim: expiry time
* @delta_ns: "slack" range for the timer
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
* *
* Returns: * Returns:
@ -955,7 +957,8 @@ remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
* 1 when the timer was active * 1 when the timer was active
*/ */
int int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns,
const enum hrtimer_mode mode)
{ {
struct hrtimer_clock_base *base, *new_base; struct hrtimer_clock_base *base, *new_base;
unsigned long flags; unsigned long flags;
@ -983,7 +986,7 @@ hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
#endif #endif
} }
timer->expires = tim; hrtimer_set_expires_range_ns(timer, tim, delta_ns);
timer_stats_hrtimer_set_start_info(timer); timer_stats_hrtimer_set_start_info(timer);
@ -1016,8 +1019,26 @@ hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
/**
* hrtimer_start - (re)start an hrtimer on the current CPU
* @timer: the timer to be added
* @tim: expiry time
* @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
*
* Returns:
* 0 on success
* 1 when the timer was active
*/
int
hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
{
return hrtimer_start_range_ns(timer, tim, 0, mode);
}
EXPORT_SYMBOL_GPL(hrtimer_start); EXPORT_SYMBOL_GPL(hrtimer_start);
/** /**
* hrtimer_try_to_cancel - try to deactivate a timer * hrtimer_try_to_cancel - try to deactivate a timer
* @timer: hrtimer to stop * @timer: hrtimer to stop
@ -1077,7 +1098,7 @@ ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
ktime_t rem; ktime_t rem;
base = lock_hrtimer_base(timer, &flags); base = lock_hrtimer_base(timer, &flags);
rem = ktime_sub(timer->expires, base->get_time()); rem = hrtimer_expires_remaining(timer);
unlock_hrtimer_base(timer, &flags); unlock_hrtimer_base(timer, &flags);
return rem; return rem;
@ -1109,7 +1130,7 @@ ktime_t hrtimer_get_next_event(void)
continue; continue;
timer = rb_entry(base->first, struct hrtimer, node); timer = rb_entry(base->first, struct hrtimer, node);
delta.tv64 = timer->expires.tv64; delta.tv64 = hrtimer_get_expires_tv64(timer);
delta = ktime_sub(delta, base->get_time()); delta = ktime_sub(delta, base->get_time());
if (delta.tv64 < mindelta.tv64) if (delta.tv64 < mindelta.tv64)
mindelta.tv64 = delta.tv64; mindelta.tv64 = delta.tv64;
@ -1310,10 +1331,23 @@ void hrtimer_interrupt(struct clock_event_device *dev)
timer = rb_entry(node, struct hrtimer, node); timer = rb_entry(node, struct hrtimer, node);
if (basenow.tv64 < timer->expires.tv64) { /*
* The immediate goal for using the softexpires is
* minimizing wakeups, not running timers at the
* earliest interrupt after their soft expiration.
* This allows us to avoid using a Priority Search
* Tree, which can answer a stabbing querry for
* overlapping intervals and instead use the simple
* BST we already have.
* We don't add extra wakeups by delaying timers that
* are right-of a not yet expired timer, because that
* timer will have to trigger a wakeup anyway.
*/
if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
ktime_t expires; ktime_t expires;
expires = ktime_sub(timer->expires, expires = ktime_sub(hrtimer_get_expires(timer),
base->offset); base->offset);
if (expires.tv64 < expires_next.tv64) if (expires.tv64 < expires_next.tv64)
expires_next = expires; expires_next = expires;
@ -1349,6 +1383,30 @@ void hrtimer_interrupt(struct clock_event_device *dev)
raise_softirq(HRTIMER_SOFTIRQ); raise_softirq(HRTIMER_SOFTIRQ);
} }
/**
* hrtimer_peek_ahead_timers -- run soft-expired timers now
*
* hrtimer_peek_ahead_timers will peek at the timer queue of
* the current cpu and check if there are any timers for which
* the soft expires time has passed. If any such timers exist,
* they are run immediately and then removed from the timer queue.
*
*/
void hrtimer_peek_ahead_timers(void)
{
struct tick_device *td;
unsigned long flags;
if (!hrtimer_hres_active())
return;
local_irq_save(flags);
td = &__get_cpu_var(tick_cpu_device);
if (td && td->evtdev)
hrtimer_interrupt(td->evtdev);
local_irq_restore(flags);
}
static void run_hrtimer_softirq(struct softirq_action *h) static void run_hrtimer_softirq(struct softirq_action *h)
{ {
run_hrtimer_pending(&__get_cpu_var(hrtimer_bases)); run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
@ -1414,7 +1472,8 @@ void hrtimer_run_queues(void)
struct hrtimer *timer; struct hrtimer *timer;
timer = rb_entry(node, struct hrtimer, node); timer = rb_entry(node, struct hrtimer, node);
if (base->softirq_time.tv64 <= timer->expires.tv64) if (base->softirq_time.tv64 <=
hrtimer_get_expires_tv64(timer))
break; break;
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) { if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
@ -1462,7 +1521,7 @@ static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mod
do { do {
set_current_state(TASK_INTERRUPTIBLE); set_current_state(TASK_INTERRUPTIBLE);
hrtimer_start(&t->timer, t->timer.expires, mode); hrtimer_start_expires(&t->timer, mode);
if (!hrtimer_active(&t->timer)) if (!hrtimer_active(&t->timer))
t->task = NULL; t->task = NULL;
@ -1484,7 +1543,7 @@ static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
struct timespec rmt; struct timespec rmt;
ktime_t rem; ktime_t rem;
rem = ktime_sub(timer->expires, timer->base->get_time()); rem = hrtimer_expires_remaining(timer);
if (rem.tv64 <= 0) if (rem.tv64 <= 0)
return 0; return 0;
rmt = ktime_to_timespec(rem); rmt = ktime_to_timespec(rem);
@ -1503,7 +1562,7 @@ long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
hrtimer_init_on_stack(&t.timer, restart->nanosleep.index, hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
HRTIMER_MODE_ABS); HRTIMER_MODE_ABS);
t.timer.expires.tv64 = restart->nanosleep.expires; hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
if (do_nanosleep(&t, HRTIMER_MODE_ABS)) if (do_nanosleep(&t, HRTIMER_MODE_ABS))
goto out; goto out;
@ -1528,9 +1587,14 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
struct restart_block *restart; struct restart_block *restart;
struct hrtimer_sleeper t; struct hrtimer_sleeper t;
int ret = 0; int ret = 0;
unsigned long slack;
slack = current->timer_slack_ns;
if (rt_task(current))
slack = 0;
hrtimer_init_on_stack(&t.timer, clockid, mode); hrtimer_init_on_stack(&t.timer, clockid, mode);
t.timer.expires = timespec_to_ktime(*rqtp); hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
if (do_nanosleep(&t, mode)) if (do_nanosleep(&t, mode))
goto out; goto out;
@ -1550,7 +1614,7 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
restart->fn = hrtimer_nanosleep_restart; restart->fn = hrtimer_nanosleep_restart;
restart->nanosleep.index = t.timer.base->index; restart->nanosleep.index = t.timer.base->index;
restart->nanosleep.rmtp = rmtp; restart->nanosleep.rmtp = rmtp;
restart->nanosleep.expires = t.timer.expires.tv64; restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
ret = -ERESTART_RESTARTBLOCK; ret = -ERESTART_RESTARTBLOCK;
out: out:
@ -1752,3 +1816,103 @@ void __init hrtimers_init(void)
#endif #endif
} }
/**
* schedule_hrtimeout_range - sleep until timeout
* @expires: timeout value (ktime_t)
* @delta: slack in expires timeout (ktime_t)
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
* the current task state has been set (see set_current_state()).
*
* The @delta argument gives the kernel the freedom to schedule the
* actual wakeup to a time that is both power and performance friendly.
* The kernel give the normal best effort behavior for "@expires+@delta",
* but may decide to fire the timer earlier, but no earlier than @expires.
*
* You can set the task state as follows -
*
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
* pass before the routine returns.
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task.
*
* The current task state is guaranteed to be TASK_RUNNING when this
* routine returns.
*
* Returns 0 when the timer has expired otherwise -EINTR
*/
int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
const enum hrtimer_mode mode)
{
struct hrtimer_sleeper t;
/*
* Optimize when a zero timeout value is given. It does not
* matter whether this is an absolute or a relative time.
*/
if (expires && !expires->tv64) {
__set_current_state(TASK_RUNNING);
return 0;
}
/*
* A NULL parameter means "inifinte"
*/
if (!expires) {
schedule();
__set_current_state(TASK_RUNNING);
return -EINTR;
}
hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
hrtimer_init_sleeper(&t, current);
hrtimer_start_expires(&t.timer, mode);
if (!hrtimer_active(&t.timer))
t.task = NULL;
if (likely(t.task))
schedule();
hrtimer_cancel(&t.timer);
destroy_hrtimer_on_stack(&t.timer);
__set_current_state(TASK_RUNNING);
return !t.task ? 0 : -EINTR;
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
/**
* schedule_hrtimeout - sleep until timeout
* @expires: timeout value (ktime_t)
* @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
*
* Make the current task sleep until the given expiry time has
* elapsed. The routine will return immediately unless
* the current task state has been set (see set_current_state()).
*
* You can set the task state as follows -
*
* %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
* pass before the routine returns.
*
* %TASK_INTERRUPTIBLE - the routine may return early if a signal is
* delivered to the current task.
*
* The current task state is guaranteed to be TASK_RUNNING when this
* routine returns.
*
* Returns 0 when the timer has expired otherwise -EINTR
*/
int __sched schedule_hrtimeout(ktime_t *expires,
const enum hrtimer_mode mode)
{
return schedule_hrtimeout_range(expires, 0, mode);
}
EXPORT_SYMBOL_GPL(schedule_hrtimeout);

Просмотреть файл

@ -639,7 +639,7 @@ common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
(timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv); timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
remaining = ktime_sub(timer->expires, now); remaining = ktime_sub(hrtimer_get_expires(timer), now);
/* Return 0 only, when the timer is expired and not pending */ /* Return 0 only, when the timer is expired and not pending */
if (remaining.tv64 <= 0) { if (remaining.tv64 <= 0) {
/* /*
@ -733,7 +733,7 @@ common_timer_set(struct k_itimer *timr, int flags,
hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
timr->it.real.timer.function = posix_timer_fn; timr->it.real.timer.function = posix_timer_fn;
timer->expires = timespec_to_ktime(new_setting->it_value); hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
/* Convert interval */ /* Convert interval */
timr->it.real.interval = timespec_to_ktime(new_setting->it_interval); timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
@ -742,14 +742,12 @@ common_timer_set(struct k_itimer *timr, int flags,
if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) { if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
/* Setup correct expiry time for relative timers */ /* Setup correct expiry time for relative timers */
if (mode == HRTIMER_MODE_REL) { if (mode == HRTIMER_MODE_REL) {
timer->expires = hrtimer_add_expires(timer, timer->base->get_time());
ktime_add_safe(timer->expires,
timer->base->get_time());
} }
return 0; return 0;
} }
hrtimer_start(timer, timer->expires, mode); hrtimer_start_expires(timer, mode);
return 0; return 0;
} }

Просмотреть файл

@ -631,8 +631,7 @@ rt_mutex_slowlock(struct rt_mutex *lock, int state,
/* Setup the timer, when timeout != NULL */ /* Setup the timer, when timeout != NULL */
if (unlikely(timeout)) { if (unlikely(timeout)) {
hrtimer_start(&timeout->timer, timeout->timer.expires, hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
HRTIMER_MODE_ABS);
if (!hrtimer_active(&timeout->timer)) if (!hrtimer_active(&timeout->timer))
timeout->task = NULL; timeout->task = NULL;
} }

Просмотреть файл

@ -227,8 +227,7 @@ static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
now = hrtimer_cb_get_time(&rt_b->rt_period_timer); now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
hrtimer_start(&rt_b->rt_period_timer, hrtimer_start_expires(&rt_b->rt_period_timer,
rt_b->rt_period_timer.expires,
HRTIMER_MODE_ABS); HRTIMER_MODE_ABS);
} }
spin_unlock(&rt_b->rt_runtime_lock); spin_unlock(&rt_b->rt_runtime_lock);
@ -1064,7 +1063,7 @@ static void hrtick_start(struct rq *rq, u64 delay)
struct hrtimer *timer = &rq->hrtick_timer; struct hrtimer *timer = &rq->hrtick_timer;
ktime_t time = ktime_add_ns(timer->base->get_time(), delay); ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
timer->expires = time; hrtimer_set_expires(timer, time);
if (rq == this_rq()) { if (rq == this_rq()) {
hrtimer_restart(timer); hrtimer_restart(timer);

Просмотреть файл

@ -1716,6 +1716,16 @@ asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
case PR_SET_TSC: case PR_SET_TSC:
error = SET_TSC_CTL(arg2); error = SET_TSC_CTL(arg2);
break; break;
case PR_GET_TIMERSLACK:
error = current->timer_slack_ns;
break;
case PR_SET_TIMERSLACK:
if (arg2 <= 0)
current->timer_slack_ns =
current->default_timer_slack_ns;
else
current->timer_slack_ns = arg2;
break;
default: default:
error = -EINVAL; error = -EINVAL;
break; break;

Просмотреть файл

@ -669,3 +669,21 @@ EXPORT_SYMBOL(get_jiffies_64);
#endif #endif
EXPORT_SYMBOL(jiffies); EXPORT_SYMBOL(jiffies);
/*
* Add two timespec values and do a safety check for overflow.
* It's assumed that both values are valid (>= 0)
*/
struct timespec timespec_add_safe(const struct timespec lhs,
const struct timespec rhs)
{
struct timespec res;
set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
lhs.tv_nsec + rhs.tv_nsec);
if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
res.tv_sec = TIME_T_MAX;
return res;
}

Просмотреть файл

@ -142,8 +142,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
time_state = TIME_OOP; time_state = TIME_OOP;
printk(KERN_NOTICE "Clock: " printk(KERN_NOTICE "Clock: "
"inserting leap second 23:59:60 UTC\n"); "inserting leap second 23:59:60 UTC\n");
leap_timer.expires = ktime_add_ns(leap_timer.expires, hrtimer_add_expires_ns(&leap_timer, NSEC_PER_SEC);
NSEC_PER_SEC);
res = HRTIMER_RESTART; res = HRTIMER_RESTART;
break; break;
case TIME_DEL: case TIME_DEL:

Просмотреть файл

@ -300,7 +300,7 @@ void tick_nohz_stop_sched_tick(int inidle)
goto out; goto out;
} }
ts->idle_tick = ts->sched_timer.expires; ts->idle_tick = hrtimer_get_expires(&ts->sched_timer);
ts->tick_stopped = 1; ts->tick_stopped = 1;
ts->idle_jiffies = last_jiffies; ts->idle_jiffies = last_jiffies;
rcu_enter_nohz(); rcu_enter_nohz();
@ -380,21 +380,21 @@ ktime_t tick_nohz_get_sleep_length(void)
static void tick_nohz_restart(struct tick_sched *ts, ktime_t now) static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
{ {
hrtimer_cancel(&ts->sched_timer); hrtimer_cancel(&ts->sched_timer);
ts->sched_timer.expires = ts->idle_tick; hrtimer_set_expires(&ts->sched_timer, ts->idle_tick);
while (1) { while (1) {
/* Forward the time to expire in the future */ /* Forward the time to expire in the future */
hrtimer_forward(&ts->sched_timer, now, tick_period); hrtimer_forward(&ts->sched_timer, now, tick_period);
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
hrtimer_start(&ts->sched_timer, hrtimer_start_expires(&ts->sched_timer,
ts->sched_timer.expires,
HRTIMER_MODE_ABS); HRTIMER_MODE_ABS);
/* Check, if the timer was already in the past */ /* Check, if the timer was already in the past */
if (hrtimer_active(&ts->sched_timer)) if (hrtimer_active(&ts->sched_timer))
break; break;
} else { } else {
if (!tick_program_event(ts->sched_timer.expires, 0)) if (!tick_program_event(
hrtimer_get_expires(&ts->sched_timer), 0))
break; break;
} }
/* Update jiffies and reread time */ /* Update jiffies and reread time */
@ -456,14 +456,16 @@ void tick_nohz_restart_sched_tick(void)
*/ */
ts->tick_stopped = 0; ts->tick_stopped = 0;
ts->idle_exittime = now; ts->idle_exittime = now;
tick_nohz_restart(ts, now); tick_nohz_restart(ts, now);
local_irq_enable(); local_irq_enable();
} }
static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
{ {
hrtimer_forward(&ts->sched_timer, now, tick_period); hrtimer_forward(&ts->sched_timer, now, tick_period);
return tick_program_event(ts->sched_timer.expires, 0); return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
} }
/* /*
@ -542,7 +544,7 @@ static void tick_nohz_switch_to_nohz(void)
next = tick_init_jiffy_update(); next = tick_init_jiffy_update();
for (;;) { for (;;) {
ts->sched_timer.expires = next; hrtimer_set_expires(&ts->sched_timer, next);
if (!tick_program_event(next, 0)) if (!tick_program_event(next, 0))
break; break;
next = ktime_add(next, tick_period); next = ktime_add(next, tick_period);
@ -577,7 +579,7 @@ static void tick_nohz_kick_tick(int cpu)
* already reached or less/equal than the tick period. * already reached or less/equal than the tick period.
*/ */
now = ktime_get(); now = ktime_get();
delta = ktime_sub(ts->sched_timer.expires, now); delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
if (delta.tv64 <= tick_period.tv64) if (delta.tv64 <= tick_period.tv64)
return; return;
@ -678,16 +680,15 @@ void tick_setup_sched_timer(void)
ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
/* Get the next period (per cpu) */ /* Get the next period (per cpu) */
ts->sched_timer.expires = tick_init_jiffy_update(); hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
offset = ktime_to_ns(tick_period) >> 1; offset = ktime_to_ns(tick_period) >> 1;
do_div(offset, num_possible_cpus()); do_div(offset, num_possible_cpus());
offset *= smp_processor_id(); offset *= smp_processor_id();
ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); hrtimer_add_expires_ns(&ts->sched_timer, offset);
for (;;) { for (;;) {
hrtimer_forward(&ts->sched_timer, now, tick_period); hrtimer_forward(&ts->sched_timer, now, tick_period);
hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS);
HRTIMER_MODE_ABS);
/* Check, if the timer was already in the past */ /* Check, if the timer was already in the past */
if (hrtimer_active(&ts->sched_timer)) if (hrtimer_active(&ts->sched_timer))
break; break;

Просмотреть файл

@ -66,9 +66,11 @@ print_timer(struct seq_file *m, struct hrtimer *taddr, struct hrtimer *timer,
SEQ_printf(m, ", %s/%d", tmp, timer->start_pid); SEQ_printf(m, ", %s/%d", tmp, timer->start_pid);
#endif #endif
SEQ_printf(m, "\n"); SEQ_printf(m, "\n");
SEQ_printf(m, " # expires at %Lu nsecs [in %Ld nsecs]\n", SEQ_printf(m, " # expires at %Lu-%Lu nsecs [in %Ld to %Ld nsecs]\n",
(unsigned long long)ktime_to_ns(timer->expires), (unsigned long long)ktime_to_ns(hrtimer_get_softexpires(timer)),
(long long)(ktime_to_ns(timer->expires) - now)); (unsigned long long)ktime_to_ns(hrtimer_get_expires(timer)),
(long long)(ktime_to_ns(hrtimer_get_softexpires(timer)) - now),
(long long)(ktime_to_ns(hrtimer_get_expires(timer)) - now));
} }
static void static void

Просмотреть файл

@ -545,9 +545,10 @@ static void cbq_ovl_delay(struct cbq_class *cl)
expires = ktime_set(0, 0); expires = ktime_set(0, 0);
expires = ktime_add_ns(expires, PSCHED_US2NS(sched)); expires = ktime_add_ns(expires, PSCHED_US2NS(sched));
if (hrtimer_try_to_cancel(&q->delay_timer) && if (hrtimer_try_to_cancel(&q->delay_timer) &&
ktime_to_ns(ktime_sub(q->delay_timer.expires, ktime_to_ns(ktime_sub(
hrtimer_get_expires(&q->delay_timer),
expires)) > 0) expires)) > 0)
q->delay_timer.expires = expires; hrtimer_set_expires(&q->delay_timer, expires);
hrtimer_restart(&q->delay_timer); hrtimer_restart(&q->delay_timer);
cl->delayed = 1; cl->delayed = 1;
cl->xstats.overactions++; cl->xstats.overactions++;

Просмотреть файл

@ -34,7 +34,7 @@ enum hrtimer_restart pcsp_do_timer(struct hrtimer *handle)
chip->thalf = 0; chip->thalf = 0;
if (!atomic_read(&chip->timer_active)) if (!atomic_read(&chip->timer_active))
return HRTIMER_NORESTART; return HRTIMER_NORESTART;
hrtimer_forward(&chip->timer, chip->timer.expires, hrtimer_forward(&chip->timer, hrtimer_get_expires(&chip->timer),
ktime_set(0, chip->ns_rem)); ktime_set(0, chip->ns_rem));
return HRTIMER_RESTART; return HRTIMER_RESTART;
} }
@ -118,7 +118,8 @@ enum hrtimer_restart pcsp_do_timer(struct hrtimer *handle)
chip->ns_rem = PCSP_PERIOD_NS(); chip->ns_rem = PCSP_PERIOD_NS();
ns = (chip->thalf ? PCSP_CALC_NS(timer_cnt) : chip->ns_rem); ns = (chip->thalf ? PCSP_CALC_NS(timer_cnt) : chip->ns_rem);
chip->ns_rem -= ns; chip->ns_rem -= ns;
hrtimer_forward(&chip->timer, chip->timer.expires, ktime_set(0, ns)); hrtimer_forward(&chip->timer, hrtimer_get_expires(&chip->timer),
ktime_set(0, ns));
return HRTIMER_RESTART; return HRTIMER_RESTART;
exit_nr_unlock2: exit_nr_unlock2: