rtla/timerlat: Add auto-analysis core
Currently, timerlat displays a summary of the timerlat tracer results saving the trace if the system hits a stop condition. While this represented a huge step forward, the root cause was not that is accessible to non-expert users. The auto-analysis fulfill this gap by parsing the trace timerlat runs, printing an intuitive auto-analysis. Link: https://lkml.kernel.org/r/1ee073822f6a2cbb33da0c817331d0d4045e837f.1675179318.git.bristot@kernel.org Cc: Daniel Bristot de Oliveira <bristot@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org> Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
This commit is contained in:
Родитель
1fab1469b6
Коммит
27e348b221
|
@ -0,0 +1,990 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2023 Red Hat Inc, Daniel Bristot de Oliveira <bristot@kernel.org>
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <errno.h>
|
||||
#include "utils.h"
|
||||
#include "osnoise.h"
|
||||
#include "timerlat.h"
|
||||
|
||||
enum timelat_state {
|
||||
TIMERLAT_INIT = 0,
|
||||
TIMERLAT_WAITING_IRQ,
|
||||
TIMERLAT_WAITING_THREAD,
|
||||
};
|
||||
|
||||
#define MAX_COMM 24
|
||||
|
||||
/*
|
||||
* Per-cpu data statistics and data.
|
||||
*/
|
||||
struct timerlat_aa_data {
|
||||
/* Current CPU state */
|
||||
int curr_state;
|
||||
|
||||
/* timerlat IRQ latency */
|
||||
unsigned long long tlat_irq_seqnum;
|
||||
unsigned long long tlat_irq_latency;
|
||||
unsigned long long tlat_irq_timstamp;
|
||||
|
||||
/* timerlat Thread latency */
|
||||
unsigned long long tlat_thread_seqnum;
|
||||
unsigned long long tlat_thread_latency;
|
||||
unsigned long long tlat_thread_timstamp;
|
||||
|
||||
/*
|
||||
* Information about the thread running when the IRQ
|
||||
* arrived.
|
||||
*
|
||||
* This can be blocking or interference, depending on the
|
||||
* priority of the thread. Assuming timerlat is the highest
|
||||
* prio, it is blocking. If timerlat has a lower prio, it is
|
||||
* interference.
|
||||
* note: "unsigned long long" because they are fetch using tep_get_field_val();
|
||||
*/
|
||||
unsigned long long run_thread_pid;
|
||||
char run_thread_comm[MAX_COMM];
|
||||
unsigned long long thread_blocking_duration;
|
||||
unsigned long long max_exit_idle_latency;
|
||||
|
||||
/* Information about the timerlat timer irq */
|
||||
unsigned long long timer_irq_start_time;
|
||||
unsigned long long timer_irq_start_delay;
|
||||
unsigned long long timer_irq_duration;
|
||||
unsigned long long timer_exit_from_idle;
|
||||
|
||||
/*
|
||||
* Information about the last IRQ before the timerlat irq
|
||||
* arrived.
|
||||
*
|
||||
* If now - timestamp is <= latency, it might have influenced
|
||||
* in the timerlat irq latency. Otherwise, ignore it.
|
||||
*/
|
||||
unsigned long long prev_irq_duration;
|
||||
unsigned long long prev_irq_timstamp;
|
||||
|
||||
/*
|
||||
* Interference sum.
|
||||
*/
|
||||
unsigned long long thread_nmi_sum;
|
||||
unsigned long long thread_irq_sum;
|
||||
unsigned long long thread_softirq_sum;
|
||||
unsigned long long thread_thread_sum;
|
||||
|
||||
/*
|
||||
* Interference task information.
|
||||
*/
|
||||
struct trace_seq *prev_irqs_seq;
|
||||
struct trace_seq *nmi_seq;
|
||||
struct trace_seq *irqs_seq;
|
||||
struct trace_seq *softirqs_seq;
|
||||
struct trace_seq *threads_seq;
|
||||
struct trace_seq *stack_seq;
|
||||
|
||||
/*
|
||||
* Current thread.
|
||||
*/
|
||||
char current_comm[MAX_COMM];
|
||||
unsigned long long current_pid;
|
||||
|
||||
/*
|
||||
* Is the system running a kworker?
|
||||
*/
|
||||
unsigned long long kworker;
|
||||
unsigned long long kworker_func;
|
||||
};
|
||||
|
||||
/*
|
||||
* The analysis context and system wide view
|
||||
*/
|
||||
struct timerlat_aa_context {
|
||||
int nr_cpus;
|
||||
int dump_tasks;
|
||||
|
||||
/* per CPU data */
|
||||
struct timerlat_aa_data *taa_data;
|
||||
|
||||
/*
|
||||
* required to translate function names and register
|
||||
* events.
|
||||
*/
|
||||
struct osnoise_tool *tool;
|
||||
};
|
||||
|
||||
/*
|
||||
* The data is stored as a local variable, but accessed via a helper function.
|
||||
*
|
||||
* It could be stored inside the trace context. But every access would
|
||||
* require container_of() + a series of pointers. Do we need it? Not sure.
|
||||
*
|
||||
* For now keep it simple. If needed, store it in the tool, add the *context
|
||||
* as a parameter in timerlat_aa_get_ctx() and do the magic there.
|
||||
*/
|
||||
static struct timerlat_aa_context *__timerlat_aa_ctx;
|
||||
|
||||
static struct timerlat_aa_context *timerlat_aa_get_ctx(void)
|
||||
{
|
||||
return __timerlat_aa_ctx;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_get_data - Get the per-cpu data from the timerlat context
|
||||
*/
|
||||
static struct timerlat_aa_data
|
||||
*timerlat_aa_get_data(struct timerlat_aa_context *taa_ctx, int cpu)
|
||||
{
|
||||
return &taa_ctx->taa_data[cpu];
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_irq_latency - Handles timerlat IRQ event
|
||||
*/
|
||||
static int timerlat_aa_irq_latency(struct timerlat_aa_data *taa_data,
|
||||
struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event)
|
||||
{
|
||||
/*
|
||||
* For interference, we start now looking for things that can delay
|
||||
* the thread.
|
||||
*/
|
||||
taa_data->curr_state = TIMERLAT_WAITING_THREAD;
|
||||
taa_data->tlat_irq_timstamp = record->ts;
|
||||
|
||||
/*
|
||||
* Zero values.
|
||||
*/
|
||||
taa_data->thread_nmi_sum = 0;
|
||||
taa_data->thread_irq_sum = 0;
|
||||
taa_data->thread_softirq_sum = 0;
|
||||
taa_data->thread_blocking_duration = 0;
|
||||
taa_data->timer_irq_start_time = 0;
|
||||
taa_data->timer_irq_duration = 0;
|
||||
taa_data->timer_exit_from_idle = 0;
|
||||
|
||||
/*
|
||||
* Zero interference tasks.
|
||||
*/
|
||||
trace_seq_reset(taa_data->nmi_seq);
|
||||
trace_seq_reset(taa_data->irqs_seq);
|
||||
trace_seq_reset(taa_data->softirqs_seq);
|
||||
trace_seq_reset(taa_data->threads_seq);
|
||||
|
||||
/* IRQ latency values */
|
||||
tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_irq_latency, 1);
|
||||
tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_irq_seqnum, 1);
|
||||
|
||||
/* The thread that can cause blocking */
|
||||
tep_get_common_field_val(s, event, "common_pid", record, &taa_data->run_thread_pid, 1);
|
||||
|
||||
/*
|
||||
* Get exit from idle case.
|
||||
*
|
||||
* If it is not idle thread:
|
||||
*/
|
||||
if (taa_data->run_thread_pid)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* if the latency is shorter than the known exit from idle:
|
||||
*/
|
||||
if (taa_data->tlat_irq_latency < taa_data->max_exit_idle_latency)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* To be safe, ignore the cases in which an IRQ/NMI could have
|
||||
* interfered with the timerlat IRQ.
|
||||
*/
|
||||
if (taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency
|
||||
< taa_data->prev_irq_timstamp + taa_data->prev_irq_duration)
|
||||
return 0;
|
||||
|
||||
taa_data->max_exit_idle_latency = taa_data->tlat_irq_latency;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_thread_latency - Handles timerlat thread event
|
||||
*/
|
||||
static int timerlat_aa_thread_latency(struct timerlat_aa_data *taa_data,
|
||||
struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event)
|
||||
{
|
||||
/*
|
||||
* For interference, we start now looking for things that can delay
|
||||
* the IRQ of the next cycle.
|
||||
*/
|
||||
taa_data->curr_state = TIMERLAT_WAITING_IRQ;
|
||||
taa_data->tlat_thread_timstamp = record->ts;
|
||||
|
||||
/* Thread latency values */
|
||||
tep_get_field_val(s, event, "timer_latency", record, &taa_data->tlat_thread_latency, 1);
|
||||
tep_get_field_val(s, event, "seqnum", record, &taa_data->tlat_thread_seqnum, 1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_handler - Handle timerlat events
|
||||
*
|
||||
* This function is called to handle timerlat events recording statistics.
|
||||
*
|
||||
* Returns 0 on success, -1 otherwise.
|
||||
*/
|
||||
int timerlat_aa_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
unsigned long long thread;
|
||||
|
||||
if (!taa_data)
|
||||
return -1;
|
||||
|
||||
tep_get_field_val(s, event, "context", record, &thread, 1);
|
||||
if (!thread)
|
||||
return timerlat_aa_irq_latency(taa_data, s, record, event);
|
||||
else
|
||||
return timerlat_aa_thread_latency(taa_data, s, record, event);
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_nmi_handler - Handles NMI noise
|
||||
*
|
||||
* It is used to collect information about interferences from NMI. It is
|
||||
* hooked to the osnoise:nmi_noise event.
|
||||
*/
|
||||
static int timerlat_aa_nmi_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
unsigned long long duration;
|
||||
unsigned long long start;
|
||||
|
||||
tep_get_field_val(s, event, "duration", record, &duration, 1);
|
||||
tep_get_field_val(s, event, "start", record, &start, 1);
|
||||
|
||||
if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) {
|
||||
taa_data->prev_irq_duration = duration;
|
||||
taa_data->prev_irq_timstamp = start;
|
||||
|
||||
trace_seq_reset(taa_data->prev_irqs_seq);
|
||||
trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s \t\t\t%9.2f us\n",
|
||||
"nmi", ns_to_usf(duration));
|
||||
return 0;
|
||||
}
|
||||
|
||||
taa_data->thread_nmi_sum += duration;
|
||||
trace_seq_printf(taa_data->nmi_seq, " %24s \t\t\t%9.2f us\n",
|
||||
"nmi", ns_to_usf(duration));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_irq_handler - Handles IRQ noise
|
||||
*
|
||||
* It is used to collect information about interferences from IRQ. It is
|
||||
* hooked to the osnoise:irq_noise event.
|
||||
*
|
||||
* It is a little bit more complex than the other because it measures:
|
||||
* - The IRQs that can delay the timer IRQ before it happened.
|
||||
* - The Timerlat IRQ handler
|
||||
* - The IRQs that happened between the timerlat IRQ and the timerlat thread
|
||||
* (IRQ interference).
|
||||
*/
|
||||
static int timerlat_aa_irq_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
unsigned long long expected_start;
|
||||
unsigned long long duration;
|
||||
unsigned long long vector;
|
||||
unsigned long long start;
|
||||
char *desc;
|
||||
int val;
|
||||
|
||||
tep_get_field_val(s, event, "duration", record, &duration, 1);
|
||||
tep_get_field_val(s, event, "start", record, &start, 1);
|
||||
tep_get_field_val(s, event, "vector", record, &vector, 1);
|
||||
desc = tep_get_field_raw(s, event, "desc", record, &val, 1);
|
||||
|
||||
/*
|
||||
* Before the timerlat IRQ.
|
||||
*/
|
||||
if (taa_data->curr_state == TIMERLAT_WAITING_IRQ) {
|
||||
taa_data->prev_irq_duration = duration;
|
||||
taa_data->prev_irq_timstamp = start;
|
||||
|
||||
trace_seq_reset(taa_data->prev_irqs_seq);
|
||||
trace_seq_printf(taa_data->prev_irqs_seq, "\t%24s:%-3llu \t\t%9.2f us\n",
|
||||
desc, vector, ns_to_usf(duration));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* The timerlat IRQ: taa_data->timer_irq_start_time is zeroed at
|
||||
* the timerlat irq handler.
|
||||
*/
|
||||
if (!taa_data->timer_irq_start_time) {
|
||||
expected_start = taa_data->tlat_irq_timstamp - taa_data->tlat_irq_latency;
|
||||
|
||||
taa_data->timer_irq_start_time = start;
|
||||
taa_data->timer_irq_duration = duration;
|
||||
|
||||
taa_data->timer_irq_start_delay = taa_data->timer_irq_start_time - expected_start;
|
||||
|
||||
/*
|
||||
* not exit from idle.
|
||||
*/
|
||||
if (taa_data->run_thread_pid)
|
||||
return 0;
|
||||
|
||||
if (expected_start > taa_data->prev_irq_timstamp + taa_data->prev_irq_duration)
|
||||
taa_data->timer_exit_from_idle = taa_data->timer_irq_start_delay;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* IRQ interference.
|
||||
*/
|
||||
taa_data->thread_irq_sum += duration;
|
||||
trace_seq_printf(taa_data->irqs_seq, " %24s:%-3llu \t %9.2f us\n",
|
||||
desc, vector, ns_to_usf(duration));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static char *softirq_name[] = { "HI", "TIMER", "NET_TX", "NET_RX", "BLOCK",
|
||||
"IRQ_POLL", "TASKLET", "SCHED", "HRTIMER", "RCU" };
|
||||
|
||||
|
||||
/*
|
||||
* timerlat_aa_softirq_handler - Handles Softirq noise
|
||||
*
|
||||
* It is used to collect information about interferences from Softirq. It is
|
||||
* hooked to the osnoise:softirq_noise event.
|
||||
*
|
||||
* It is only printed in the non-rt kernel, as softirqs become thread on RT.
|
||||
*/
|
||||
static int timerlat_aa_softirq_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
unsigned long long duration;
|
||||
unsigned long long vector;
|
||||
unsigned long long start;
|
||||
|
||||
if (taa_data->curr_state == TIMERLAT_WAITING_IRQ)
|
||||
return 0;
|
||||
|
||||
tep_get_field_val(s, event, "duration", record, &duration, 1);
|
||||
tep_get_field_val(s, event, "start", record, &start, 1);
|
||||
tep_get_field_val(s, event, "vector", record, &vector, 1);
|
||||
|
||||
taa_data->thread_softirq_sum += duration;
|
||||
|
||||
trace_seq_printf(taa_data->softirqs_seq, "\t%24s:%-3llu \t %9.2f us\n",
|
||||
softirq_name[vector], vector, ns_to_usf(duration));
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_softirq_handler - Handles thread noise
|
||||
*
|
||||
* It is used to collect information about interferences from threads. It is
|
||||
* hooked to the osnoise:thread_noise event.
|
||||
*
|
||||
* Note: if you see thread noise, your timerlat thread was not the highest prio one.
|
||||
*/
|
||||
static int timerlat_aa_thread_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
unsigned long long duration;
|
||||
unsigned long long start;
|
||||
unsigned long long pid;
|
||||
const char *comm;
|
||||
int val;
|
||||
|
||||
if (taa_data->curr_state == TIMERLAT_WAITING_IRQ)
|
||||
return 0;
|
||||
|
||||
tep_get_field_val(s, event, "duration", record, &duration, 1);
|
||||
tep_get_field_val(s, event, "start", record, &start, 1);
|
||||
|
||||
tep_get_common_field_val(s, event, "common_pid", record, &pid, 1);
|
||||
comm = tep_get_field_raw(s, event, "comm", record, &val, 1);
|
||||
|
||||
if (pid == taa_data->run_thread_pid && !taa_data->thread_blocking_duration) {
|
||||
taa_data->thread_blocking_duration = duration;
|
||||
|
||||
if (comm)
|
||||
strncpy(taa_data->run_thread_comm, comm, MAX_COMM);
|
||||
else
|
||||
sprintf(taa_data->run_thread_comm, "<...>");
|
||||
|
||||
} else {
|
||||
taa_data->thread_thread_sum += duration;
|
||||
|
||||
trace_seq_printf(taa_data->threads_seq, "\t%24s:%-3llu \t\t%9.2f us\n",
|
||||
comm, pid, ns_to_usf(duration));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_stack_handler - Handles timerlat IRQ stack trace
|
||||
*
|
||||
* Saves and parse the stack trace generated by the timerlat IRQ.
|
||||
*/
|
||||
static int timerlat_aa_stack_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
unsigned long *caller;
|
||||
const char *function;
|
||||
int val, i;
|
||||
|
||||
trace_seq_reset(taa_data->stack_seq);
|
||||
|
||||
trace_seq_printf(taa_data->stack_seq, " Blocking thread stack trace\n");
|
||||
caller = tep_get_field_raw(s, event, "caller", record, &val, 1);
|
||||
if (caller) {
|
||||
for (i = 0; ; i++) {
|
||||
function = tep_find_function(taa_ctx->tool->trace.tep, caller[i]);
|
||||
if (!function)
|
||||
break;
|
||||
trace_seq_printf(taa_data->stack_seq, "\t\t-> %s\n", function);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_sched_switch_handler - Tracks the current thread running on the CPU
|
||||
*
|
||||
* Handles the sched:sched_switch event to trace the current thread running on the
|
||||
* CPU. It is used to display the threads running on the other CPUs when the trace
|
||||
* stops.
|
||||
*/
|
||||
static int timerlat_aa_sched_switch_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
const char *comm;
|
||||
int val;
|
||||
|
||||
tep_get_field_val(s, event, "next_pid", record, &taa_data->current_pid, 1);
|
||||
comm = tep_get_field_raw(s, event, "next_comm", record, &val, 1);
|
||||
|
||||
strncpy(taa_data->current_comm, comm, MAX_COMM);
|
||||
|
||||
/*
|
||||
* If this was a kworker, clean the last kworkers that ran.
|
||||
*/
|
||||
taa_data->kworker = 0;
|
||||
taa_data->kworker_func = 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_kworker_start_handler - Tracks a kworker running on the CPU
|
||||
*
|
||||
* Handles workqueue:workqueue_execute_start event, keeping track of
|
||||
* the job that a kworker could be doing in the CPU.
|
||||
*
|
||||
* We already catch problems of hardware related latencies caused by work queues
|
||||
* running driver code that causes hardware stall. For example, with DRM drivers.
|
||||
*/
|
||||
static int timerlat_aa_kworker_start_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
struct timerlat_aa_data *taa_data = timerlat_aa_get_data(taa_ctx, record->cpu);
|
||||
|
||||
tep_get_field_val(s, event, "work", record, &taa_data->kworker, 1);
|
||||
tep_get_field_val(s, event, "function", record, &taa_data->kworker_func, 1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_thread_analysis - Prints the analysis of a CPU that hit a stop tracing
|
||||
*
|
||||
* This is the core of the analysis.
|
||||
*/
|
||||
static void timerlat_thread_analysis(struct timerlat_aa_data *taa_data, int cpu,
|
||||
int irq_thresh, int thread_thresh)
|
||||
{
|
||||
unsigned long long exp_irq_ts;
|
||||
int total;
|
||||
int irq;
|
||||
|
||||
/*
|
||||
* IRQ latency or Thread latency?
|
||||
*/
|
||||
if (taa_data->tlat_irq_seqnum > taa_data->tlat_thread_seqnum) {
|
||||
irq = 1;
|
||||
total = taa_data->tlat_irq_latency;
|
||||
} else {
|
||||
irq = 0;
|
||||
total = taa_data->tlat_thread_latency;
|
||||
}
|
||||
|
||||
/*
|
||||
* Expected IRQ arrival time using the trace clock as the base.
|
||||
*/
|
||||
exp_irq_ts = taa_data->timer_irq_start_time - taa_data->timer_irq_start_delay;
|
||||
|
||||
if (exp_irq_ts < taa_data->prev_irq_timstamp + taa_data->prev_irq_duration)
|
||||
printf(" Previous IRQ interference: \t up to %9.2f us",
|
||||
ns_to_usf(taa_data->prev_irq_duration));
|
||||
|
||||
/*
|
||||
* The delay that the IRQ suffered before starting.
|
||||
*/
|
||||
printf(" IRQ handler delay: %16s %9.2f us (%.2f %%)\n",
|
||||
(ns_to_usf(taa_data->timer_exit_from_idle) > 10) ? "(exit from idle)" : "",
|
||||
ns_to_usf(taa_data->timer_irq_start_delay),
|
||||
ns_to_per(total, taa_data->timer_irq_start_delay));
|
||||
|
||||
/*
|
||||
* Timerlat IRQ.
|
||||
*/
|
||||
printf(" IRQ latency: \t\t\t\t %9.2f us\n",
|
||||
ns_to_usf(taa_data->tlat_irq_latency));
|
||||
|
||||
if (irq) {
|
||||
/*
|
||||
* If the trace stopped due to IRQ, the other events will not happen
|
||||
* because... the trace stopped :-).
|
||||
*
|
||||
* That is all folks, the stack trace was printed before the stop,
|
||||
* so it will be displayed, it is the key.
|
||||
*/
|
||||
printf(" Blocking thread:\n");
|
||||
printf(" %24s:%-9llu\n",
|
||||
taa_data->run_thread_comm, taa_data->run_thread_pid);
|
||||
} else {
|
||||
/*
|
||||
* The duration of the IRQ handler that handled the timerlat IRQ.
|
||||
*/
|
||||
printf(" Timerlat IRQ duration: \t\t %9.2f us (%.2f %%)\n",
|
||||
ns_to_usf(taa_data->timer_irq_duration),
|
||||
ns_to_per(total, taa_data->timer_irq_duration));
|
||||
|
||||
/*
|
||||
* The amount of time that the current thread postponed the scheduler.
|
||||
*
|
||||
* Recalling that it is net from NMI/IRQ/Softirq interference, so there
|
||||
* is no need to compute values here.
|
||||
*/
|
||||
printf(" Blocking thread: \t\t\t %9.2f us (%.2f %%)\n",
|
||||
ns_to_usf(taa_data->thread_blocking_duration),
|
||||
ns_to_per(total, taa_data->thread_blocking_duration));
|
||||
|
||||
printf(" %24s:%-9llu %9.2f us\n",
|
||||
taa_data->run_thread_comm, taa_data->run_thread_pid,
|
||||
ns_to_usf(taa_data->thread_blocking_duration));
|
||||
}
|
||||
|
||||
/*
|
||||
* Print the stack trace!
|
||||
*/
|
||||
trace_seq_do_printf(taa_data->stack_seq);
|
||||
|
||||
/*
|
||||
* NMIs can happen during the IRQ, so they are always possible.
|
||||
*/
|
||||
if (taa_data->thread_nmi_sum)
|
||||
printf(" NMI interference \t\t\t %9.2f us (%.2f %%)\n",
|
||||
ns_to_usf(taa_data->thread_nmi_sum),
|
||||
ns_to_per(total, taa_data->thread_nmi_sum));
|
||||
|
||||
/*
|
||||
* If it is an IRQ latency, the other factors can be skipped.
|
||||
*/
|
||||
if (irq)
|
||||
goto print_total;
|
||||
|
||||
/*
|
||||
* Prints the interference caused by IRQs to the thread latency.
|
||||
*/
|
||||
if (taa_data->thread_irq_sum) {
|
||||
printf(" IRQ interference \t\t\t %9.2f us (%.2f %%)\n",
|
||||
ns_to_usf(taa_data->thread_irq_sum),
|
||||
ns_to_per(total, taa_data->thread_irq_sum));
|
||||
|
||||
trace_seq_do_printf(taa_data->irqs_seq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Prints the interference caused by Softirqs to the thread latency.
|
||||
*/
|
||||
if (taa_data->thread_softirq_sum) {
|
||||
printf(" Softirq interference \t\t\t %9.2f us (%.2f %%)\n",
|
||||
ns_to_usf(taa_data->thread_softirq_sum),
|
||||
ns_to_per(total, taa_data->thread_softirq_sum));
|
||||
|
||||
trace_seq_do_printf(taa_data->softirqs_seq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Prints the interference caused by other threads to the thread latency.
|
||||
*
|
||||
* If this happens, your timerlat is not the highest prio. OK, migration
|
||||
* thread can happen. But otherwise, you are not measuring the "scheduling
|
||||
* latency" only, and here is the difference from scheduling latency and
|
||||
* timer handling latency.
|
||||
*/
|
||||
if (taa_data->thread_thread_sum) {
|
||||
printf(" Thread interference \t\t\t %9.2f us (%.2f %%)\n",
|
||||
ns_to_usf(taa_data->thread_thread_sum),
|
||||
ns_to_per(total, taa_data->thread_thread_sum));
|
||||
|
||||
trace_seq_do_printf(taa_data->threads_seq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Done.
|
||||
*/
|
||||
print_total:
|
||||
printf("------------------------------------------------------------------------\n");
|
||||
printf(" %s latency: \t\t\t %9.2f us (100%%)\n", irq ? "IRQ" : "Thread",
|
||||
ns_to_usf(total));
|
||||
}
|
||||
|
||||
/**
|
||||
* timerlat_auto_analysis - Analyze the collected data
|
||||
*/
|
||||
void timerlat_auto_analysis(int irq_thresh, int thread_thresh)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
unsigned long long max_exit_from_idle = 0;
|
||||
struct timerlat_aa_data *taa_data;
|
||||
int max_exit_from_idle_cpu;
|
||||
struct tep_handle *tep;
|
||||
int cpu;
|
||||
|
||||
/* bring stop tracing to the ns scale */
|
||||
irq_thresh = irq_thresh * 1000;
|
||||
thread_thresh = thread_thresh * 1000;
|
||||
|
||||
for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) {
|
||||
taa_data = timerlat_aa_get_data(taa_ctx, cpu);
|
||||
|
||||
if (irq_thresh && taa_data->tlat_irq_latency >= irq_thresh) {
|
||||
printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu);
|
||||
timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh);
|
||||
} else if (thread_thresh && (taa_data->tlat_thread_latency) >= thread_thresh) {
|
||||
printf("## CPU %d hit stop tracing, analyzing it ##\n", cpu);
|
||||
timerlat_thread_analysis(taa_data, cpu, irq_thresh, thread_thresh);
|
||||
}
|
||||
|
||||
if (taa_data->max_exit_idle_latency > max_exit_from_idle) {
|
||||
max_exit_from_idle = taa_data->max_exit_idle_latency;
|
||||
max_exit_from_idle_cpu = cpu;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
if (max_exit_from_idle) {
|
||||
printf("\n");
|
||||
printf("Max timerlat IRQ latency from idle: %.2f us in cpu %d\n",
|
||||
ns_to_usf(max_exit_from_idle), max_exit_from_idle_cpu);
|
||||
}
|
||||
if (!taa_ctx->dump_tasks)
|
||||
return;
|
||||
|
||||
printf("\n");
|
||||
printf("Printing CPU tasks:\n");
|
||||
for (cpu = 0; cpu < taa_ctx->nr_cpus; cpu++) {
|
||||
taa_data = timerlat_aa_get_data(taa_ctx, cpu);
|
||||
tep = taa_ctx->tool->trace.tep;
|
||||
|
||||
printf(" [%.3d] %24s:%llu", cpu, taa_data->current_comm, taa_data->current_pid);
|
||||
|
||||
if (taa_data->kworker_func)
|
||||
printf(" kworker:%s:%s",
|
||||
tep_find_function(tep, taa_data->kworker) ? : "<...>",
|
||||
tep_find_function(tep, taa_data->kworker_func));
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_destroy_seqs - Destroy seq files used to store parsed data
|
||||
*/
|
||||
static void timerlat_aa_destroy_seqs(struct timerlat_aa_context *taa_ctx)
|
||||
{
|
||||
struct timerlat_aa_data *taa_data;
|
||||
int i;
|
||||
|
||||
if (!taa_ctx->taa_data)
|
||||
return;
|
||||
|
||||
for (i = 0; i < taa_ctx->nr_cpus; i++) {
|
||||
taa_data = timerlat_aa_get_data(taa_ctx, i);
|
||||
|
||||
if (taa_data->prev_irqs_seq) {
|
||||
trace_seq_destroy(taa_data->prev_irqs_seq);
|
||||
free(taa_data->prev_irqs_seq);
|
||||
}
|
||||
|
||||
if (taa_data->nmi_seq) {
|
||||
trace_seq_destroy(taa_data->nmi_seq);
|
||||
free(taa_data->nmi_seq);
|
||||
}
|
||||
|
||||
if (taa_data->irqs_seq) {
|
||||
trace_seq_destroy(taa_data->irqs_seq);
|
||||
free(taa_data->irqs_seq);
|
||||
}
|
||||
|
||||
if (taa_data->softirqs_seq) {
|
||||
trace_seq_destroy(taa_data->softirqs_seq);
|
||||
free(taa_data->softirqs_seq);
|
||||
}
|
||||
|
||||
if (taa_data->threads_seq) {
|
||||
trace_seq_destroy(taa_data->threads_seq);
|
||||
free(taa_data->threads_seq);
|
||||
}
|
||||
|
||||
if (taa_data->stack_seq) {
|
||||
trace_seq_destroy(taa_data->stack_seq);
|
||||
free(taa_data->stack_seq);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_init_seqs - Init seq files used to store parsed information
|
||||
*
|
||||
* Instead of keeping data structures to store raw data, use seq files to
|
||||
* store parsed data.
|
||||
*
|
||||
* Allocates and initialize seq files.
|
||||
*
|
||||
* Returns 0 on success, -1 otherwise.
|
||||
*/
|
||||
static int timerlat_aa_init_seqs(struct timerlat_aa_context *taa_ctx)
|
||||
{
|
||||
struct timerlat_aa_data *taa_data;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < taa_ctx->nr_cpus; i++) {
|
||||
|
||||
taa_data = timerlat_aa_get_data(taa_ctx, i);
|
||||
|
||||
taa_data->prev_irqs_seq = calloc(1, sizeof(*taa_data->prev_irqs_seq));
|
||||
if (!taa_data->prev_irqs_seq)
|
||||
goto out_err;
|
||||
|
||||
trace_seq_init(taa_data->prev_irqs_seq);
|
||||
|
||||
taa_data->nmi_seq = calloc(1, sizeof(*taa_data->nmi_seq));
|
||||
if (!taa_data->nmi_seq)
|
||||
goto out_err;
|
||||
|
||||
trace_seq_init(taa_data->nmi_seq);
|
||||
|
||||
taa_data->irqs_seq = calloc(1, sizeof(*taa_data->irqs_seq));
|
||||
if (!taa_data->irqs_seq)
|
||||
goto out_err;
|
||||
|
||||
trace_seq_init(taa_data->irqs_seq);
|
||||
|
||||
taa_data->softirqs_seq = calloc(1, sizeof(*taa_data->softirqs_seq));
|
||||
if (!taa_data->softirqs_seq)
|
||||
goto out_err;
|
||||
|
||||
trace_seq_init(taa_data->softirqs_seq);
|
||||
|
||||
taa_data->threads_seq = calloc(1, sizeof(*taa_data->threads_seq));
|
||||
if (!taa_data->threads_seq)
|
||||
goto out_err;
|
||||
|
||||
trace_seq_init(taa_data->threads_seq);
|
||||
|
||||
taa_data->stack_seq = calloc(1, sizeof(*taa_data->stack_seq));
|
||||
if (!taa_data->stack_seq)
|
||||
goto out_err;
|
||||
|
||||
trace_seq_init(taa_data->stack_seq);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_err:
|
||||
timerlat_aa_destroy_seqs(taa_ctx);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_unregister_events - Unregister events used in the auto-analysis
|
||||
*/
|
||||
static void timerlat_aa_unregister_events(struct osnoise_tool *tool, int dump_tasks)
|
||||
{
|
||||
tracefs_event_disable(tool->trace.inst, "osnoise", NULL);
|
||||
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise",
|
||||
timerlat_aa_nmi_handler, tool);
|
||||
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise",
|
||||
timerlat_aa_irq_handler, tool);
|
||||
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise",
|
||||
timerlat_aa_softirq_handler, tool);
|
||||
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise",
|
||||
timerlat_aa_thread_handler, tool);
|
||||
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack",
|
||||
timerlat_aa_stack_handler, tool);
|
||||
if (!dump_tasks)
|
||||
return;
|
||||
|
||||
tracefs_event_disable(tool->trace.inst, "sched", "sched_switch");
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "sched", "sched_switch",
|
||||
timerlat_aa_sched_switch_handler, tool);
|
||||
|
||||
tracefs_event_disable(tool->trace.inst, "workqueue", "workqueue_execute_start");
|
||||
tep_unregister_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start",
|
||||
timerlat_aa_kworker_start_handler, tool);
|
||||
}
|
||||
|
||||
/*
|
||||
* timerlat_aa_register_events - Register events used in the auto-analysis
|
||||
*
|
||||
* Returns 0 on success, -1 otherwise.
|
||||
*/
|
||||
static int timerlat_aa_register_events(struct osnoise_tool *tool, int dump_tasks)
|
||||
{
|
||||
int retval;
|
||||
|
||||
/*
|
||||
* register auto-analysis handlers.
|
||||
*/
|
||||
retval = tracefs_event_enable(tool->trace.inst, "osnoise", NULL);
|
||||
if (retval < 0 && !errno) {
|
||||
err_msg("Could not find osnoise events\n");
|
||||
goto out_err;
|
||||
}
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "osnoise", "nmi_noise",
|
||||
timerlat_aa_nmi_handler, tool);
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "osnoise", "irq_noise",
|
||||
timerlat_aa_irq_handler, tool);
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "osnoise", "softirq_noise",
|
||||
timerlat_aa_softirq_handler, tool);
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "osnoise", "thread_noise",
|
||||
timerlat_aa_thread_handler, tool);
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "ftrace", "kernel_stack",
|
||||
timerlat_aa_stack_handler, tool);
|
||||
|
||||
if (!dump_tasks)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* Dump task events.
|
||||
*/
|
||||
retval = tracefs_event_enable(tool->trace.inst, "sched", "sched_switch");
|
||||
if (retval < 0 && !errno) {
|
||||
err_msg("Could not find sched_switch\n");
|
||||
goto out_err;
|
||||
}
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "sched", "sched_switch",
|
||||
timerlat_aa_sched_switch_handler, tool);
|
||||
|
||||
retval = tracefs_event_enable(tool->trace.inst, "workqueue", "workqueue_execute_start");
|
||||
if (retval < 0 && !errno) {
|
||||
err_msg("Could not find workqueue_execute_start\n");
|
||||
goto out_err;
|
||||
}
|
||||
|
||||
tep_register_event_handler(tool->trace.tep, -1, "workqueue", "workqueue_execute_start",
|
||||
timerlat_aa_kworker_start_handler, tool);
|
||||
|
||||
return 0;
|
||||
|
||||
out_err:
|
||||
timerlat_aa_unregister_events(tool, dump_tasks);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* timerlat_aa_destroy - Destroy timerlat auto-analysis
|
||||
*/
|
||||
void timerlat_aa_destroy(void)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx = timerlat_aa_get_ctx();
|
||||
|
||||
if (!taa_ctx)
|
||||
return;
|
||||
|
||||
if (!taa_ctx->taa_data)
|
||||
goto out_ctx;
|
||||
|
||||
timerlat_aa_unregister_events(taa_ctx->tool, taa_ctx->dump_tasks);
|
||||
timerlat_aa_destroy_seqs(taa_ctx);
|
||||
free(taa_ctx->taa_data);
|
||||
out_ctx:
|
||||
free(taa_ctx);
|
||||
}
|
||||
|
||||
/**
|
||||
* timerlat_aa_init - Initialize timerlat auto-analysis
|
||||
*
|
||||
* Returns 0 on success, -1 otherwise.
|
||||
*/
|
||||
int timerlat_aa_init(struct osnoise_tool *tool, int nr_cpus, int dump_tasks)
|
||||
{
|
||||
struct timerlat_aa_context *taa_ctx;
|
||||
int retval;
|
||||
|
||||
taa_ctx = calloc(1, sizeof(*taa_ctx));
|
||||
if (!taa_ctx)
|
||||
return -1;
|
||||
|
||||
__timerlat_aa_ctx = taa_ctx;
|
||||
|
||||
taa_ctx->nr_cpus = nr_cpus;
|
||||
taa_ctx->tool = tool;
|
||||
taa_ctx->dump_tasks = dump_tasks;
|
||||
|
||||
taa_ctx->taa_data = calloc(nr_cpus, sizeof(*taa_ctx->taa_data));
|
||||
if (!taa_ctx->taa_data)
|
||||
goto out_err;
|
||||
|
||||
retval = timerlat_aa_init_seqs(taa_ctx);
|
||||
if (retval)
|
||||
goto out_err;
|
||||
|
||||
retval = timerlat_aa_register_events(tool, dump_tasks);
|
||||
if (retval)
|
||||
goto out_err;
|
||||
|
||||
return 0;
|
||||
|
||||
out_err:
|
||||
timerlat_aa_destroy();
|
||||
return -1;
|
||||
}
|
|
@ -0,0 +1,12 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2023 Red Hat Inc, Daniel Bristot de Oliveira <bristot@kernel.org>
|
||||
*/
|
||||
|
||||
int timerlat_aa_init(struct osnoise_tool *tool, int nr_cpus, int dump_task);
|
||||
void timerlat_aa_destroy(void);
|
||||
|
||||
int timerlat_aa_handler(struct trace_seq *s, struct tep_record *record,
|
||||
struct tep_event *event, void *context);
|
||||
|
||||
void timerlat_auto_analysis(int irq_thresh, int thread_thresh);
|
|
@ -56,3 +56,6 @@ struct sched_attr {
|
|||
int parse_prio(char *arg, struct sched_attr *sched_param);
|
||||
int set_comm_sched_attr(const char *comm_prefix, struct sched_attr *attr);
|
||||
int set_cpu_dma_latency(int32_t latency);
|
||||
|
||||
#define ns_to_usf(x) (((double)x/1000))
|
||||
#define ns_to_per(total, part) ((part * 100) / (double)total)
|
||||
|
|
Загрузка…
Ссылка в новой задаче