timecounter: keep track of accumulated fractional nanoseconds
The current timecounter implementation will drop a variable amount of resolution, depending on the magnitude of the time delta. In other words, reading the clock too often or too close to a time stamp conversion will introduce errors into the time values. This patch fixes the issue by introducing a fractional nanosecond field that accumulates the low order bits. Reported-by: Janusz Użycki <j.uzycki@elproma.com.pl> Signed-off-by: Richard Cochran <richardcochran@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Родитель
f25a30be35
Коммит
2eebdde652
|
@ -240,7 +240,7 @@ void mlx4_en_init_timestamp(struct mlx4_en_dev *mdev)
|
|||
{
|
||||
struct mlx4_dev *dev = mdev->dev;
|
||||
unsigned long flags;
|
||||
u64 ns;
|
||||
u64 ns, zero = 0;
|
||||
|
||||
rwlock_init(&mdev->clock_lock);
|
||||
|
||||
|
@ -265,7 +265,7 @@ void mlx4_en_init_timestamp(struct mlx4_en_dev *mdev)
|
|||
/* Calculate period in seconds to call the overflow watchdog - to make
|
||||
* sure counter is checked at least once every wrap around.
|
||||
*/
|
||||
ns = cyclecounter_cyc2ns(&mdev->cycles, mdev->cycles.mask);
|
||||
ns = cyclecounter_cyc2ns(&mdev->cycles, mdev->cycles.mask, zero, &zero);
|
||||
do_div(ns, NSEC_PER_SEC / 2 / HZ);
|
||||
mdev->overflow_period = ns;
|
||||
|
||||
|
|
|
@ -55,27 +55,32 @@ struct cyclecounter {
|
|||
* @cycle_last: most recent cycle counter value seen by
|
||||
* timecounter_read()
|
||||
* @nsec: continuously increasing count
|
||||
* @mask: bit mask for maintaining the 'frac' field
|
||||
* @frac: accumulated fractional nanoseconds
|
||||
*/
|
||||
struct timecounter {
|
||||
const struct cyclecounter *cc;
|
||||
cycle_t cycle_last;
|
||||
u64 nsec;
|
||||
u64 mask;
|
||||
u64 frac;
|
||||
};
|
||||
|
||||
/**
|
||||
* cyclecounter_cyc2ns - converts cycle counter cycles to nanoseconds
|
||||
* @cc: Pointer to cycle counter.
|
||||
* @cycles: Cycles
|
||||
*
|
||||
* XXX - This could use some mult_lxl_ll() asm optimization. Same code
|
||||
* as in cyc2ns, but with unsigned result.
|
||||
* @mask: bit mask for maintaining the 'frac' field
|
||||
* @frac: pointer to storage for the fractional nanoseconds.
|
||||
*/
|
||||
static inline u64 cyclecounter_cyc2ns(const struct cyclecounter *cc,
|
||||
cycle_t cycles)
|
||||
cycle_t cycles, u64 mask, u64 *frac)
|
||||
{
|
||||
u64 ret = (u64)cycles;
|
||||
ret = (ret * cc->mult) >> cc->shift;
|
||||
return ret;
|
||||
u64 ns = (u64) cycles;
|
||||
|
||||
ns = (ns * cc->mult) + *frac;
|
||||
*frac = ns & mask;
|
||||
return ns >> cc->shift;
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -25,6 +25,8 @@ void timecounter_init(struct timecounter *tc,
|
|||
tc->cc = cc;
|
||||
tc->cycle_last = cc->read(cc);
|
||||
tc->nsec = start_tstamp;
|
||||
tc->mask = (1ULL << cc->shift) - 1;
|
||||
tc->frac = 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(timecounter_init);
|
||||
|
||||
|
@ -51,7 +53,8 @@ static u64 timecounter_read_delta(struct timecounter *tc)
|
|||
cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
|
||||
|
||||
/* convert to nanoseconds: */
|
||||
ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
|
||||
ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta,
|
||||
tc->mask, &tc->frac);
|
||||
|
||||
/* update time stamp of timecounter_read_delta() call: */
|
||||
tc->cycle_last = cycle_now;
|
||||
|
@ -72,22 +75,36 @@ u64 timecounter_read(struct timecounter *tc)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(timecounter_read);
|
||||
|
||||
/*
|
||||
* This is like cyclecounter_cyc2ns(), but it is used for computing a
|
||||
* time previous to the time stored in the cycle counter.
|
||||
*/
|
||||
static u64 cc_cyc2ns_backwards(const struct cyclecounter *cc,
|
||||
cycle_t cycles, u64 mask, u64 frac)
|
||||
{
|
||||
u64 ns = (u64) cycles;
|
||||
|
||||
ns = ((ns * cc->mult) - frac) >> cc->shift;
|
||||
|
||||
return ns;
|
||||
}
|
||||
|
||||
u64 timecounter_cyc2time(struct timecounter *tc,
|
||||
cycle_t cycle_tstamp)
|
||||
{
|
||||
u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
|
||||
u64 nsec;
|
||||
u64 delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
|
||||
u64 nsec = tc->nsec, frac = tc->frac;
|
||||
|
||||
/*
|
||||
* Instead of always treating cycle_tstamp as more recent
|
||||
* than tc->cycle_last, detect when it is too far in the
|
||||
* future and treat it as old time stamp instead.
|
||||
*/
|
||||
if (cycle_delta > tc->cc->mask / 2) {
|
||||
cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
|
||||
nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
|
||||
if (delta > tc->cc->mask / 2) {
|
||||
delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
|
||||
nsec -= cc_cyc2ns_backwards(tc->cc, delta, tc->mask, frac);
|
||||
} else {
|
||||
nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
|
||||
nsec += cyclecounter_cyc2ns(tc->cc, delta, tc->mask, &frac);
|
||||
}
|
||||
|
||||
return nsec;
|
||||
|
|
|
@ -152,7 +152,8 @@ void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
|
|||
return;
|
||||
}
|
||||
|
||||
ns = cyclecounter_cyc2ns(timecounter->cc, cval - now);
|
||||
ns = cyclecounter_cyc2ns(timecounter->cc, cval - now, timecounter->mask,
|
||||
&timecounter->frac);
|
||||
timer_arm(timer, ns);
|
||||
}
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче