timers, sched/clock: Clean up the code a bit
Trivial cleanups, to improve the readability of the generic sched_clock() code: - Improve and standardize comments - Standardize the coding style - Use vertical spacing where appropriate - etc. No code changed: md5: 19a053b31e0c54feaeff1492012b019a sched_clock.o.before.asm 19a053b31e0c54feaeff1492012b019a sched_clock.o.after.asm Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Daniel Thompson <daniel.thompson@linaro.org> Cc: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Stephen Boyd <sboyd@codeaurora.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Родитель
1809bfa44e
Коммит
32fea568ae
|
@ -1,5 +1,6 @@
|
|||
/*
|
||||
* sched_clock.c: support for extending counters to full 64-bit ns counter
|
||||
* sched_clock.c: Generic sched_clock() support, to extend low level
|
||||
* hardware time counters to full 64-bit ns values.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
|
@ -19,15 +20,15 @@
|
|||
#include <linux/bitops.h>
|
||||
|
||||
/**
|
||||
* struct clock_read_data - data required to read from sched_clock
|
||||
* struct clock_read_data - data required to read from sched_clock()
|
||||
*
|
||||
* @epoch_ns: sched_clock value at last update
|
||||
* @epoch_cyc: Clock cycle value at last update
|
||||
* @epoch_ns: sched_clock() value at last update
|
||||
* @epoch_cyc: Clock cycle value at last update.
|
||||
* @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
|
||||
* clocks
|
||||
* @read_sched_clock: Current clock source (or dummy source when suspended)
|
||||
* @mult: Multipler for scaled math conversion
|
||||
* @shift: Shift value for scaled math conversion
|
||||
* clocks.
|
||||
* @read_sched_clock: Current clock source (or dummy source when suspended).
|
||||
* @mult: Multipler for scaled math conversion.
|
||||
* @shift: Shift value for scaled math conversion.
|
||||
*
|
||||
* Care must be taken when updating this structure; it is read by
|
||||
* some very hot code paths. It occupies <=40 bytes and, when combined
|
||||
|
@ -44,25 +45,26 @@ struct clock_read_data {
|
|||
};
|
||||
|
||||
/**
|
||||
* struct clock_data - all data needed for sched_clock (including
|
||||
* struct clock_data - all data needed for sched_clock() (including
|
||||
* registration of a new clock source)
|
||||
*
|
||||
* @seq: Sequence counter for protecting updates. The lowest
|
||||
* bit is the index for @read_data.
|
||||
* @read_data: Data required to read from sched_clock.
|
||||
* @wrap_kt: Duration for which clock can run before wrapping
|
||||
* @rate: Tick rate of the registered clock
|
||||
* @actual_read_sched_clock: Registered clock read function
|
||||
* @wrap_kt: Duration for which clock can run before wrapping.
|
||||
* @rate: Tick rate of the registered clock.
|
||||
* @actual_read_sched_clock: Registered hardware level clock read function.
|
||||
*
|
||||
* The ordering of this structure has been chosen to optimize cache
|
||||
* performance. In particular seq and read_data[0] (combined) should fit
|
||||
* into a single 64 byte cache line.
|
||||
* performance. In particular 'seq' and 'read_data[0]' (combined) should fit
|
||||
* into a single 64-byte cache line.
|
||||
*/
|
||||
struct clock_data {
|
||||
seqcount_t seq;
|
||||
struct clock_read_data read_data[2];
|
||||
ktime_t wrap_kt;
|
||||
unsigned long rate;
|
||||
|
||||
u64 (*actual_read_sched_clock)(void);
|
||||
};
|
||||
|
||||
|
@ -112,10 +114,10 @@ unsigned long long notrace sched_clock(void)
|
|||
/*
|
||||
* Updating the data required to read the clock.
|
||||
*
|
||||
* sched_clock will never observe mis-matched data even if called from
|
||||
* sched_clock() will never observe mis-matched data even if called from
|
||||
* an NMI. We do this by maintaining an odd/even copy of the data and
|
||||
* steering sched_clock to one or the other using a sequence counter.
|
||||
* In order to preserve the data cache profile of sched_clock as much
|
||||
* steering sched_clock() to one or the other using a sequence counter.
|
||||
* In order to preserve the data cache profile of sched_clock() as much
|
||||
* as possible the system reverts back to the even copy when the update
|
||||
* completes; the odd copy is used *only* during an update.
|
||||
*/
|
||||
|
@ -135,7 +137,7 @@ static void update_clock_read_data(struct clock_read_data *rd)
|
|||
}
|
||||
|
||||
/*
|
||||
* Atomically update the sched_clock epoch.
|
||||
* Atomically update the sched_clock() epoch.
|
||||
*/
|
||||
static void update_sched_clock(void)
|
||||
{
|
||||
|
@ -146,9 +148,7 @@ static void update_sched_clock(void)
|
|||
rd = cd.read_data[0];
|
||||
|
||||
cyc = cd.actual_read_sched_clock();
|
||||
ns = rd.epoch_ns +
|
||||
cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
|
||||
rd.mult, rd.shift);
|
||||
ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
|
||||
|
||||
rd.epoch_ns = ns;
|
||||
rd.epoch_cyc = cyc;
|
||||
|
@ -160,11 +160,12 @@ static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
|
|||
{
|
||||
update_sched_clock();
|
||||
hrtimer_forward_now(hrt, cd.wrap_kt);
|
||||
|
||||
return HRTIMER_RESTART;
|
||||
}
|
||||
|
||||
void __init sched_clock_register(u64 (*read)(void), int bits,
|
||||
unsigned long rate)
|
||||
void __init
|
||||
sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
|
||||
{
|
||||
u64 res, wrap, new_mask, new_epoch, cyc, ns;
|
||||
u32 new_mult, new_shift;
|
||||
|
@ -177,24 +178,22 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
|
||||
WARN_ON(!irqs_disabled());
|
||||
|
||||
/* calculate the mult/shift to convert counter ticks to ns. */
|
||||
/* Calculate the mult/shift to convert counter ticks to ns. */
|
||||
clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
|
||||
|
||||
new_mask = CLOCKSOURCE_MASK(bits);
|
||||
cd.rate = rate;
|
||||
|
||||
/* calculate how many nanosecs until we risk wrapping */
|
||||
/* Calculate how many nanosecs until we risk wrapping */
|
||||
wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
|
||||
cd.wrap_kt = ns_to_ktime(wrap);
|
||||
|
||||
rd = cd.read_data[0];
|
||||
|
||||
/* update epoch for new counter and update epoch_ns from old counter*/
|
||||
/* Update epoch for new counter and update 'epoch_ns' from old counter*/
|
||||
new_epoch = read();
|
||||
cyc = cd.actual_read_sched_clock();
|
||||
ns = rd.epoch_ns +
|
||||
cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask,
|
||||
rd.mult, rd.shift);
|
||||
ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
|
||||
cd.actual_read_sched_clock = read;
|
||||
|
||||
rd.read_sched_clock = read;
|
||||
|
@ -203,25 +202,29 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
rd.shift = new_shift;
|
||||
rd.epoch_cyc = new_epoch;
|
||||
rd.epoch_ns = ns;
|
||||
|
||||
update_clock_read_data(&rd);
|
||||
|
||||
r = rate;
|
||||
if (r >= 4000000) {
|
||||
r /= 1000000;
|
||||
r_unit = 'M';
|
||||
} else if (r >= 1000) {
|
||||
} else {
|
||||
if (r >= 1000) {
|
||||
r /= 1000;
|
||||
r_unit = 'k';
|
||||
} else
|
||||
} else {
|
||||
r_unit = ' ';
|
||||
}
|
||||
}
|
||||
|
||||
/* calculate the ns resolution of this counter */
|
||||
/* Calculate the ns resolution of this counter */
|
||||
res = cyc_to_ns(1ULL, new_mult, new_shift);
|
||||
|
||||
pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
|
||||
bits, r, r_unit, res, wrap);
|
||||
|
||||
/* Enable IRQ time accounting if we have a fast enough sched_clock */
|
||||
/* Enable IRQ time accounting if we have a fast enough sched_clock() */
|
||||
if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
|
||||
enable_sched_clock_irqtime();
|
||||
|
||||
|
@ -231,7 +234,7 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
void __init sched_clock_postinit(void)
|
||||
{
|
||||
/*
|
||||
* If no sched_clock function has been provided at that point,
|
||||
* If no sched_clock() function has been provided at that point,
|
||||
* make it the final one one.
|
||||
*/
|
||||
if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
|
||||
|
@ -257,7 +260,7 @@ void __init sched_clock_postinit(void)
|
|||
* This function must only be called from the critical
|
||||
* section in sched_clock(). It relies on the read_seqcount_retry()
|
||||
* at the end of the critical section to be sure we observe the
|
||||
* correct copy of epoch_cyc.
|
||||
* correct copy of 'epoch_cyc'.
|
||||
*/
|
||||
static u64 notrace suspended_sched_clock_read(void)
|
||||
{
|
||||
|
@ -273,6 +276,7 @@ static int sched_clock_suspend(void)
|
|||
update_sched_clock();
|
||||
hrtimer_cancel(&sched_clock_timer);
|
||||
rd->read_sched_clock = suspended_sched_clock_read;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -293,6 +297,7 @@ static struct syscore_ops sched_clock_ops = {
|
|||
static int __init sched_clock_syscore_init(void)
|
||||
{
|
||||
register_syscore_ops(&sched_clock_ops);
|
||||
|
||||
return 0;
|
||||
}
|
||||
device_initcall(sched_clock_syscore_init);
|
||||
|
|
Загрузка…
Ссылка в новой задаче