Merge back cpufreq material for 6.3-rc1.

This commit is contained in:
Rafael J. Wysocki 2023-02-14 15:22:31 +01:00
Родитель 6f098cde9d e947925f10
Коммит 3500e221d5
20 изменённых файлов: 893 добавлений и 305 удалений

Просмотреть файл

@ -7020,3 +7020,10 @@
management firmware translates the requests into actual
hardware states (core frequency, data fabric and memory
clocks etc.)
active
Use amd_pstate_epp driver instance as the scaling driver,
driver provides a hint to the hardware if software wants
to bias toward performance (0x0) or energy efficiency (0xff)
to the CPPC firmware. then CPPC power algorithm will
calculate the runtime workload and adjust the realtime cores
frequency.

Просмотреть файл

@ -262,6 +262,25 @@ lowest non-linear performance in `AMD CPPC Performance Capability
<perf_cap_>`_.)
This attribute is read-only.
``energy_performance_available_preferences``
A list of all the supported EPP preferences that could be used for
``energy_performance_preference`` on this system.
These profiles represent different hints that are provided
to the low-level firmware about the user's desired energy vs efficiency
tradeoff. ``default`` represents the epp value is set by platform
firmware. This attribute is read-only.
``energy_performance_preference``
The current energy performance preference can be read from this attribute.
and user can change current preference according to energy or performance needs
Please get all support profiles list from
``energy_performance_available_preferences`` attribute, all the profiles are
integer values defined between 0 to 255 when EPP feature is enabled by platform
firmware, if EPP feature is disabled, driver will ignore the written value
This attribute is read-write.
Other performance and frequency values can be read back from
``/sys/devices/system/cpu/cpuX/acpi_cppc/``, see :ref:`cppc_sysfs`.
@ -280,8 +299,30 @@ module which supports the new AMD P-States mechanism on most of the future AMD
platforms. The AMD P-States mechanism is the more performance and energy
efficiency frequency management method on AMD processors.
Kernel Module Options for ``amd-pstate``
=========================================
AMD Pstate Driver Operation Modes
=================================
``amd_pstate`` CPPC has two operation modes: CPPC Autonomous(active) mode and
CPPC non-autonomous(passive) mode.
active mode and passive mode can be chosen by different kernel parameters.
When in Autonomous mode, CPPC ignores requests done in the Desired Performance
Target register and takes into account only the values set to the Minimum requested
performance, Maximum requested performance, and Energy Performance Preference
registers. When Autonomous is disabled, it only considers the Desired Performance Target.
Active Mode
------------
``amd_pstate=active``
This is the low-level firmware control mode which is implemented by ``amd_pstate_epp``
driver with ``amd_pstate=active`` passed to the kernel in the command line.
In this mode, ``amd_pstate_epp`` driver provides a hint to the hardware if software
wants to bias toward performance (0x0) or energy efficiency (0xff) to the CPPC firmware.
then CPPC power algorithm will calculate the runtime workload and adjust the realtime
cores frequency according to the power supply and thermal, core voltage and some other
hardware conditions.
Passive Mode
------------
@ -298,6 +339,35 @@ processor must provide at least nominal performance requested and go higher if c
operating conditions allow.
User Space Interface in ``sysfs``
=================================
Global Attributes
-----------------
``amd-pstate`` exposes several global attributes (files) in ``sysfs`` to
control its functionality at the system level. They are located in the
``/sys/devices/system/cpu/amd-pstate/`` directory and affect all CPUs.
``status``
Operation mode of the driver: "active", "passive" or "disable".
"active"
The driver is functional and in the ``active mode``
"passive"
The driver is functional and in the ``passive mode``
"disable"
The driver is unregistered and not functional now.
This attribute can be written to in order to change the driver's
operation mode or to unregister it. The string written to it must be
one of the possible values of it and, if successful, writing one of
these values to the sysfs file will cause the driver to switch over
to the operation mode represented by that string - or to be
unregistered in the "disable" case.
``cpupower`` tool support for ``amd-pstate``
===============================================

Просмотреть файл

@ -1,18 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Copyright (c) 2014 Zhang, Keguang <keguang.zhang@gmail.com>
*
* Loongson 1 CPUFreq platform support.
*/
#ifndef __ASM_MACH_LOONGSON32_CPUFREQ_H
#define __ASM_MACH_LOONGSON32_CPUFREQ_H
struct plat_ls1x_cpufreq {
const char *clk_name; /* CPU clk */
const char *osc_clk_name; /* OSC clk */
unsigned int max_freq; /* in kHz */
unsigned int min_freq; /* in kHz */
};
#endif /* __ASM_MACH_LOONGSON32_CPUFREQ_H */

Просмотреть файл

@ -12,7 +12,6 @@
#include <nand.h>
extern struct platform_device ls1x_uart_pdev;
extern struct platform_device ls1x_cpufreq_pdev;
extern struct platform_device ls1x_eth0_pdev;
extern struct platform_device ls1x_eth1_pdev;
extern struct platform_device ls1x_ehci_pdev;

Просмотреть файл

@ -15,7 +15,6 @@
#include <platform.h>
#include <loongson1.h>
#include <cpufreq.h>
#include <dma.h>
#include <nand.h>
@ -62,21 +61,6 @@ void __init ls1x_serial_set_uartclk(struct platform_device *pdev)
p->uartclk = clk_get_rate(clk);
}
/* CPUFreq */
static struct plat_ls1x_cpufreq ls1x_cpufreq_pdata = {
.clk_name = "cpu_clk",
.osc_clk_name = "osc_clk",
.max_freq = 266 * 1000,
.min_freq = 33 * 1000,
};
struct platform_device ls1x_cpufreq_pdev = {
.name = "ls1x-cpufreq",
.dev = {
.platform_data = &ls1x_cpufreq_pdata,
},
};
/* Synopsys Ethernet GMAC */
static struct stmmac_mdio_bus_data ls1x_mdio_bus_data = {
.phy_mask = 0,

Просмотреть файл

@ -35,7 +35,6 @@ static const struct gpio_led_platform_data ls1x_led_pdata __initconst = {
static struct platform_device *ls1b_platform_devices[] __initdata = {
&ls1x_uart_pdev,
&ls1x_cpufreq_pdev,
&ls1x_eth0_pdev,
&ls1x_eth1_pdev,
&ls1x_ehci_pdev,

Просмотреть файл

@ -1153,6 +1153,19 @@ int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
}
/**
* cppc_get_epp_perf - Get the epp register value.
* @cpunum: CPU from which to get epp preference value.
* @epp_perf: Return address.
*
* Return: 0 for success, -EIO otherwise.
*/
int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
{
return cppc_get_perf(cpunum, ENERGY_PERF, epp_perf);
}
EXPORT_SYMBOL_GPL(cppc_get_epp_perf);
/**
* cppc_get_perf_caps - Get a CPU's performance capabilities.
* @cpunum: CPU from which to get capabilities info.
@ -1365,6 +1378,60 @@ out_err:
}
EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
/*
* Set Energy Performance Preference Register value through
* Performance Controls Interface
*/
int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
{
int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
struct cpc_register_resource *epp_set_reg;
struct cpc_register_resource *auto_sel_reg;
struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
struct cppc_pcc_data *pcc_ss_data = NULL;
int ret;
if (!cpc_desc) {
pr_debug("No CPC descriptor for CPU:%d\n", cpu);
return -ENODEV;
}
auto_sel_reg = &cpc_desc->cpc_regs[AUTO_SEL_ENABLE];
epp_set_reg = &cpc_desc->cpc_regs[ENERGY_PERF];
if (CPC_IN_PCC(epp_set_reg) || CPC_IN_PCC(auto_sel_reg)) {
if (pcc_ss_id < 0) {
pr_debug("Invalid pcc_ss_id for CPU:%d\n", cpu);
return -ENODEV;
}
if (CPC_SUPPORTED(auto_sel_reg)) {
ret = cpc_write(cpu, auto_sel_reg, enable);
if (ret)
return ret;
}
if (CPC_SUPPORTED(epp_set_reg)) {
ret = cpc_write(cpu, epp_set_reg, perf_ctrls->energy_perf);
if (ret)
return ret;
}
pcc_ss_data = pcc_data[pcc_ss_id];
down_write(&pcc_ss_data->pcc_lock);
/* after writing CPC, transfer the ownership of PCC to platform */
ret = send_pcc_cmd(pcc_ss_id, CMD_WRITE);
up_write(&pcc_ss_data->pcc_lock);
} else {
ret = -ENOTSUPP;
pr_debug("_CPC in PCC is not supported\n");
}
return ret;
}
EXPORT_SYMBOL_GPL(cppc_set_epp_perf);
/**
* cppc_set_enable - Set to enable CPPC on the processor by writing the
* Continuous Performance Control package EnableRegister field.

Просмотреть файл

@ -3,7 +3,6 @@ menu "CPU Frequency scaling"
config CPU_FREQ
bool "CPU Frequency scaling"
select SRCU
help
CPU Frequency scaling allows you to change the clock speed of
CPUs on the fly. This is a nice method to save power, because
@ -270,15 +269,6 @@ config LOONGSON2_CPUFREQ
Loongson2F and its successors support this feature.
If in doubt, say N.
config LOONGSON1_CPUFREQ
tristate "Loongson1 CPUFreq Driver"
depends on LOONGSON1_LS1B
help
This option adds a CPUFreq driver for loongson1 processors which
support software configurable cpu frequency.
If in doubt, say N.
endif

Просмотреть файл

@ -111,7 +111,6 @@ obj-$(CONFIG_POWERNV_CPUFREQ) += powernv-cpufreq.o
obj-$(CONFIG_BMIPS_CPUFREQ) += bmips-cpufreq.o
obj-$(CONFIG_IA64_ACPI_CPUFREQ) += ia64-acpi-cpufreq.o
obj-$(CONFIG_LOONGSON2_CPUFREQ) += loongson2_cpufreq.o
obj-$(CONFIG_LOONGSON1_CPUFREQ) += loongson1-cpufreq.o
obj-$(CONFIG_SH_CPU_FREQ) += sh-cpufreq.o
obj-$(CONFIG_SPARC_US2E_CPUFREQ) += sparc-us2e-cpufreq.o
obj-$(CONFIG_SPARC_US3_CPUFREQ) += sparc-us3-cpufreq.o

Просмотреть файл

@ -59,8 +59,171 @@
* we disable it by default to go acpi-cpufreq on these processors and add a
* module parameter to be able to enable it manually for debugging.
*/
static struct cpufreq_driver *current_pstate_driver;
static struct cpufreq_driver amd_pstate_driver;
static int cppc_load __initdata;
static struct cpufreq_driver amd_pstate_epp_driver;
static int cppc_state = AMD_PSTATE_DISABLE;
struct kobject *amd_pstate_kobj;
/*
* AMD Energy Preference Performance (EPP)
* The EPP is used in the CCLK DPM controller to drive
* the frequency that a core is going to operate during
* short periods of activity. EPP values will be utilized for
* different OS profiles (balanced, performance, power savings)
* display strings corresponding to EPP index in the
* energy_perf_strings[]
* index String
*-------------------------------------
* 0 default
* 1 performance
* 2 balance_performance
* 3 balance_power
* 4 power
*/
enum energy_perf_value_index {
EPP_INDEX_DEFAULT = 0,
EPP_INDEX_PERFORMANCE,
EPP_INDEX_BALANCE_PERFORMANCE,
EPP_INDEX_BALANCE_POWERSAVE,
EPP_INDEX_POWERSAVE,
};
static const char * const energy_perf_strings[] = {
[EPP_INDEX_DEFAULT] = "default",
[EPP_INDEX_PERFORMANCE] = "performance",
[EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
[EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
[EPP_INDEX_POWERSAVE] = "power",
NULL
};
static unsigned int epp_values[] = {
[EPP_INDEX_DEFAULT] = 0,
[EPP_INDEX_PERFORMANCE] = AMD_CPPC_EPP_PERFORMANCE,
[EPP_INDEX_BALANCE_PERFORMANCE] = AMD_CPPC_EPP_BALANCE_PERFORMANCE,
[EPP_INDEX_BALANCE_POWERSAVE] = AMD_CPPC_EPP_BALANCE_POWERSAVE,
[EPP_INDEX_POWERSAVE] = AMD_CPPC_EPP_POWERSAVE,
};
static inline int get_mode_idx_from_str(const char *str, size_t size)
{
int i;
for (i=0; i < AMD_PSTATE_MAX; i++) {
if (!strncmp(str, amd_pstate_mode_string[i], size))
return i;
}
return -EINVAL;
}
static DEFINE_MUTEX(amd_pstate_limits_lock);
static DEFINE_MUTEX(amd_pstate_driver_lock);
static s16 amd_pstate_get_epp(struct amd_cpudata *cpudata, u64 cppc_req_cached)
{
u64 epp;
int ret;
if (boot_cpu_has(X86_FEATURE_CPPC)) {
if (!cppc_req_cached) {
epp = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ,
&cppc_req_cached);
if (epp)
return epp;
}
epp = (cppc_req_cached >> 24) & 0xFF;
} else {
ret = cppc_get_epp_perf(cpudata->cpu, &epp);
if (ret < 0) {
pr_debug("Could not retrieve energy perf value (%d)\n", ret);
return -EIO;
}
}
return (s16)(epp & 0xff);
}
static int amd_pstate_get_energy_pref_index(struct amd_cpudata *cpudata)
{
s16 epp;
int index = -EINVAL;
epp = amd_pstate_get_epp(cpudata, 0);
if (epp < 0)
return epp;
switch (epp) {
case AMD_CPPC_EPP_PERFORMANCE:
index = EPP_INDEX_PERFORMANCE;
break;
case AMD_CPPC_EPP_BALANCE_PERFORMANCE:
index = EPP_INDEX_BALANCE_PERFORMANCE;
break;
case AMD_CPPC_EPP_BALANCE_POWERSAVE:
index = EPP_INDEX_BALANCE_POWERSAVE;
break;
case AMD_CPPC_EPP_POWERSAVE:
index = EPP_INDEX_POWERSAVE;
break;
default:
break;
}
return index;
}
static int amd_pstate_set_epp(struct amd_cpudata *cpudata, u32 epp)
{
int ret;
struct cppc_perf_ctrls perf_ctrls;
if (boot_cpu_has(X86_FEATURE_CPPC)) {
u64 value = READ_ONCE(cpudata->cppc_req_cached);
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
WRITE_ONCE(cpudata->cppc_req_cached, value);
ret = wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
if (!ret)
cpudata->epp_cached = epp;
} else {
perf_ctrls.energy_perf = epp;
ret = cppc_set_epp_perf(cpudata->cpu, &perf_ctrls, 1);
if (ret) {
pr_debug("failed to set energy perf value (%d)\n", ret);
return ret;
}
cpudata->epp_cached = epp;
}
return ret;
}
static int amd_pstate_set_energy_pref_index(struct amd_cpudata *cpudata,
int pref_index)
{
int epp = -EINVAL;
int ret;
if (!pref_index) {
pr_debug("EPP pref_index is invalid\n");
return -EINVAL;
}
if (epp == -EINVAL)
epp = epp_values[pref_index];
if (epp > 0 && cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) {
pr_debug("EPP cannot be set under performance policy\n");
return -EBUSY;
}
ret = amd_pstate_set_epp(cpudata, epp);
return ret;
}
static inline int pstate_enable(bool enable)
{
@ -70,11 +233,21 @@ static inline int pstate_enable(bool enable)
static int cppc_enable(bool enable)
{
int cpu, ret = 0;
struct cppc_perf_ctrls perf_ctrls;
for_each_present_cpu(cpu) {
ret = cppc_set_enable(cpu, enable);
if (ret)
return ret;
/* Enable autonomous mode for EPP */
if (cppc_state == AMD_PSTATE_ACTIVE) {
/* Set desired perf as zero to allow EPP firmware control */
perf_ctrls.desired_perf = 0;
ret = cppc_set_perf(cpu, &perf_ctrls);
if (ret)
return ret;
}
}
return ret;
@ -418,7 +591,7 @@ static void amd_pstate_boost_init(struct amd_cpudata *cpudata)
return;
cpudata->boost_supported = true;
amd_pstate_driver.boost_enabled = true;
current_pstate_driver->boost_enabled = true;
}
static void amd_perf_ctl_reset(unsigned int cpu)
@ -501,6 +674,8 @@ static int amd_pstate_cpu_init(struct cpufreq_policy *policy)
policy->driver_data = cpudata;
amd_pstate_boost_init(cpudata);
if (!current_pstate_driver->adjust_perf)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
return 0;
@ -561,7 +736,7 @@ static ssize_t show_amd_pstate_max_freq(struct cpufreq_policy *policy,
if (max_freq < 0)
return max_freq;
return sprintf(&buf[0], "%u\n", max_freq);
return sysfs_emit(buf, "%u\n", max_freq);
}
static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *policy,
@ -574,7 +749,7 @@ static ssize_t show_amd_pstate_lowest_nonlinear_freq(struct cpufreq_policy *poli
if (freq < 0)
return freq;
return sprintf(&buf[0], "%u\n", freq);
return sysfs_emit(buf, "%u\n", freq);
}
/*
@ -589,13 +764,151 @@ static ssize_t show_amd_pstate_highest_perf(struct cpufreq_policy *policy,
perf = READ_ONCE(cpudata->highest_perf);
return sprintf(&buf[0], "%u\n", perf);
return sysfs_emit(buf, "%u\n", perf);
}
static ssize_t show_energy_performance_available_preferences(
struct cpufreq_policy *policy, char *buf)
{
int i = 0;
int offset = 0;
while (energy_perf_strings[i] != NULL)
offset += sysfs_emit_at(buf, offset, "%s ", energy_perf_strings[i++]);
sysfs_emit_at(buf, offset, "\n");
return offset;
}
static ssize_t store_energy_performance_preference(
struct cpufreq_policy *policy, const char *buf, size_t count)
{
struct amd_cpudata *cpudata = policy->driver_data;
char str_preference[21];
ssize_t ret;
ret = sscanf(buf, "%20s", str_preference);
if (ret != 1)
return -EINVAL;
ret = match_string(energy_perf_strings, -1, str_preference);
if (ret < 0)
return -EINVAL;
mutex_lock(&amd_pstate_limits_lock);
ret = amd_pstate_set_energy_pref_index(cpudata, ret);
mutex_unlock(&amd_pstate_limits_lock);
return ret ?: count;
}
static ssize_t show_energy_performance_preference(
struct cpufreq_policy *policy, char *buf)
{
struct amd_cpudata *cpudata = policy->driver_data;
int preference;
preference = amd_pstate_get_energy_pref_index(cpudata);
if (preference < 0)
return preference;
return sysfs_emit(buf, "%s\n", energy_perf_strings[preference]);
}
static ssize_t amd_pstate_show_status(char *buf)
{
if (!current_pstate_driver)
return sysfs_emit(buf, "disable\n");
return sysfs_emit(buf, "%s\n", amd_pstate_mode_string[cppc_state]);
}
static void amd_pstate_driver_cleanup(void)
{
current_pstate_driver = NULL;
}
static int amd_pstate_update_status(const char *buf, size_t size)
{
int ret = 0;
int mode_idx;
if (size > 7 || size < 6)
return -EINVAL;
mode_idx = get_mode_idx_from_str(buf, size);
switch(mode_idx) {
case AMD_PSTATE_DISABLE:
if (!current_pstate_driver)
return -EINVAL;
if (cppc_state == AMD_PSTATE_ACTIVE)
return -EBUSY;
cpufreq_unregister_driver(current_pstate_driver);
amd_pstate_driver_cleanup();
break;
case AMD_PSTATE_PASSIVE:
if (current_pstate_driver) {
if (current_pstate_driver == &amd_pstate_driver)
return 0;
cpufreq_unregister_driver(current_pstate_driver);
cppc_state = AMD_PSTATE_PASSIVE;
current_pstate_driver = &amd_pstate_driver;
}
ret = cpufreq_register_driver(current_pstate_driver);
break;
case AMD_PSTATE_ACTIVE:
if (current_pstate_driver) {
if (current_pstate_driver == &amd_pstate_epp_driver)
return 0;
cpufreq_unregister_driver(current_pstate_driver);
current_pstate_driver = &amd_pstate_epp_driver;
cppc_state = AMD_PSTATE_ACTIVE;
}
ret = cpufreq_register_driver(current_pstate_driver);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static ssize_t show_status(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
ssize_t ret;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_show_status(buf);
mutex_unlock(&amd_pstate_driver_lock);
return ret;
}
static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
const char *buf, size_t count)
{
char *p = memchr(buf, '\n', count);
int ret;
mutex_lock(&amd_pstate_driver_lock);
ret = amd_pstate_update_status(buf, p ? p - buf : count);
mutex_unlock(&amd_pstate_driver_lock);
return ret < 0 ? ret : count;
}
cpufreq_freq_attr_ro(amd_pstate_max_freq);
cpufreq_freq_attr_ro(amd_pstate_lowest_nonlinear_freq);
cpufreq_freq_attr_ro(amd_pstate_highest_perf);
cpufreq_freq_attr_rw(energy_performance_preference);
cpufreq_freq_attr_ro(energy_performance_available_preferences);
define_one_global_rw(status);
static struct freq_attr *amd_pstate_attr[] = {
&amd_pstate_max_freq,
@ -604,6 +917,312 @@ static struct freq_attr *amd_pstate_attr[] = {
NULL,
};
static struct freq_attr *amd_pstate_epp_attr[] = {
&amd_pstate_max_freq,
&amd_pstate_lowest_nonlinear_freq,
&amd_pstate_highest_perf,
&energy_performance_preference,
&energy_performance_available_preferences,
NULL,
};
static struct attribute *pstate_global_attributes[] = {
&status.attr,
NULL
};
static const struct attribute_group amd_pstate_global_attr_group = {
.attrs = pstate_global_attributes,
};
static int amd_pstate_epp_cpu_init(struct cpufreq_policy *policy)
{
int min_freq, max_freq, nominal_freq, lowest_nonlinear_freq, ret;
struct amd_cpudata *cpudata;
struct device *dev;
u64 value;
/*
* Resetting PERF_CTL_MSR will put the CPU in P0 frequency,
* which is ideal for initialization process.
*/
amd_perf_ctl_reset(policy->cpu);
dev = get_cpu_device(policy->cpu);
if (!dev)
return -ENODEV;
cpudata = kzalloc(sizeof(*cpudata), GFP_KERNEL);
if (!cpudata)
return -ENOMEM;
cpudata->cpu = policy->cpu;
cpudata->epp_policy = 0;
ret = amd_pstate_init_perf(cpudata);
if (ret)
goto free_cpudata1;
min_freq = amd_get_min_freq(cpudata);
max_freq = amd_get_max_freq(cpudata);
nominal_freq = amd_get_nominal_freq(cpudata);
lowest_nonlinear_freq = amd_get_lowest_nonlinear_freq(cpudata);
if (min_freq < 0 || max_freq < 0 || min_freq > max_freq) {
dev_err(dev, "min_freq(%d) or max_freq(%d) value is incorrect\n",
min_freq, max_freq);
ret = -EINVAL;
goto free_cpudata1;
}
policy->cpuinfo.min_freq = min_freq;
policy->cpuinfo.max_freq = max_freq;
/* It will be updated by governor */
policy->cur = policy->cpuinfo.min_freq;
/* Initial processor data capability frequencies */
cpudata->max_freq = max_freq;
cpudata->min_freq = min_freq;
cpudata->nominal_freq = nominal_freq;
cpudata->lowest_nonlinear_freq = lowest_nonlinear_freq;
policy->driver_data = cpudata;
cpudata->epp_cached = amd_pstate_get_epp(cpudata, 0);
policy->min = policy->cpuinfo.min_freq;
policy->max = policy->cpuinfo.max_freq;
/*
* Set the policy to powersave to provide a valid fallback value in case
* the default cpufreq governor is neither powersave nor performance.
*/
policy->policy = CPUFREQ_POLICY_POWERSAVE;
if (boot_cpu_has(X86_FEATURE_CPPC)) {
policy->fast_switch_possible = true;
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, &value);
if (ret)
return ret;
WRITE_ONCE(cpudata->cppc_req_cached, value);
ret = rdmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_CAP1, &value);
if (ret)
return ret;
WRITE_ONCE(cpudata->cppc_cap1_cached, value);
}
amd_pstate_boost_init(cpudata);
return 0;
free_cpudata1:
kfree(cpudata);
return ret;
}
static int amd_pstate_epp_cpu_exit(struct cpufreq_policy *policy)
{
pr_debug("CPU %d exiting\n", policy->cpu);
policy->fast_switch_possible = false;
return 0;
}
static void amd_pstate_epp_init(unsigned int cpu)
{
struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
struct amd_cpudata *cpudata = policy->driver_data;
u32 max_perf, min_perf;
u64 value;
s16 epp;
max_perf = READ_ONCE(cpudata->highest_perf);
min_perf = READ_ONCE(cpudata->lowest_perf);
value = READ_ONCE(cpudata->cppc_req_cached);
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE)
min_perf = max_perf;
/* Initial min/max values for CPPC Performance Controls Register */
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(max_perf);
/* CPPC EPP feature require to set zero to the desire perf bit */
value &= ~AMD_CPPC_DES_PERF(~0L);
value |= AMD_CPPC_DES_PERF(0);
if (cpudata->epp_policy == cpudata->policy)
goto skip_epp;
cpudata->epp_policy = cpudata->policy;
if (cpudata->policy == CPUFREQ_POLICY_PERFORMANCE) {
epp = amd_pstate_get_epp(cpudata, value);
if (epp < 0)
goto skip_epp;
/* force the epp value to be zero for performance policy */
epp = 0;
} else {
/* Get BIOS pre-defined epp value */
epp = amd_pstate_get_epp(cpudata, value);
if (epp)
goto skip_epp;
}
/* Set initial EPP value */
if (boot_cpu_has(X86_FEATURE_CPPC)) {
value &= ~GENMASK_ULL(31, 24);
value |= (u64)epp << 24;
}
amd_pstate_set_epp(cpudata, epp);
skip_epp:
WRITE_ONCE(cpudata->cppc_req_cached, value);
cpufreq_cpu_put(policy);
}
static int amd_pstate_epp_set_policy(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
if (!policy->cpuinfo.max_freq)
return -ENODEV;
pr_debug("set_policy: cpuinfo.max %u policy->max %u\n",
policy->cpuinfo.max_freq, policy->max);
cpudata->policy = policy->policy;
amd_pstate_epp_init(policy->cpu);
return 0;
}
static void amd_pstate_epp_reenable(struct amd_cpudata *cpudata)
{
struct cppc_perf_ctrls perf_ctrls;
u64 value, max_perf;
int ret;
ret = amd_pstate_enable(true);
if (ret)
pr_err("failed to enable amd pstate during resume, return %d\n", ret);
value = READ_ONCE(cpudata->cppc_req_cached);
max_perf = READ_ONCE(cpudata->highest_perf);
if (boot_cpu_has(X86_FEATURE_CPPC)) {
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.max_perf = max_perf;
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(cpudata->epp_cached);
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
}
static int amd_pstate_epp_cpu_online(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
pr_debug("AMD CPU Core %d going online\n", cpudata->cpu);
if (cppc_state == AMD_PSTATE_ACTIVE) {
amd_pstate_epp_reenable(cpudata);
cpudata->suspended = false;
}
return 0;
}
static void amd_pstate_epp_offline(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
struct cppc_perf_ctrls perf_ctrls;
int min_perf;
u64 value;
min_perf = READ_ONCE(cpudata->lowest_perf);
value = READ_ONCE(cpudata->cppc_req_cached);
mutex_lock(&amd_pstate_limits_lock);
if (boot_cpu_has(X86_FEATURE_CPPC)) {
cpudata->epp_policy = CPUFREQ_POLICY_UNKNOWN;
/* Set max perf same as min perf */
value &= ~AMD_CPPC_MAX_PERF(~0L);
value |= AMD_CPPC_MAX_PERF(min_perf);
value &= ~AMD_CPPC_MIN_PERF(~0L);
value |= AMD_CPPC_MIN_PERF(min_perf);
wrmsrl_on_cpu(cpudata->cpu, MSR_AMD_CPPC_REQ, value);
} else {
perf_ctrls.desired_perf = 0;
perf_ctrls.max_perf = min_perf;
perf_ctrls.energy_perf = AMD_CPPC_ENERGY_PERF_PREF(HWP_EPP_BALANCE_POWERSAVE);
cppc_set_perf(cpudata->cpu, &perf_ctrls);
}
mutex_unlock(&amd_pstate_limits_lock);
}
static int amd_pstate_epp_cpu_offline(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
pr_debug("AMD CPU Core %d going offline\n", cpudata->cpu);
if (cpudata->suspended)
return 0;
if (cppc_state == AMD_PSTATE_ACTIVE)
amd_pstate_epp_offline(policy);
return 0;
}
static int amd_pstate_epp_verify_policy(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_cpu_limits(policy);
pr_debug("policy_max =%d, policy_min=%d\n", policy->max, policy->min);
return 0;
}
static int amd_pstate_epp_suspend(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
int ret;
/* avoid suspending when EPP is not enabled */
if (cppc_state != AMD_PSTATE_ACTIVE)
return 0;
/* set this flag to avoid setting core offline*/
cpudata->suspended = true;
/* disable CPPC in lowlevel firmware */
ret = amd_pstate_enable(false);
if (ret)
pr_err("failed to suspend, return %d\n", ret);
return 0;
}
static int amd_pstate_epp_resume(struct cpufreq_policy *policy)
{
struct amd_cpudata *cpudata = policy->driver_data;
if (cpudata->suspended) {
mutex_lock(&amd_pstate_limits_lock);
/* enable amd pstate from suspend state*/
amd_pstate_epp_reenable(cpudata);
mutex_unlock(&amd_pstate_limits_lock);
cpudata->suspended = false;
}
return 0;
}
static struct cpufreq_driver amd_pstate_driver = {
.flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS,
.verify = amd_pstate_verify,
@ -617,6 +1236,20 @@ static struct cpufreq_driver amd_pstate_driver = {
.attr = amd_pstate_attr,
};
static struct cpufreq_driver amd_pstate_epp_driver = {
.flags = CPUFREQ_CONST_LOOPS,
.verify = amd_pstate_epp_verify_policy,
.setpolicy = amd_pstate_epp_set_policy,
.init = amd_pstate_epp_cpu_init,
.exit = amd_pstate_epp_cpu_exit,
.offline = amd_pstate_epp_cpu_offline,
.online = amd_pstate_epp_cpu_online,
.suspend = amd_pstate_epp_suspend,
.resume = amd_pstate_epp_resume,
.name = "amd_pstate_epp",
.attr = amd_pstate_epp_attr,
};
static int __init amd_pstate_init(void)
{
int ret;
@ -626,10 +1259,10 @@ static int __init amd_pstate_init(void)
/*
* by default the pstate driver is disabled to load
* enable the amd_pstate passive mode driver explicitly
* with amd_pstate=passive in kernel command line
* with amd_pstate=passive or other modes in kernel command line
*/
if (!cppc_load) {
pr_debug("driver load is disabled, boot with amd_pstate=passive to enable this\n");
if (cppc_state == AMD_PSTATE_DISABLE) {
pr_debug("driver load is disabled, boot with specific mode to enable this\n");
return -ENODEV;
}
@ -645,7 +1278,8 @@ static int __init amd_pstate_init(void)
/* capability check */
if (boot_cpu_has(X86_FEATURE_CPPC)) {
pr_debug("AMD CPPC MSR based functionality is supported\n");
amd_pstate_driver.adjust_perf = amd_pstate_adjust_perf;
if (cppc_state == AMD_PSTATE_PASSIVE)
current_pstate_driver->adjust_perf = amd_pstate_adjust_perf;
} else {
pr_debug("AMD CPPC shared memory based functionality is supported\n");
static_call_update(amd_pstate_enable, cppc_enable);
@ -656,31 +1290,63 @@ static int __init amd_pstate_init(void)
/* enable amd pstate feature */
ret = amd_pstate_enable(true);
if (ret) {
pr_err("failed to enable amd-pstate with return %d\n", ret);
pr_err("failed to enable with return %d\n", ret);
return ret;
}
ret = cpufreq_register_driver(&amd_pstate_driver);
ret = cpufreq_register_driver(current_pstate_driver);
if (ret)
pr_err("failed to register amd_pstate_driver with return %d\n",
ret);
pr_err("failed to register with return %d\n", ret);
amd_pstate_kobj = kobject_create_and_add("amd_pstate", &cpu_subsys.dev_root->kobj);
if (!amd_pstate_kobj) {
ret = -EINVAL;
pr_err("global sysfs registration failed.\n");
goto kobject_free;
}
ret = sysfs_create_group(amd_pstate_kobj, &amd_pstate_global_attr_group);
if (ret) {
pr_err("sysfs attribute export failed with error %d.\n", ret);
goto global_attr_free;
}
return ret;
global_attr_free:
kobject_put(amd_pstate_kobj);
kobject_free:
cpufreq_unregister_driver(current_pstate_driver);
return ret;
}
device_initcall(amd_pstate_init);
static int __init amd_pstate_param(char *str)
{
size_t size;
int mode_idx;
if (!str)
return -EINVAL;
if (!strcmp(str, "disable")) {
cppc_load = 0;
pr_info("driver is explicitly disabled\n");
} else if (!strcmp(str, "passive"))
cppc_load = 1;
size = strlen(str);
mode_idx = get_mode_idx_from_str(str, size);
return 0;
if (mode_idx >= AMD_PSTATE_DISABLE && mode_idx < AMD_PSTATE_MAX) {
cppc_state = mode_idx;
if (cppc_state == AMD_PSTATE_DISABLE)
pr_info("driver is explicitly disabled\n");
if (cppc_state == AMD_PSTATE_ACTIVE)
current_pstate_driver = &amd_pstate_epp_driver;
if (cppc_state == AMD_PSTATE_PASSIVE)
current_pstate_driver = &amd_pstate_driver;
return 0;
}
return -EINVAL;
}
early_param("amd_pstate", amd_pstate_param);

Просмотреть файл

@ -751,10 +751,7 @@ static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
static int brcm_avs_cpufreq_remove(struct platform_device *pdev)
{
int ret;
ret = cpufreq_unregister_driver(&brcm_avs_driver);
WARN_ON(ret);
cpufreq_unregister_driver(&brcm_avs_driver);
brcm_avs_prepare_uninit(pdev);

Просмотреть файл

@ -993,7 +993,7 @@ static const struct sysfs_ops sysfs_ops = {
.store = store,
};
static struct kobj_type ktype_cpufreq = {
static const struct kobj_type ktype_cpufreq = {
.sysfs_ops = &sysfs_ops,
.default_groups = cpufreq_groups,
.release = cpufreq_sysfs_release,
@ -2904,12 +2904,12 @@ EXPORT_SYMBOL_GPL(cpufreq_register_driver);
* Returns zero if successful, and -EINVAL if the cpufreq_driver is
* currently not initialised.
*/
int cpufreq_unregister_driver(struct cpufreq_driver *driver)
void cpufreq_unregister_driver(struct cpufreq_driver *driver)
{
unsigned long flags;
if (!cpufreq_driver || (driver != cpufreq_driver))
return -EINVAL;
if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
return;
pr_debug("unregistering driver %s\n", driver->name);
@ -2926,8 +2926,6 @@ int cpufreq_unregister_driver(struct cpufreq_driver *driver)
write_unlock_irqrestore(&cpufreq_driver_lock, flags);
cpus_read_unlock();
return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);

Просмотреть файл

@ -133,12 +133,14 @@ static int __init davinci_cpufreq_probe(struct platform_device *pdev)
static int __exit davinci_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_driver(&davinci_driver);
clk_put(cpufreq.armclk);
if (cpufreq.asyncclk)
clk_put(cpufreq.asyncclk);
return cpufreq_unregister_driver(&davinci_driver);
return 0;
}
static struct platform_driver davinci_cpufreq_driver = {

Просмотреть файл

@ -1,222 +0,0 @@
/*
* CPU Frequency Scaling for Loongson 1 SoC
*
* Copyright (C) 2014-2016 Zhang, Keguang <keguang.zhang@gmail.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/cpu.h>
#include <linux/cpufreq.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <cpufreq.h>
#include <loongson1.h>
struct ls1x_cpufreq {
struct device *dev;
struct clk *clk; /* CPU clk */
struct clk *mux_clk; /* MUX of CPU clk */
struct clk *pll_clk; /* PLL clk */
struct clk *osc_clk; /* OSC clk */
unsigned int max_freq;
unsigned int min_freq;
};
static struct ls1x_cpufreq *cpufreq;
static int ls1x_cpufreq_notifier(struct notifier_block *nb,
unsigned long val, void *data)
{
if (val == CPUFREQ_POSTCHANGE)
current_cpu_data.udelay_val = loops_per_jiffy;
return NOTIFY_OK;
}
static struct notifier_block ls1x_cpufreq_notifier_block = {
.notifier_call = ls1x_cpufreq_notifier
};
static int ls1x_cpufreq_target(struct cpufreq_policy *policy,
unsigned int index)
{
struct device *cpu_dev = get_cpu_device(policy->cpu);
unsigned int old_freq, new_freq;
old_freq = policy->cur;
new_freq = policy->freq_table[index].frequency;
/*
* The procedure of reconfiguring CPU clk is as below.
*
* - Reparent CPU clk to OSC clk
* - Reset CPU clock (very important)
* - Reconfigure CPU DIV
* - Reparent CPU clk back to CPU DIV clk
*/
clk_set_parent(policy->clk, cpufreq->osc_clk);
__raw_writel(__raw_readl(LS1X_CLK_PLL_DIV) | RST_CPU_EN | RST_CPU,
LS1X_CLK_PLL_DIV);
__raw_writel(__raw_readl(LS1X_CLK_PLL_DIV) & ~(RST_CPU_EN | RST_CPU),
LS1X_CLK_PLL_DIV);
clk_set_rate(cpufreq->mux_clk, new_freq * 1000);
clk_set_parent(policy->clk, cpufreq->mux_clk);
dev_dbg(cpu_dev, "%u KHz --> %u KHz\n", old_freq, new_freq);
return 0;
}
static int ls1x_cpufreq_init(struct cpufreq_policy *policy)
{
struct device *cpu_dev = get_cpu_device(policy->cpu);
struct cpufreq_frequency_table *freq_tbl;
unsigned int pll_freq, freq;
int steps, i;
pll_freq = clk_get_rate(cpufreq->pll_clk) / 1000;
steps = 1 << DIV_CPU_WIDTH;
freq_tbl = kcalloc(steps, sizeof(*freq_tbl), GFP_KERNEL);
if (!freq_tbl)
return -ENOMEM;
for (i = 0; i < (steps - 1); i++) {
freq = pll_freq / (i + 1);
if ((freq < cpufreq->min_freq) || (freq > cpufreq->max_freq))
freq_tbl[i].frequency = CPUFREQ_ENTRY_INVALID;
else
freq_tbl[i].frequency = freq;
dev_dbg(cpu_dev,
"cpufreq table: index %d: frequency %d\n", i,
freq_tbl[i].frequency);
}
freq_tbl[i].frequency = CPUFREQ_TABLE_END;
policy->clk = cpufreq->clk;
cpufreq_generic_init(policy, freq_tbl, 0);
return 0;
}
static int ls1x_cpufreq_exit(struct cpufreq_policy *policy)
{
kfree(policy->freq_table);
return 0;
}
static struct cpufreq_driver ls1x_cpufreq_driver = {
.name = "cpufreq-ls1x",
.flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
.verify = cpufreq_generic_frequency_table_verify,
.target_index = ls1x_cpufreq_target,
.get = cpufreq_generic_get,
.init = ls1x_cpufreq_init,
.exit = ls1x_cpufreq_exit,
.attr = cpufreq_generic_attr,
};
static int ls1x_cpufreq_remove(struct platform_device *pdev)
{
cpufreq_unregister_notifier(&ls1x_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
cpufreq_unregister_driver(&ls1x_cpufreq_driver);
return 0;
}
static int ls1x_cpufreq_probe(struct platform_device *pdev)
{
struct plat_ls1x_cpufreq *pdata = dev_get_platdata(&pdev->dev);
struct clk *clk;
int ret;
if (!pdata || !pdata->clk_name || !pdata->osc_clk_name) {
dev_err(&pdev->dev, "platform data missing\n");
return -EINVAL;
}
cpufreq =
devm_kzalloc(&pdev->dev, sizeof(struct ls1x_cpufreq), GFP_KERNEL);
if (!cpufreq)
return -ENOMEM;
cpufreq->dev = &pdev->dev;
clk = devm_clk_get(&pdev->dev, pdata->clk_name);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "unable to get %s clock\n",
pdata->clk_name);
return PTR_ERR(clk);
}
cpufreq->clk = clk;
clk = clk_get_parent(clk);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "unable to get parent of %s clock\n",
__clk_get_name(cpufreq->clk));
return PTR_ERR(clk);
}
cpufreq->mux_clk = clk;
clk = clk_get_parent(clk);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "unable to get parent of %s clock\n",
__clk_get_name(cpufreq->mux_clk));
return PTR_ERR(clk);
}
cpufreq->pll_clk = clk;
clk = devm_clk_get(&pdev->dev, pdata->osc_clk_name);
if (IS_ERR(clk)) {
dev_err(&pdev->dev, "unable to get %s clock\n",
pdata->osc_clk_name);
return PTR_ERR(clk);
}
cpufreq->osc_clk = clk;
cpufreq->max_freq = pdata->max_freq;
cpufreq->min_freq = pdata->min_freq;
ret = cpufreq_register_driver(&ls1x_cpufreq_driver);
if (ret) {
dev_err(&pdev->dev,
"failed to register CPUFreq driver: %d\n", ret);
return ret;
}
ret = cpufreq_register_notifier(&ls1x_cpufreq_notifier_block,
CPUFREQ_TRANSITION_NOTIFIER);
if (ret) {
dev_err(&pdev->dev,
"failed to register CPUFreq notifier: %d\n",ret);
cpufreq_unregister_driver(&ls1x_cpufreq_driver);
}
return ret;
}
static struct platform_driver ls1x_cpufreq_platdrv = {
.probe = ls1x_cpufreq_probe,
.remove = ls1x_cpufreq_remove,
.driver = {
.name = "ls1x-cpufreq",
},
};
module_platform_driver(ls1x_cpufreq_platdrv);
MODULE_ALIAS("platform:ls1x-cpufreq");
MODULE_AUTHOR("Kelvin Cheung <keguang.zhang@gmail.com>");
MODULE_DESCRIPTION("Loongson1 CPUFreq driver");
MODULE_LICENSE("GPL");

Просмотреть файл

@ -317,7 +317,9 @@ static int mtk_cpufreq_hw_driver_probe(struct platform_device *pdev)
static int mtk_cpufreq_hw_driver_remove(struct platform_device *pdev)
{
return cpufreq_unregister_driver(&cpufreq_mtk_hw_driver);
cpufreq_unregister_driver(&cpufreq_mtk_hw_driver);
return 0;
}
static const struct of_device_id mtk_cpufreq_hw_match[] = {

Просмотреть файл

@ -184,7 +184,9 @@ static int omap_cpufreq_probe(struct platform_device *pdev)
static int omap_cpufreq_remove(struct platform_device *pdev)
{
return cpufreq_unregister_driver(&omap_driver);
cpufreq_unregister_driver(&omap_driver);
return 0;
}
static struct platform_driver omap_cpufreq_platdrv = {

Просмотреть файл

@ -770,7 +770,9 @@ of_exit:
static int qcom_cpufreq_hw_driver_remove(struct platform_device *pdev)
{
return cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
cpufreq_unregister_driver(&cpufreq_qcom_hw_driver);
return 0;
}
static struct platform_driver qcom_cpufreq_hw_driver = {

Просмотреть файл

@ -108,12 +108,14 @@ struct cppc_perf_caps {
u32 lowest_nonlinear_perf;
u32 lowest_freq;
u32 nominal_freq;
u32 energy_perf;
};
struct cppc_perf_ctrls {
u32 max_perf;
u32 min_perf;
u32 desired_perf;
u32 energy_perf;
};
struct cppc_perf_fb_ctrs {
@ -149,6 +151,8 @@ extern bool cpc_ffh_supported(void);
extern bool cpc_supported_by_cpu(void);
extern int cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val);
extern int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val);
extern int cppc_get_epp_perf(int cpunum, u64 *epp_perf);
extern int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable);
#else /* !CONFIG_ACPI_CPPC_LIB */
static inline int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
{
@ -202,6 +206,14 @@ static inline int cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
{
return -ENOTSUPP;
}
static inline int cppc_set_epp_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls, bool enable)
{
return -ENOTSUPP;
}
static inline int cppc_get_epp_perf(int cpunum, u64 *epp_perf)
{
return -ENOTSUPP;
}
#endif /* !CONFIG_ACPI_CPPC_LIB */
#endif /* _CPPC_ACPI_H*/

Просмотреть файл

@ -12,6 +12,11 @@
#include <linux/pm_qos.h>
#define AMD_CPPC_EPP_PERFORMANCE 0x00
#define AMD_CPPC_EPP_BALANCE_PERFORMANCE 0x80
#define AMD_CPPC_EPP_BALANCE_POWERSAVE 0xBF
#define AMD_CPPC_EPP_POWERSAVE 0xFF
/*********************************************************************
* AMD P-state INTERFACE *
*********************************************************************/
@ -47,6 +52,10 @@ struct amd_aperf_mperf {
* @prev: Last Aperf/Mperf/tsc count value read from register
* @freq: current cpu frequency value
* @boost_supported: check whether the Processor or SBIOS supports boost mode
* @epp_policy: Last saved policy used to set energy-performance preference
* @epp_cached: Cached CPPC energy-performance preference value
* @policy: Cpufreq policy value
* @cppc_cap1_cached Cached MSR_AMD_CPPC_CAP1 register value
*
* The amd_cpudata is key private data for each CPU thread in AMD P-State, and
* represents all the attributes and goals that AMD P-State requests at runtime.
@ -72,6 +81,29 @@ struct amd_cpudata {
u64 freq;
bool boost_supported;
/* EPP feature related attributes*/
s16 epp_policy;
s16 epp_cached;
u32 policy;
u64 cppc_cap1_cached;
bool suspended;
};
/*
* enum amd_pstate_mode - driver working mode of amd pstate
*/
enum amd_pstate_mode {
AMD_PSTATE_DISABLE = 0,
AMD_PSTATE_PASSIVE,
AMD_PSTATE_ACTIVE,
AMD_PSTATE_MAX,
};
static const char * const amd_pstate_mode_string[] = {
[AMD_PSTATE_DISABLE] = "disable",
[AMD_PSTATE_PASSIVE] = "passive",
[AMD_PSTATE_ACTIVE] = "active",
NULL,
};
#endif /* _LINUX_AMD_PSTATE_H */

Просмотреть файл

@ -448,7 +448,7 @@ struct cpufreq_driver {
#define CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING BIT(6)
int cpufreq_register_driver(struct cpufreq_driver *driver_data);
int cpufreq_unregister_driver(struct cpufreq_driver *driver_data);
void cpufreq_unregister_driver(struct cpufreq_driver *driver_data);
bool cpufreq_driver_test_flags(u16 flags);
const char *cpufreq_get_current_driver(void);