coresight-etm4x: Controls pertaining to the address comparator functions

Adding sysfs entries to control the various mode the address comparator
registers can enact, i.e, start/top, single, and range.  Also supplementing
with address comparator types configuration registers access, mandatory
to complete the configuration of the comparator functions.

Signed-off-by: Pratik Patel <pratikp@codeaurora.org>
Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Pratik Patel 2015-05-13 10:34:14 -06:00 коммит произвёл Greg Kroah-Hartman
Родитель 43ba6a7b00
Коммит 35c9b29bc8
2 изменённых файлов: 448 добавлений и 0 удалений

Просмотреть файл

@ -154,3 +154,28 @@ KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) In non-secure state, each bit controls whether instruction
tracing is enabled for the corresponding exception level.
What: /sys/bus/coresight/devices/<memory_map>.etm/addr_idx
Date: April 2015
KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) Select which address comparator or pair (of comparators) to
work with.
What: /sys/bus/coresight/devices/<memory_map>.etm/addr_instdatatype
Date: April 2015
KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) Controls what type of comparison the trace unit performs.
What: /sys/bus/coresight/devices/<memory_map>.etm/addr_single
Date: April 2015
KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) Used to setup single address comparator values.
What: /sys/bus/coresight/devices/<memory_map>.etm/addr_range
Date: April 2015
KernelVersion: 4.01
Contact: Mathieu Poirier <mathieu.poirier@linaro.org>
Description: (RW) Used to setup address range comparator values.

Просмотреть файл

@ -1027,6 +1027,421 @@ static ssize_t ns_exlevel_vinst_store(struct device *dev,
}
static DEVICE_ATTR_RW(ns_exlevel_vinst);
static ssize_t addr_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->addr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->nr_addr_cmp * 2)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_idx);
static ssize_t addr_instdatatype_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t len;
u8 val, idx;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
val = BMVAL(drvdata->addr_acc[idx], 0, 1);
len = scnprintf(buf, PAGE_SIZE, "%s\n",
val == ETM_INSTR_ADDR ? "instr" :
(val == ETM_DATA_LOAD_ADDR ? "data_load" :
(val == ETM_DATA_STORE_ADDR ? "data_store" :
"data_load_store")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t addr_instdatatype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
char str[20] = "";
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (strlen(buf) >= 20)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!strcmp(str, "instr"))
/* TYPE, bits[1:0] */
drvdata->addr_acc[idx] &= ~(BIT(0) | BIT(1));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_instdatatype);
static ssize_t addr_single_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
idx = drvdata->addr_idx;
spin_lock(&drvdata->spinlock);
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_single_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_single);
static ssize_t addr_range_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val1, val2;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = (unsigned long)drvdata->addr_val[idx];
val2 = (unsigned long)drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t addr_range_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val1, val2;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = (u64)val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
/*
* Program include or exclude control bits for vinst or vdata
* whenever we change addr comparators to ETM_ADDR_TYPE_RANGE
*/
if (drvdata->mode & ETM_MODE_EXCLUDE)
etm4_set_mode_exclude(drvdata, true);
else
etm4_set_mode_exclude(drvdata, false);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_range);
static ssize_t addr_start_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_start_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!drvdata->nr_addr_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->vissctlr |= BIT(idx);
/* SSSTATUS, bit[9] - turn on start/stop logic */
drvdata->vinst_ctrl |= BIT(9);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_start);
static ssize_t addr_stop_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!drvdata->nr_addr_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->vissctlr |= BIT(idx + 16);
/* SSSTATUS, bit[9] - turn on start/stop logic */
drvdata->vinst_ctrl |= BIT(9);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_stop);
static ssize_t addr_ctxtype_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t len;
u8 idx, val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* CONTEXTTYPE, bits[3:2] */
val = BMVAL(drvdata->addr_acc[idx], 2, 3);
len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_CTX_NONE ? "none" :
(val == ETM_CTX_CTXID ? "ctxid" :
(val == ETM_CTX_VMID ? "vmid" : "all")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t addr_ctxtype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
char str[10] = "";
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!strcmp(str, "none"))
/* start by clearing context type bits */
drvdata->addr_acc[idx] &= ~(BIT(2) | BIT(3));
else if (!strcmp(str, "ctxid")) {
/* 0b01 The trace unit performs a Context ID */
if (drvdata->numcidc) {
drvdata->addr_acc[idx] |= BIT(2);
drvdata->addr_acc[idx] &= ~BIT(3);
}
} else if (!strcmp(str, "vmid")) {
/* 0b10 The trace unit performs a VMID */
if (drvdata->numvmidc) {
drvdata->addr_acc[idx] &= ~BIT(2);
drvdata->addr_acc[idx] |= BIT(3);
}
} else if (!strcmp(str, "all")) {
/*
* 0b11 The trace unit performs a Context ID
* comparison and a VMID
*/
if (drvdata->numcidc)
drvdata->addr_acc[idx] |= BIT(2);
if (drvdata->numvmidc)
drvdata->addr_acc[idx] |= BIT(3);
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_ctxtype);
static ssize_t addr_context_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* context ID comparator bits[6:4] */
val = BMVAL(drvdata->addr_acc[idx], 4, 6);
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_context_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if ((drvdata->numcidc <= 1) && (drvdata->numvmidc <= 1))
return -EINVAL;
if (val >= (drvdata->numcidc >= drvdata->numvmidc ?
drvdata->numcidc : drvdata->numvmidc))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* clear context ID comparator bits[6:4] */
drvdata->addr_acc[idx] &= ~(BIT(4) | BIT(5) | BIT(6));
drvdata->addr_acc[idx] |= (val << 4);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_context);
static ssize_t cpu_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
@ -1061,6 +1476,14 @@ static struct attribute *coresight_etmv4_attrs[] = {
&dev_attr_event_vinst.attr,
&dev_attr_s_exlevel_vinst.attr,
&dev_attr_ns_exlevel_vinst.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_instdatatype.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_ctxtype.attr,
&dev_attr_addr_context.attr,
&dev_attr_cpu.attr,
NULL,
};