Rebase locking/kcsan to locking/urgent
Merge the state of the locking kcsan branch before the read/write_once() and the atomics modifications got merged. Squash the fallout of the rebase on top of the read/write once and atomic fallback work into the merge. The history of the original branch is preserved in tag locking-kcsan-2020-06-02. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Коммит
37d1a04b13
|
@ -21,6 +21,7 @@ whole; patches welcome!
|
|||
kasan
|
||||
ubsan
|
||||
kmemleak
|
||||
kcsan
|
||||
gdb-kernel-debugging
|
||||
kgdb
|
||||
kselftest
|
||||
|
|
|
@ -0,0 +1,328 @@
|
|||
The Kernel Concurrency Sanitizer (KCSAN)
|
||||
========================================
|
||||
|
||||
The Kernel Concurrency Sanitizer (KCSAN) is a dynamic race detector, which
|
||||
relies on compile-time instrumentation, and uses a watchpoint-based sampling
|
||||
approach to detect races. KCSAN's primary purpose is to detect `data races`_.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
KCSAN is supported in both GCC and Clang. With GCC it requires version 7.3.0 or
|
||||
later. With Clang it requires version 7.0.0 or later.
|
||||
|
||||
To enable KCSAN configure the kernel with::
|
||||
|
||||
CONFIG_KCSAN = y
|
||||
|
||||
KCSAN provides several other configuration options to customize behaviour (see
|
||||
the respective help text in ``lib/Kconfig.kcsan`` for more info).
|
||||
|
||||
Error reports
|
||||
~~~~~~~~~~~~~
|
||||
|
||||
A typical data race report looks like this::
|
||||
|
||||
==================================================================
|
||||
BUG: KCSAN: data-race in generic_permission / kernfs_refresh_inode
|
||||
|
||||
write to 0xffff8fee4c40700c of 4 bytes by task 175 on cpu 4:
|
||||
kernfs_refresh_inode+0x70/0x170
|
||||
kernfs_iop_permission+0x4f/0x90
|
||||
inode_permission+0x190/0x200
|
||||
link_path_walk.part.0+0x503/0x8e0
|
||||
path_lookupat.isra.0+0x69/0x4d0
|
||||
filename_lookup+0x136/0x280
|
||||
user_path_at_empty+0x47/0x60
|
||||
vfs_statx+0x9b/0x130
|
||||
__do_sys_newlstat+0x50/0xb0
|
||||
__x64_sys_newlstat+0x37/0x50
|
||||
do_syscall_64+0x85/0x260
|
||||
entry_SYSCALL_64_after_hwframe+0x44/0xa9
|
||||
|
||||
read to 0xffff8fee4c40700c of 4 bytes by task 166 on cpu 6:
|
||||
generic_permission+0x5b/0x2a0
|
||||
kernfs_iop_permission+0x66/0x90
|
||||
inode_permission+0x190/0x200
|
||||
link_path_walk.part.0+0x503/0x8e0
|
||||
path_lookupat.isra.0+0x69/0x4d0
|
||||
filename_lookup+0x136/0x280
|
||||
user_path_at_empty+0x47/0x60
|
||||
do_faccessat+0x11a/0x390
|
||||
__x64_sys_access+0x3c/0x50
|
||||
do_syscall_64+0x85/0x260
|
||||
entry_SYSCALL_64_after_hwframe+0x44/0xa9
|
||||
|
||||
Reported by Kernel Concurrency Sanitizer on:
|
||||
CPU: 6 PID: 166 Comm: systemd-journal Not tainted 5.3.0-rc7+ #1
|
||||
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
|
||||
==================================================================
|
||||
|
||||
The header of the report provides a short summary of the functions involved in
|
||||
the race. It is followed by the access types and stack traces of the 2 threads
|
||||
involved in the data race.
|
||||
|
||||
The other less common type of data race report looks like this::
|
||||
|
||||
==================================================================
|
||||
BUG: KCSAN: data-race in e1000_clean_rx_irq+0x551/0xb10
|
||||
|
||||
race at unknown origin, with read to 0xffff933db8a2ae6c of 1 bytes by interrupt on cpu 0:
|
||||
e1000_clean_rx_irq+0x551/0xb10
|
||||
e1000_clean+0x533/0xda0
|
||||
net_rx_action+0x329/0x900
|
||||
__do_softirq+0xdb/0x2db
|
||||
irq_exit+0x9b/0xa0
|
||||
do_IRQ+0x9c/0xf0
|
||||
ret_from_intr+0x0/0x18
|
||||
default_idle+0x3f/0x220
|
||||
arch_cpu_idle+0x21/0x30
|
||||
do_idle+0x1df/0x230
|
||||
cpu_startup_entry+0x14/0x20
|
||||
rest_init+0xc5/0xcb
|
||||
arch_call_rest_init+0x13/0x2b
|
||||
start_kernel+0x6db/0x700
|
||||
|
||||
Reported by Kernel Concurrency Sanitizer on:
|
||||
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.3.0-rc7+ #2
|
||||
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014
|
||||
==================================================================
|
||||
|
||||
This report is generated where it was not possible to determine the other
|
||||
racing thread, but a race was inferred due to the data value of the watched
|
||||
memory location having changed. These can occur either due to missing
|
||||
instrumentation or e.g. DMA accesses. These reports will only be generated if
|
||||
``CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=y`` (selected by default).
|
||||
|
||||
Selective analysis
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
It may be desirable to disable data race detection for specific accesses,
|
||||
functions, compilation units, or entire subsystems. For static blacklisting,
|
||||
the below options are available:
|
||||
|
||||
* KCSAN understands the ``data_race(expr)`` annotation, which tells KCSAN that
|
||||
any data races due to accesses in ``expr`` should be ignored and resulting
|
||||
behaviour when encountering a data race is deemed safe.
|
||||
|
||||
* Disabling data race detection for entire functions can be accomplished by
|
||||
using the function attribute ``__no_kcsan``::
|
||||
|
||||
__no_kcsan
|
||||
void foo(void) {
|
||||
...
|
||||
|
||||
To dynamically limit for which functions to generate reports, see the
|
||||
`DebugFS interface`_ blacklist/whitelist feature.
|
||||
|
||||
For ``__always_inline`` functions, replace ``__always_inline`` with
|
||||
``__no_kcsan_or_inline`` (which implies ``__always_inline``)::
|
||||
|
||||
static __no_kcsan_or_inline void foo(void) {
|
||||
...
|
||||
|
||||
Note: Older compiler versions (GCC < 9) also do not always honor the
|
||||
``__no_kcsan`` attribute on regular ``inline`` functions. If false positives
|
||||
with these compilers cannot be tolerated, for small functions where
|
||||
``__always_inline`` would be appropriate, ``__no_kcsan_or_inline`` should be
|
||||
preferred instead.
|
||||
|
||||
* To disable data race detection for a particular compilation unit, add to the
|
||||
``Makefile``::
|
||||
|
||||
KCSAN_SANITIZE_file.o := n
|
||||
|
||||
* To disable data race detection for all compilation units listed in a
|
||||
``Makefile``, add to the respective ``Makefile``::
|
||||
|
||||
KCSAN_SANITIZE := n
|
||||
|
||||
Furthermore, it is possible to tell KCSAN to show or hide entire classes of
|
||||
data races, depending on preferences. These can be changed via the following
|
||||
Kconfig options:
|
||||
|
||||
* ``CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY``: If enabled and a conflicting write
|
||||
is observed via a watchpoint, but the data value of the memory location was
|
||||
observed to remain unchanged, do not report the data race.
|
||||
|
||||
* ``CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC``: Assume that plain aligned writes
|
||||
up to word size are atomic by default. Assumes that such writes are not
|
||||
subject to unsafe compiler optimizations resulting in data races. The option
|
||||
causes KCSAN to not report data races due to conflicts where the only plain
|
||||
accesses are aligned writes up to word size.
|
||||
|
||||
DebugFS interface
|
||||
~~~~~~~~~~~~~~~~~
|
||||
|
||||
The file ``/sys/kernel/debug/kcsan`` provides the following interface:
|
||||
|
||||
* Reading ``/sys/kernel/debug/kcsan`` returns various runtime statistics.
|
||||
|
||||
* Writing ``on`` or ``off`` to ``/sys/kernel/debug/kcsan`` allows turning KCSAN
|
||||
on or off, respectively.
|
||||
|
||||
* Writing ``!some_func_name`` to ``/sys/kernel/debug/kcsan`` adds
|
||||
``some_func_name`` to the report filter list, which (by default) blacklists
|
||||
reporting data races where either one of the top stackframes are a function
|
||||
in the list.
|
||||
|
||||
* Writing either ``blacklist`` or ``whitelist`` to ``/sys/kernel/debug/kcsan``
|
||||
changes the report filtering behaviour. For example, the blacklist feature
|
||||
can be used to silence frequently occurring data races; the whitelist feature
|
||||
can help with reproduction and testing of fixes.
|
||||
|
||||
Tuning performance
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Core parameters that affect KCSAN's overall performance and bug detection
|
||||
ability are exposed as kernel command-line arguments whose defaults can also be
|
||||
changed via the corresponding Kconfig options.
|
||||
|
||||
* ``kcsan.skip_watch`` (``CONFIG_KCSAN_SKIP_WATCH``): Number of per-CPU memory
|
||||
operations to skip, before another watchpoint is set up. Setting up
|
||||
watchpoints more frequently will result in the likelihood of races to be
|
||||
observed to increase. This parameter has the most significant impact on
|
||||
overall system performance and race detection ability.
|
||||
|
||||
* ``kcsan.udelay_task`` (``CONFIG_KCSAN_UDELAY_TASK``): For tasks, the
|
||||
microsecond delay to stall execution after a watchpoint has been set up.
|
||||
Larger values result in the window in which we may observe a race to
|
||||
increase.
|
||||
|
||||
* ``kcsan.udelay_interrupt`` (``CONFIG_KCSAN_UDELAY_INTERRUPT``): For
|
||||
interrupts, the microsecond delay to stall execution after a watchpoint has
|
||||
been set up. Interrupts have tighter latency requirements, and their delay
|
||||
should generally be smaller than the one chosen for tasks.
|
||||
|
||||
They may be tweaked at runtime via ``/sys/module/kcsan/parameters/``.
|
||||
|
||||
Data Races
|
||||
----------
|
||||
|
||||
In an execution, two memory accesses form a *data race* if they *conflict*,
|
||||
they happen concurrently in different threads, and at least one of them is a
|
||||
*plain access*; they *conflict* if both access the same memory location, and at
|
||||
least one is a write. For a more thorough discussion and definition, see `"Plain
|
||||
Accesses and Data Races" in the LKMM`_.
|
||||
|
||||
.. _"Plain Accesses and Data Races" in the LKMM: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/explanation.txt#n1922
|
||||
|
||||
Relationship with the Linux-Kernel Memory Consistency Model (LKMM)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
The LKMM defines the propagation and ordering rules of various memory
|
||||
operations, which gives developers the ability to reason about concurrent code.
|
||||
Ultimately this allows to determine the possible executions of concurrent code,
|
||||
and if that code is free from data races.
|
||||
|
||||
KCSAN is aware of *marked atomic operations* (``READ_ONCE``, ``WRITE_ONCE``,
|
||||
``atomic_*``, etc.), but is oblivious of any ordering guarantees and simply
|
||||
assumes that memory barriers are placed correctly. In other words, KCSAN
|
||||
assumes that as long as a plain access is not observed to race with another
|
||||
conflicting access, memory operations are correctly ordered.
|
||||
|
||||
This means that KCSAN will not report *potential* data races due to missing
|
||||
memory ordering. Developers should therefore carefully consider the required
|
||||
memory ordering requirements that remain unchecked. If, however, missing
|
||||
memory ordering (that is observable with a particular compiler and
|
||||
architecture) leads to an observable data race (e.g. entering a critical
|
||||
section erroneously), KCSAN would report the resulting data race.
|
||||
|
||||
Race Detection Beyond Data Races
|
||||
--------------------------------
|
||||
|
||||
For code with complex concurrency design, race-condition bugs may not always
|
||||
manifest as data races. Race conditions occur if concurrently executing
|
||||
operations result in unexpected system behaviour. On the other hand, data races
|
||||
are defined at the C-language level. The following macros can be used to check
|
||||
properties of concurrent code where bugs would not manifest as data races.
|
||||
|
||||
.. kernel-doc:: include/linux/kcsan-checks.h
|
||||
:functions: ASSERT_EXCLUSIVE_WRITER ASSERT_EXCLUSIVE_WRITER_SCOPED
|
||||
ASSERT_EXCLUSIVE_ACCESS ASSERT_EXCLUSIVE_ACCESS_SCOPED
|
||||
ASSERT_EXCLUSIVE_BITS
|
||||
|
||||
Implementation Details
|
||||
----------------------
|
||||
|
||||
KCSAN relies on observing that two accesses happen concurrently. Crucially, we
|
||||
want to (a) increase the chances of observing races (especially for races that
|
||||
manifest rarely), and (b) be able to actually observe them. We can accomplish
|
||||
(a) by injecting various delays, and (b) by using address watchpoints (or
|
||||
breakpoints).
|
||||
|
||||
If we deliberately stall a memory access, while we have a watchpoint for its
|
||||
address set up, and then observe the watchpoint to fire, two accesses to the
|
||||
same address just raced. Using hardware watchpoints, this is the approach taken
|
||||
in `DataCollider
|
||||
<http://usenix.org/legacy/events/osdi10/tech/full_papers/Erickson.pdf>`_.
|
||||
Unlike DataCollider, KCSAN does not use hardware watchpoints, but instead
|
||||
relies on compiler instrumentation and "soft watchpoints".
|
||||
|
||||
In KCSAN, watchpoints are implemented using an efficient encoding that stores
|
||||
access type, size, and address in a long; the benefits of using "soft
|
||||
watchpoints" are portability and greater flexibility. KCSAN then relies on the
|
||||
compiler instrumenting plain accesses. For each instrumented plain access:
|
||||
|
||||
1. Check if a matching watchpoint exists; if yes, and at least one access is a
|
||||
write, then we encountered a racing access.
|
||||
|
||||
2. Periodically, if no matching watchpoint exists, set up a watchpoint and
|
||||
stall for a small randomized delay.
|
||||
|
||||
3. Also check the data value before the delay, and re-check the data value
|
||||
after delay; if the values mismatch, we infer a race of unknown origin.
|
||||
|
||||
To detect data races between plain and marked accesses, KCSAN also annotates
|
||||
marked accesses, but only to check if a watchpoint exists; i.e. KCSAN never
|
||||
sets up a watchpoint on marked accesses. By never setting up watchpoints for
|
||||
marked operations, if all accesses to a variable that is accessed concurrently
|
||||
are properly marked, KCSAN will never trigger a watchpoint and therefore never
|
||||
report the accesses.
|
||||
|
||||
Key Properties
|
||||
~~~~~~~~~~~~~~
|
||||
|
||||
1. **Memory Overhead:** The overall memory overhead is only a few MiB
|
||||
depending on configuration. The current implementation uses a small array of
|
||||
longs to encode watchpoint information, which is negligible.
|
||||
|
||||
2. **Performance Overhead:** KCSAN's runtime aims to be minimal, using an
|
||||
efficient watchpoint encoding that does not require acquiring any shared
|
||||
locks in the fast-path. For kernel boot on a system with 8 CPUs:
|
||||
|
||||
- 5.0x slow-down with the default KCSAN config;
|
||||
- 2.8x slow-down from runtime fast-path overhead only (set very large
|
||||
``KCSAN_SKIP_WATCH`` and unset ``KCSAN_SKIP_WATCH_RANDOMIZE``).
|
||||
|
||||
3. **Annotation Overheads:** Minimal annotations are required outside the KCSAN
|
||||
runtime. As a result, maintenance overheads are minimal as the kernel
|
||||
evolves.
|
||||
|
||||
4. **Detects Racy Writes from Devices:** Due to checking data values upon
|
||||
setting up watchpoints, racy writes from devices can also be detected.
|
||||
|
||||
5. **Memory Ordering:** KCSAN is *not* explicitly aware of the LKMM's ordering
|
||||
rules; this may result in missed data races (false negatives).
|
||||
|
||||
6. **Analysis Accuracy:** For observed executions, due to using a sampling
|
||||
strategy, the analysis is *unsound* (false negatives possible), but aims to
|
||||
be complete (no false positives).
|
||||
|
||||
Alternatives Considered
|
||||
-----------------------
|
||||
|
||||
An alternative data race detection approach for the kernel can be found in the
|
||||
`Kernel Thread Sanitizer (KTSAN) <https://github.com/google/ktsan/wiki>`_.
|
||||
KTSAN is a happens-before data race detector, which explicitly establishes the
|
||||
happens-before order between memory operations, which can then be used to
|
||||
determine data races as defined in `Data Races`_.
|
||||
|
||||
To build a correct happens-before relation, KTSAN must be aware of all ordering
|
||||
rules of the LKMM and synchronization primitives. Unfortunately, any omission
|
||||
leads to large numbers of false positives, which is especially detrimental in
|
||||
the context of the kernel which includes numerous custom synchronization
|
||||
mechanisms. To track the happens-before relation, KTSAN's implementation
|
||||
requires metadata for each memory location (shadow memory), which for each page
|
||||
corresponds to 4 pages of shadow memory, and can translate into overhead of
|
||||
tens of GiB on a large system.
|
11
MAINTAINERS
11
MAINTAINERS
|
@ -9305,6 +9305,17 @@ F: Documentation/kbuild/kconfig*
|
|||
F: scripts/Kconfig.include
|
||||
F: scripts/kconfig/
|
||||
|
||||
KCSAN
|
||||
M: Marco Elver <elver@google.com>
|
||||
R: Dmitry Vyukov <dvyukov@google.com>
|
||||
L: kasan-dev@googlegroups.com
|
||||
S: Maintained
|
||||
F: Documentation/dev-tools/kcsan.rst
|
||||
F: include/linux/kcsan*.h
|
||||
F: kernel/kcsan/
|
||||
F: lib/Kconfig.kcsan
|
||||
F: scripts/Makefile.kcsan
|
||||
|
||||
KDUMP
|
||||
M: Dave Young <dyoung@redhat.com>
|
||||
M: Baoquan He <bhe@redhat.com>
|
||||
|
|
3
Makefile
3
Makefile
|
@ -531,7 +531,7 @@ export KBUILD_HOSTCXXFLAGS KBUILD_HOSTLDFLAGS KBUILD_HOSTLDLIBS LDFLAGS_MODULE
|
|||
|
||||
export KBUILD_CPPFLAGS NOSTDINC_FLAGS LINUXINCLUDE OBJCOPYFLAGS KBUILD_LDFLAGS
|
||||
export KBUILD_CFLAGS CFLAGS_KERNEL CFLAGS_MODULE
|
||||
export CFLAGS_KASAN CFLAGS_KASAN_NOSANITIZE CFLAGS_UBSAN
|
||||
export CFLAGS_KASAN CFLAGS_KASAN_NOSANITIZE CFLAGS_UBSAN CFLAGS_KCSAN
|
||||
export KBUILD_AFLAGS AFLAGS_KERNEL AFLAGS_MODULE
|
||||
export KBUILD_AFLAGS_MODULE KBUILD_CFLAGS_MODULE KBUILD_LDFLAGS_MODULE
|
||||
export KBUILD_AFLAGS_KERNEL KBUILD_CFLAGS_KERNEL
|
||||
|
@ -965,6 +965,7 @@ endif
|
|||
include scripts/Makefile.kasan
|
||||
include scripts/Makefile.extrawarn
|
||||
include scripts/Makefile.ubsan
|
||||
include scripts/Makefile.kcsan
|
||||
|
||||
# Add user supplied CPPFLAGS, AFLAGS and CFLAGS as the last assignments
|
||||
KBUILD_CPPFLAGS += $(KCPPFLAGS)
|
||||
|
|
|
@ -233,6 +233,7 @@ config X86
|
|||
select THREAD_INFO_IN_TASK
|
||||
select USER_STACKTRACE_SUPPORT
|
||||
select VIRT_TO_BUS
|
||||
select HAVE_ARCH_KCSAN if X86_64
|
||||
select X86_FEATURE_NAMES if PROC_FS
|
||||
select PROC_PID_ARCH_STATUS if PROC_FS
|
||||
imply IMA_SECURE_AND_OR_TRUSTED_BOOT if EFI
|
||||
|
|
|
@ -9,7 +9,9 @@
|
|||
# Changed by many, many contributors over the years.
|
||||
#
|
||||
|
||||
# Sanitizer runtimes are unavailable and cannot be linked for early boot code.
|
||||
KASAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
OBJECT_FILES_NON_STANDARD := y
|
||||
|
||||
# Kernel does not boot with kcov instrumentation here.
|
||||
|
|
|
@ -17,7 +17,9 @@
|
|||
# (see scripts/Makefile.lib size_append)
|
||||
# compressed vmlinux.bin.all + u32 size of vmlinux.bin.all
|
||||
|
||||
# Sanitizer runtimes are unavailable and cannot be linked for early boot code.
|
||||
KASAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
OBJECT_FILES_NON_STANDARD := y
|
||||
|
||||
# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
|
||||
|
|
|
@ -10,8 +10,11 @@ ARCH_REL_TYPE_ABS += R_386_GLOB_DAT|R_386_JMP_SLOT|R_386_RELATIVE
|
|||
include $(srctree)/lib/vdso/Makefile
|
||||
|
||||
KBUILD_CFLAGS += $(DISABLE_LTO)
|
||||
|
||||
# Sanitizer runtimes are unavailable and cannot be linked here.
|
||||
KASAN_SANITIZE := n
|
||||
UBSAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
OBJECT_FILES_NON_STANDARD := y
|
||||
|
||||
# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
|
||||
|
@ -29,6 +32,9 @@ vobjs32-y += vdso32/vclock_gettime.o
|
|||
|
||||
# files to link into kernel
|
||||
obj-y += vma.o
|
||||
KASAN_SANITIZE_vma.o := y
|
||||
UBSAN_SANITIZE_vma.o := y
|
||||
KCSAN_SANITIZE_vma.o := y
|
||||
OBJECT_FILES_NON_STANDARD_vma.o := n
|
||||
|
||||
# vDSO images to build
|
||||
|
|
|
@ -201,8 +201,12 @@ arch_test_and_change_bit(long nr, volatile unsigned long *addr)
|
|||
return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
|
||||
}
|
||||
|
||||
static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
|
||||
static __no_kcsan_or_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
|
||||
{
|
||||
/*
|
||||
* Because this is a plain access, we need to disable KCSAN here to
|
||||
* avoid double instrumentation via instrumented bitops.
|
||||
*/
|
||||
return ((1UL << (nr & (BITS_PER_LONG-1))) &
|
||||
(addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
|
||||
}
|
||||
|
|
|
@ -28,6 +28,10 @@ KASAN_SANITIZE_dumpstack_$(BITS).o := n
|
|||
KASAN_SANITIZE_stacktrace.o := n
|
||||
KASAN_SANITIZE_paravirt.o := n
|
||||
|
||||
# With some compiler versions the generated code results in boot hangs, caused
|
||||
# by several compilation units. To be safe, disable all instrumentation.
|
||||
KCSAN_SANITIZE := n
|
||||
|
||||
OBJECT_FILES_NON_STANDARD_test_nx.o := y
|
||||
OBJECT_FILES_NON_STANDARD_paravirt_patch.o := y
|
||||
|
||||
|
|
|
@ -13,6 +13,9 @@ endif
|
|||
KCOV_INSTRUMENT_common.o := n
|
||||
KCOV_INSTRUMENT_perf_event.o := n
|
||||
|
||||
# As above, instrumenting secondary CPU boot code causes boot hangs.
|
||||
KCSAN_SANITIZE_common.o := n
|
||||
|
||||
# Make sure load_percpu_segment has no stackprotector
|
||||
nostackp := $(call cc-option, -fno-stack-protector)
|
||||
CFLAGS_common.o := $(nostackp)
|
||||
|
|
|
@ -991,7 +991,15 @@ void __init e820__reserve_setup_data(void)
|
|||
while (pa_data) {
|
||||
data = early_memremap(pa_data, sizeof(*data));
|
||||
e820__range_update(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
|
||||
e820__range_update_kexec(pa_data, sizeof(*data)+data->len, E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
|
||||
|
||||
/*
|
||||
* SETUP_EFI is supplied by kexec and does not need to be
|
||||
* reserved.
|
||||
*/
|
||||
if (data->type != SETUP_EFI)
|
||||
e820__range_update_kexec(pa_data,
|
||||
sizeof(*data) + data->len,
|
||||
E820_TYPE_RAM, E820_TYPE_RESERVED_KERN);
|
||||
|
||||
if (data->type == SETUP_INDIRECT &&
|
||||
((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
|
||||
|
|
|
@ -6,10 +6,19 @@
|
|||
# Produces uninteresting flaky coverage.
|
||||
KCOV_INSTRUMENT_delay.o := n
|
||||
|
||||
# KCSAN uses udelay for introducing watchpoint delay; avoid recursion.
|
||||
KCSAN_SANITIZE_delay.o := n
|
||||
ifdef CONFIG_KCSAN
|
||||
# In case KCSAN+lockdep+ftrace are enabled, disable ftrace for delay.o to avoid
|
||||
# lockdep -> [other libs] -> KCSAN -> udelay -> ftrace -> lockdep recursion.
|
||||
CFLAGS_REMOVE_delay.o = $(CC_FLAGS_FTRACE)
|
||||
endif
|
||||
|
||||
# Early boot use of cmdline; don't instrument it
|
||||
ifdef CONFIG_AMD_MEM_ENCRYPT
|
||||
KCOV_INSTRUMENT_cmdline.o := n
|
||||
KASAN_SANITIZE_cmdline.o := n
|
||||
KCSAN_SANITIZE_cmdline.o := n
|
||||
|
||||
ifdef CONFIG_FUNCTION_TRACER
|
||||
CFLAGS_REMOVE_cmdline.o = -pg
|
||||
|
|
|
@ -7,6 +7,10 @@ KCOV_INSTRUMENT_mem_encrypt_identity.o := n
|
|||
KASAN_SANITIZE_mem_encrypt.o := n
|
||||
KASAN_SANITIZE_mem_encrypt_identity.o := n
|
||||
|
||||
# Disable KCSAN entirely, because otherwise we get warnings that some functions
|
||||
# reference __initdata sections.
|
||||
KCSAN_SANITIZE := n
|
||||
|
||||
ifdef CONFIG_FUNCTION_TRACER
|
||||
CFLAGS_REMOVE_mem_encrypt.o = -pg
|
||||
CFLAGS_REMOVE_mem_encrypt_identity.o = -pg
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
purgatory.chk
|
|
@ -14,10 +14,18 @@ $(obj)/sha256.o: $(srctree)/lib/crypto/sha256.c FORCE
|
|||
|
||||
CFLAGS_sha256.o := -D__DISABLE_EXPORTS
|
||||
|
||||
LDFLAGS_purgatory.ro := -e purgatory_start -r --no-undefined -nostdlib -z nodefaultlib
|
||||
targets += purgatory.ro
|
||||
# When linking purgatory.ro with -r unresolved symbols are not checked,
|
||||
# also link a purgatory.chk binary without -r to check for unresolved symbols.
|
||||
PURGATORY_LDFLAGS := -e purgatory_start -nostdlib -z nodefaultlib
|
||||
LDFLAGS_purgatory.ro := -r $(PURGATORY_LDFLAGS)
|
||||
LDFLAGS_purgatory.chk := $(PURGATORY_LDFLAGS)
|
||||
targets += purgatory.ro purgatory.chk
|
||||
|
||||
# Sanitizer, etc. runtimes are unavailable and cannot be linked here.
|
||||
GCOV_PROFILE := n
|
||||
KASAN_SANITIZE := n
|
||||
UBSAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
KCOV_INSTRUMENT := n
|
||||
|
||||
# These are adjustments to the compiler flags used for objects that
|
||||
|
@ -25,7 +33,7 @@ KCOV_INSTRUMENT := n
|
|||
|
||||
PURGATORY_CFLAGS_REMOVE := -mcmodel=kernel
|
||||
PURGATORY_CFLAGS := -mcmodel=large -ffreestanding -fno-zero-initialized-in-bss
|
||||
PURGATORY_CFLAGS += $(DISABLE_STACKLEAK_PLUGIN)
|
||||
PURGATORY_CFLAGS += $(DISABLE_STACKLEAK_PLUGIN) -DDISABLE_BRANCH_PROFILING
|
||||
|
||||
# Default KBUILD_CFLAGS can have -pg option set when FTRACE is enabled. That
|
||||
# in turn leaves some undefined symbols like __fentry__ in purgatory and not
|
||||
|
@ -58,12 +66,15 @@ CFLAGS_string.o += $(PURGATORY_CFLAGS)
|
|||
$(obj)/purgatory.ro: $(PURGATORY_OBJS) FORCE
|
||||
$(call if_changed,ld)
|
||||
|
||||
$(obj)/purgatory.chk: $(obj)/purgatory.ro FORCE
|
||||
$(call if_changed,ld)
|
||||
|
||||
targets += kexec-purgatory.c
|
||||
|
||||
quiet_cmd_bin2c = BIN2C $@
|
||||
cmd_bin2c = $(objtree)/scripts/bin2c kexec_purgatory < $< > $@
|
||||
|
||||
$(obj)/kexec-purgatory.c: $(obj)/purgatory.ro FORCE
|
||||
$(obj)/kexec-purgatory.c: $(obj)/purgatory.ro $(obj)/purgatory.chk FORCE
|
||||
$(call if_changed,bin2c)
|
||||
|
||||
obj-$(CONFIG_KEXEC_FILE) += kexec-purgatory.o
|
||||
|
|
|
@ -6,7 +6,10 @@
|
|||
# for more details.
|
||||
#
|
||||
#
|
||||
|
||||
# Sanitizer runtimes are unavailable and cannot be linked here.
|
||||
KASAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
OBJECT_FILES_NON_STANDARD := y
|
||||
|
||||
subdir- := rm
|
||||
|
|
|
@ -6,7 +6,10 @@
|
|||
# for more details.
|
||||
#
|
||||
#
|
||||
|
||||
# Sanitizer runtimes are unavailable and cannot be linked here.
|
||||
KASAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
OBJECT_FILES_NON_STANDARD := y
|
||||
|
||||
# Prevents link failures: __sanitizer_cov_trace_pc() is not linked in.
|
||||
|
|
|
@ -37,7 +37,9 @@ KBUILD_CFLAGS := $(cflags-y) -Os -DDISABLE_BRANCH_PROFILING \
|
|||
KBUILD_CFLAGS := $(filter-out $(CC_FLAGS_SCS), $(KBUILD_CFLAGS))
|
||||
|
||||
GCOV_PROFILE := n
|
||||
# Sanitizer runtimes are unavailable and cannot be linked here.
|
||||
KASAN_SANITIZE := n
|
||||
KCSAN_SANITIZE := n
|
||||
UBSAN_SANITIZE := n
|
||||
OBJECT_FILES_NON_STANDARD := y
|
||||
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -11,7 +11,7 @@
|
|||
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H
|
||||
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_ATOMIC_H
|
||||
|
||||
#include <linux/kasan-checks.h>
|
||||
#include <linux/instrumented.h>
|
||||
|
||||
/**
|
||||
* set_bit - Atomically set a bit in memory
|
||||
|
@ -25,7 +25,7 @@
|
|||
*/
|
||||
static inline void set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -38,7 +38,7 @@ static inline void set_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline void clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -54,7 +54,7 @@ static inline void clear_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline void change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_change_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -67,7 +67,7 @@ static inline void change_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -80,7 +80,7 @@ static inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -93,7 +93,7 @@ static inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_change_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_LOCK_H
|
||||
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_LOCK_H
|
||||
|
||||
#include <linux/kasan-checks.h>
|
||||
#include <linux/instrumented.h>
|
||||
|
||||
/**
|
||||
* clear_bit_unlock - Clear a bit in memory, for unlock
|
||||
|
@ -22,7 +22,7 @@
|
|||
*/
|
||||
static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch_clear_bit_unlock(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -37,7 +37,7 @@ static inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___clear_bit_unlock(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -52,7 +52,7 @@ static inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_and_set_bit_lock(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -71,7 +71,7 @@ static inline bool test_and_set_bit_lock(long nr, volatile unsigned long *addr)
|
|||
static inline bool
|
||||
clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_clear_bit_unlock_is_negative_byte(nr, addr);
|
||||
}
|
||||
/* Let everybody know we have it. */
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
#ifndef _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
|
||||
#define _ASM_GENERIC_BITOPS_INSTRUMENTED_NON_ATOMIC_H
|
||||
|
||||
#include <linux/kasan-checks.h>
|
||||
#include <linux/instrumented.h>
|
||||
|
||||
/**
|
||||
* __set_bit - Set a bit in memory
|
||||
|
@ -24,7 +24,7 @@
|
|||
*/
|
||||
static inline void __set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___set_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -39,7 +39,7 @@ static inline void __set_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline void __clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -54,7 +54,7 @@ static inline void __clear_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline void __change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
arch___change_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -68,7 +68,7 @@ static inline void __change_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch___test_and_set_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -82,7 +82,7 @@ static inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch___test_and_clear_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -96,7 +96,7 @@ static inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_write(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch___test_and_change_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
@ -107,7 +107,7 @@ static inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
|
|||
*/
|
||||
static inline bool test_bit(long nr, const volatile unsigned long *addr)
|
||||
{
|
||||
kasan_check_read(addr + BIT_WORD(nr), sizeof(long));
|
||||
instrument_atomic_read(addr + BIT_WORD(nr), sizeof(long));
|
||||
return arch_test_bit(nr, addr);
|
||||
}
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
#define KASAN_ABI_VERSION 5
|
||||
|
||||
#if __has_feature(address_sanitizer) || __has_feature(hwaddress_sanitizer)
|
||||
/* emulate gcc's __SANITIZE_ADDRESS__ flag */
|
||||
/* Emulate GCC's __SANITIZE_ADDRESS__ flag */
|
||||
#define __SANITIZE_ADDRESS__
|
||||
#define __no_sanitize_address \
|
||||
__attribute__((no_sanitize("address", "hwaddress")))
|
||||
|
@ -24,6 +24,15 @@
|
|||
#define __no_sanitize_address
|
||||
#endif
|
||||
|
||||
#if __has_feature(thread_sanitizer)
|
||||
/* emulate gcc's __SANITIZE_THREAD__ flag */
|
||||
#define __SANITIZE_THREAD__
|
||||
#define __no_sanitize_thread \
|
||||
__attribute__((no_sanitize("thread")))
|
||||
#else
|
||||
#define __no_sanitize_thread
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Not all versions of clang implement the the type-generic versions
|
||||
* of the builtin overflow checkers. Fortunately, clang implements
|
||||
|
|
|
@ -144,6 +144,12 @@
|
|||
#define __no_sanitize_address
|
||||
#endif
|
||||
|
||||
#if defined(__SANITIZE_THREAD__) && __has_attribute(__no_sanitize_thread__)
|
||||
#define __no_sanitize_thread __attribute__((no_sanitize_thread))
|
||||
#else
|
||||
#define __no_sanitize_thread
|
||||
#endif
|
||||
|
||||
#if GCC_VERSION >= 50100
|
||||
#define COMPILER_HAS_GENERIC_BUILTIN_OVERFLOW 1
|
||||
#endif
|
||||
|
|
|
@ -250,6 +250,27 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
|
|||
*/
|
||||
#include <asm/barrier.h>
|
||||
#include <linux/kasan-checks.h>
|
||||
#include <linux/kcsan-checks.h>
|
||||
|
||||
/**
|
||||
* data_race - mark an expression as containing intentional data races
|
||||
*
|
||||
* This data_race() macro is useful for situations in which data races
|
||||
* should be forgiven. One example is diagnostic code that accesses
|
||||
* shared variables but is not a part of the core synchronization design.
|
||||
*
|
||||
* This macro *does not* affect normal code generation, but is a hint
|
||||
* to tooling that data races here are to be ignored.
|
||||
*/
|
||||
#define data_race(expr) \
|
||||
({ \
|
||||
__kcsan_disable_current(); \
|
||||
({ \
|
||||
__unqual_scalar_typeof(({ expr; })) __v = ({ expr; }); \
|
||||
__kcsan_enable_current(); \
|
||||
__v; \
|
||||
}); \
|
||||
})
|
||||
|
||||
/*
|
||||
* Use __READ_ONCE() instead of READ_ONCE() if you do not require any
|
||||
|
@ -260,7 +281,9 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
|
|||
|
||||
#define __READ_ONCE_SCALAR(x) \
|
||||
({ \
|
||||
__unqual_scalar_typeof(x) __x = __READ_ONCE(x); \
|
||||
typeof(x) *__xp = &(x); \
|
||||
__unqual_scalar_typeof(x) __x = data_race(__READ_ONCE(*__xp)); \
|
||||
kcsan_check_atomic_read(__xp, sizeof(*__xp)); \
|
||||
smp_read_barrier_depends(); \
|
||||
(typeof(x))__x; \
|
||||
})
|
||||
|
@ -271,15 +294,22 @@ void ftrace_likely_update(struct ftrace_likely_data *f, int val,
|
|||
__READ_ONCE_SCALAR(x); \
|
||||
})
|
||||
|
||||
#define __WRITE_ONCE(x, val) \
|
||||
do { \
|
||||
*(volatile typeof(x) *)&(x) = (val); \
|
||||
#define __WRITE_ONCE(x, val) \
|
||||
do { \
|
||||
*(volatile typeof(x) *)&(x) = (val); \
|
||||
} while (0)
|
||||
|
||||
#define WRITE_ONCE(x, val) \
|
||||
do { \
|
||||
compiletime_assert_rwonce_type(x); \
|
||||
__WRITE_ONCE(x, val); \
|
||||
#define __WRITE_ONCE_SCALAR(x, val) \
|
||||
do { \
|
||||
typeof(x) *__xp = &(x); \
|
||||
kcsan_check_atomic_write(__xp, sizeof(*__xp)); \
|
||||
data_race(({ __WRITE_ONCE(*__xp, val); 0; })); \
|
||||
} while (0)
|
||||
|
||||
#define WRITE_ONCE(x, val) \
|
||||
do { \
|
||||
compiletime_assert_rwonce_type(x); \
|
||||
__WRITE_ONCE_SCALAR(x, val); \
|
||||
} while (0)
|
||||
|
||||
#ifdef CONFIG_KASAN
|
||||
|
@ -290,11 +320,30 @@ do { \
|
|||
* '__maybe_unused' allows us to avoid defined-but-not-used warnings.
|
||||
*/
|
||||
# define __no_kasan_or_inline __no_sanitize_address notrace __maybe_unused
|
||||
# define __no_sanitize_or_inline __no_kasan_or_inline
|
||||
#else
|
||||
# define __no_kasan_or_inline __always_inline
|
||||
#endif
|
||||
|
||||
static __no_kasan_or_inline
|
||||
#define __no_kcsan __no_sanitize_thread
|
||||
#ifdef __SANITIZE_THREAD__
|
||||
/*
|
||||
* Rely on __SANITIZE_THREAD__ instead of CONFIG_KCSAN, to avoid not inlining in
|
||||
* compilation units where instrumentation is disabled. The attribute 'noinline'
|
||||
* is required for older compilers, where implicit inlining of very small
|
||||
* functions renders __no_sanitize_thread ineffective.
|
||||
*/
|
||||
# define __no_kcsan_or_inline __no_kcsan noinline notrace __maybe_unused
|
||||
# define __no_sanitize_or_inline __no_kcsan_or_inline
|
||||
#else
|
||||
# define __no_kcsan_or_inline __always_inline
|
||||
#endif
|
||||
|
||||
#ifndef __no_sanitize_or_inline
|
||||
#define __no_sanitize_or_inline __always_inline
|
||||
#endif
|
||||
|
||||
static __no_sanitize_or_inline
|
||||
unsigned long __read_once_word_nocheck(const void *addr)
|
||||
{
|
||||
return __READ_ONCE(*(unsigned long *)addr);
|
||||
|
@ -302,8 +351,8 @@ unsigned long __read_once_word_nocheck(const void *addr)
|
|||
|
||||
/*
|
||||
* Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a
|
||||
* word from memory atomically but without telling KASAN. This is usually
|
||||
* used by unwinding code when walking the stack of a running process.
|
||||
* word from memory atomically but without telling KASAN/KCSAN. This is
|
||||
* usually used by unwinding code when walking the stack of a running process.
|
||||
*/
|
||||
#define READ_ONCE_NOCHECK(x) \
|
||||
({ \
|
||||
|
|
|
@ -0,0 +1,109 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
/*
|
||||
* This header provides generic wrappers for memory access instrumentation that
|
||||
* the compiler cannot emit for: KASAN, KCSAN.
|
||||
*/
|
||||
#ifndef _LINUX_INSTRUMENTED_H
|
||||
#define _LINUX_INSTRUMENTED_H
|
||||
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/kasan-checks.h>
|
||||
#include <linux/kcsan-checks.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
/**
|
||||
* instrument_read - instrument regular read access
|
||||
*
|
||||
* Instrument a regular read access. The instrumentation should be inserted
|
||||
* before the actual read happens.
|
||||
*
|
||||
* @ptr address of access
|
||||
* @size size of access
|
||||
*/
|
||||
static __always_inline void instrument_read(const volatile void *v, size_t size)
|
||||
{
|
||||
kasan_check_read(v, size);
|
||||
kcsan_check_read(v, size);
|
||||
}
|
||||
|
||||
/**
|
||||
* instrument_write - instrument regular write access
|
||||
*
|
||||
* Instrument a regular write access. The instrumentation should be inserted
|
||||
* before the actual write happens.
|
||||
*
|
||||
* @ptr address of access
|
||||
* @size size of access
|
||||
*/
|
||||
static __always_inline void instrument_write(const volatile void *v, size_t size)
|
||||
{
|
||||
kasan_check_write(v, size);
|
||||
kcsan_check_write(v, size);
|
||||
}
|
||||
|
||||
/**
|
||||
* instrument_atomic_read - instrument atomic read access
|
||||
*
|
||||
* Instrument an atomic read access. The instrumentation should be inserted
|
||||
* before the actual read happens.
|
||||
*
|
||||
* @ptr address of access
|
||||
* @size size of access
|
||||
*/
|
||||
static __always_inline void instrument_atomic_read(const volatile void *v, size_t size)
|
||||
{
|
||||
kasan_check_read(v, size);
|
||||
kcsan_check_atomic_read(v, size);
|
||||
}
|
||||
|
||||
/**
|
||||
* instrument_atomic_write - instrument atomic write access
|
||||
*
|
||||
* Instrument an atomic write access. The instrumentation should be inserted
|
||||
* before the actual write happens.
|
||||
*
|
||||
* @ptr address of access
|
||||
* @size size of access
|
||||
*/
|
||||
static __always_inline void instrument_atomic_write(const volatile void *v, size_t size)
|
||||
{
|
||||
kasan_check_write(v, size);
|
||||
kcsan_check_atomic_write(v, size);
|
||||
}
|
||||
|
||||
/**
|
||||
* instrument_copy_to_user - instrument reads of copy_to_user
|
||||
*
|
||||
* Instrument reads from kernel memory, that are due to copy_to_user (and
|
||||
* variants). The instrumentation must be inserted before the accesses.
|
||||
*
|
||||
* @to destination address
|
||||
* @from source address
|
||||
* @n number of bytes to copy
|
||||
*/
|
||||
static __always_inline void
|
||||
instrument_copy_to_user(void __user *to, const void *from, unsigned long n)
|
||||
{
|
||||
kasan_check_read(from, n);
|
||||
kcsan_check_read(from, n);
|
||||
}
|
||||
|
||||
/**
|
||||
* instrument_copy_from_user - instrument writes of copy_from_user
|
||||
*
|
||||
* Instrument writes to kernel memory, that are due to copy_from_user (and
|
||||
* variants). The instrumentation should be inserted before the accesses.
|
||||
*
|
||||
* @to destination address
|
||||
* @from source address
|
||||
* @n number of bytes to copy
|
||||
*/
|
||||
static __always_inline void
|
||||
instrument_copy_from_user(const void *to, const void __user *from, unsigned long n)
|
||||
{
|
||||
kasan_check_write(to, n);
|
||||
kcsan_check_write(to, n);
|
||||
}
|
||||
|
||||
#endif /* _LINUX_INSTRUMENTED_H */
|
|
@ -0,0 +1,430 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
#ifndef _LINUX_KCSAN_CHECKS_H
|
||||
#define _LINUX_KCSAN_CHECKS_H
|
||||
|
||||
/* Note: Only include what is already included by compiler.h. */
|
||||
#include <linux/compiler_attributes.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
/*
|
||||
* ACCESS TYPE MODIFIERS
|
||||
*
|
||||
* <none>: normal read access;
|
||||
* WRITE : write access;
|
||||
* ATOMIC: access is atomic;
|
||||
* ASSERT: access is not a regular access, but an assertion;
|
||||
* SCOPED: access is a scoped access;
|
||||
*/
|
||||
#define KCSAN_ACCESS_WRITE 0x1
|
||||
#define KCSAN_ACCESS_ATOMIC 0x2
|
||||
#define KCSAN_ACCESS_ASSERT 0x4
|
||||
#define KCSAN_ACCESS_SCOPED 0x8
|
||||
|
||||
/*
|
||||
* __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
|
||||
* even in compilation units that selectively disable KCSAN, but must use KCSAN
|
||||
* to validate access to an address. Never use these in header files!
|
||||
*/
|
||||
#ifdef CONFIG_KCSAN
|
||||
/**
|
||||
* __kcsan_check_access - check generic access for races
|
||||
*
|
||||
* @ptr: address of access
|
||||
* @size: size of access
|
||||
* @type: access type modifier
|
||||
*/
|
||||
void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
|
||||
|
||||
/**
|
||||
* kcsan_disable_current - disable KCSAN for the current context
|
||||
*
|
||||
* Supports nesting.
|
||||
*/
|
||||
void kcsan_disable_current(void);
|
||||
|
||||
/**
|
||||
* kcsan_enable_current - re-enable KCSAN for the current context
|
||||
*
|
||||
* Supports nesting.
|
||||
*/
|
||||
void kcsan_enable_current(void);
|
||||
void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
|
||||
|
||||
/**
|
||||
* kcsan_nestable_atomic_begin - begin nestable atomic region
|
||||
*
|
||||
* Accesses within the atomic region may appear to race with other accesses but
|
||||
* should be considered atomic.
|
||||
*/
|
||||
void kcsan_nestable_atomic_begin(void);
|
||||
|
||||
/**
|
||||
* kcsan_nestable_atomic_end - end nestable atomic region
|
||||
*/
|
||||
void kcsan_nestable_atomic_end(void);
|
||||
|
||||
/**
|
||||
* kcsan_flat_atomic_begin - begin flat atomic region
|
||||
*
|
||||
* Accesses within the atomic region may appear to race with other accesses but
|
||||
* should be considered atomic.
|
||||
*/
|
||||
void kcsan_flat_atomic_begin(void);
|
||||
|
||||
/**
|
||||
* kcsan_flat_atomic_end - end flat atomic region
|
||||
*/
|
||||
void kcsan_flat_atomic_end(void);
|
||||
|
||||
/**
|
||||
* kcsan_atomic_next - consider following accesses as atomic
|
||||
*
|
||||
* Force treating the next n memory accesses for the current context as atomic
|
||||
* operations.
|
||||
*
|
||||
* @n: number of following memory accesses to treat as atomic.
|
||||
*/
|
||||
void kcsan_atomic_next(int n);
|
||||
|
||||
/**
|
||||
* kcsan_set_access_mask - set access mask
|
||||
*
|
||||
* Set the access mask for all accesses for the current context if non-zero.
|
||||
* Only value changes to bits set in the mask will be reported.
|
||||
*
|
||||
* @mask: bitmask
|
||||
*/
|
||||
void kcsan_set_access_mask(unsigned long mask);
|
||||
|
||||
/* Scoped access information. */
|
||||
struct kcsan_scoped_access {
|
||||
struct list_head list;
|
||||
const volatile void *ptr;
|
||||
size_t size;
|
||||
int type;
|
||||
};
|
||||
/*
|
||||
* Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
|
||||
* out of scope; relies on attribute "cleanup", which is supported by all
|
||||
* compilers that support KCSAN.
|
||||
*/
|
||||
#define __kcsan_cleanup_scoped \
|
||||
__maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
|
||||
|
||||
/**
|
||||
* kcsan_begin_scoped_access - begin scoped access
|
||||
*
|
||||
* Begin scoped access and initialize @sa, which will cause KCSAN to
|
||||
* continuously check the memory range in the current thread until
|
||||
* kcsan_end_scoped_access() is called for @sa.
|
||||
*
|
||||
* Scoped accesses are implemented by appending @sa to an internal list for the
|
||||
* current execution context, and then checked on every call into the KCSAN
|
||||
* runtime.
|
||||
*
|
||||
* @ptr: address of access
|
||||
* @size: size of access
|
||||
* @type: access type modifier
|
||||
* @sa: struct kcsan_scoped_access to use for the scope of the access
|
||||
*/
|
||||
struct kcsan_scoped_access *
|
||||
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
|
||||
struct kcsan_scoped_access *sa);
|
||||
|
||||
/**
|
||||
* kcsan_end_scoped_access - end scoped access
|
||||
*
|
||||
* End a scoped access, which will stop KCSAN checking the memory range.
|
||||
* Requires that kcsan_begin_scoped_access() was previously called once for @sa.
|
||||
*
|
||||
* @sa: a previously initialized struct kcsan_scoped_access
|
||||
*/
|
||||
void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
|
||||
|
||||
|
||||
#else /* CONFIG_KCSAN */
|
||||
|
||||
static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
|
||||
int type) { }
|
||||
|
||||
static inline void kcsan_disable_current(void) { }
|
||||
static inline void kcsan_enable_current(void) { }
|
||||
static inline void kcsan_enable_current_nowarn(void) { }
|
||||
static inline void kcsan_nestable_atomic_begin(void) { }
|
||||
static inline void kcsan_nestable_atomic_end(void) { }
|
||||
static inline void kcsan_flat_atomic_begin(void) { }
|
||||
static inline void kcsan_flat_atomic_end(void) { }
|
||||
static inline void kcsan_atomic_next(int n) { }
|
||||
static inline void kcsan_set_access_mask(unsigned long mask) { }
|
||||
|
||||
struct kcsan_scoped_access { };
|
||||
#define __kcsan_cleanup_scoped __maybe_unused
|
||||
static inline struct kcsan_scoped_access *
|
||||
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
|
||||
struct kcsan_scoped_access *sa) { return sa; }
|
||||
static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
|
||||
|
||||
#endif /* CONFIG_KCSAN */
|
||||
|
||||
#ifdef __SANITIZE_THREAD__
|
||||
/*
|
||||
* Only calls into the runtime when the particular compilation unit has KCSAN
|
||||
* instrumentation enabled. May be used in header files.
|
||||
*/
|
||||
#define kcsan_check_access __kcsan_check_access
|
||||
|
||||
/*
|
||||
* Only use these to disable KCSAN for accesses in the current compilation unit;
|
||||
* calls into libraries may still perform KCSAN checks.
|
||||
*/
|
||||
#define __kcsan_disable_current kcsan_disable_current
|
||||
#define __kcsan_enable_current kcsan_enable_current_nowarn
|
||||
#else
|
||||
static inline void kcsan_check_access(const volatile void *ptr, size_t size,
|
||||
int type) { }
|
||||
static inline void __kcsan_enable_current(void) { }
|
||||
static inline void __kcsan_disable_current(void) { }
|
||||
#endif
|
||||
|
||||
/**
|
||||
* __kcsan_check_read - check regular read access for races
|
||||
*
|
||||
* @ptr: address of access
|
||||
* @size: size of access
|
||||
*/
|
||||
#define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
|
||||
|
||||
/**
|
||||
* __kcsan_check_write - check regular write access for races
|
||||
*
|
||||
* @ptr: address of access
|
||||
* @size: size of access
|
||||
*/
|
||||
#define __kcsan_check_write(ptr, size) \
|
||||
__kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
|
||||
|
||||
/**
|
||||
* kcsan_check_read - check regular read access for races
|
||||
*
|
||||
* @ptr: address of access
|
||||
* @size: size of access
|
||||
*/
|
||||
#define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
|
||||
|
||||
/**
|
||||
* kcsan_check_write - check regular write access for races
|
||||
*
|
||||
* @ptr: address of access
|
||||
* @size: size of access
|
||||
*/
|
||||
#define kcsan_check_write(ptr, size) \
|
||||
kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
|
||||
|
||||
/*
|
||||
* Check for atomic accesses: if atomic accesses are not ignored, this simply
|
||||
* aliases to kcsan_check_access(), otherwise becomes a no-op.
|
||||
*/
|
||||
#ifdef CONFIG_KCSAN_IGNORE_ATOMICS
|
||||
#define kcsan_check_atomic_read(...) do { } while (0)
|
||||
#define kcsan_check_atomic_write(...) do { } while (0)
|
||||
#else
|
||||
#define kcsan_check_atomic_read(ptr, size) \
|
||||
kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
|
||||
#define kcsan_check_atomic_write(ptr, size) \
|
||||
kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
|
||||
#endif
|
||||
|
||||
/**
|
||||
* ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
|
||||
*
|
||||
* Assert that there are no concurrent writes to @var; other readers are
|
||||
* allowed. This assertion can be used to specify properties of concurrent code,
|
||||
* where violation cannot be detected as a normal data race.
|
||||
*
|
||||
* For example, if we only have a single writer, but multiple concurrent
|
||||
* readers, to avoid data races, all these accesses must be marked; even
|
||||
* concurrent marked writes racing with the single writer are bugs.
|
||||
* Unfortunately, due to being marked, they are no longer data races. For cases
|
||||
* like these, we can use the macro as follows:
|
||||
*
|
||||
* .. code-block:: c
|
||||
*
|
||||
* void writer(void) {
|
||||
* spin_lock(&update_foo_lock);
|
||||
* ASSERT_EXCLUSIVE_WRITER(shared_foo);
|
||||
* WRITE_ONCE(shared_foo, ...);
|
||||
* spin_unlock(&update_foo_lock);
|
||||
* }
|
||||
* void reader(void) {
|
||||
* // update_foo_lock does not need to be held!
|
||||
* ... = READ_ONCE(shared_foo);
|
||||
* }
|
||||
*
|
||||
* Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
|
||||
* checking if a clear scope where no concurrent writes are expected exists.
|
||||
*
|
||||
* @var: variable to assert on
|
||||
*/
|
||||
#define ASSERT_EXCLUSIVE_WRITER(var) \
|
||||
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
|
||||
|
||||
/*
|
||||
* Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
|
||||
* expected to be unique for the scope in which instances of kcsan_scoped_access
|
||||
* are declared.
|
||||
*/
|
||||
#define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
|
||||
#define __ASSERT_EXCLUSIVE_SCOPED(var, type, id) \
|
||||
struct kcsan_scoped_access __kcsan_scoped_name(id, _) \
|
||||
__kcsan_cleanup_scoped; \
|
||||
struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p) \
|
||||
__maybe_unused = kcsan_begin_scoped_access( \
|
||||
&(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type), \
|
||||
&__kcsan_scoped_name(id, _))
|
||||
|
||||
/**
|
||||
* ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
|
||||
*
|
||||
* Scoped variant of ASSERT_EXCLUSIVE_WRITER().
|
||||
*
|
||||
* Assert that there are no concurrent writes to @var for the duration of the
|
||||
* scope in which it is introduced. This provides a better way to fully cover
|
||||
* the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
|
||||
* increases the likelihood for KCSAN to detect racing accesses.
|
||||
*
|
||||
* For example, it allows finding race-condition bugs that only occur due to
|
||||
* state changes within the scope itself:
|
||||
*
|
||||
* .. code-block:: c
|
||||
*
|
||||
* void writer(void) {
|
||||
* spin_lock(&update_foo_lock);
|
||||
* {
|
||||
* ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
|
||||
* WRITE_ONCE(shared_foo, 42);
|
||||
* ...
|
||||
* // shared_foo should still be 42 here!
|
||||
* }
|
||||
* spin_unlock(&update_foo_lock);
|
||||
* }
|
||||
* void buggy(void) {
|
||||
* if (READ_ONCE(shared_foo) == 42)
|
||||
* WRITE_ONCE(shared_foo, 1); // bug!
|
||||
* }
|
||||
*
|
||||
* @var: variable to assert on
|
||||
*/
|
||||
#define ASSERT_EXCLUSIVE_WRITER_SCOPED(var) \
|
||||
__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
|
||||
|
||||
/**
|
||||
* ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
|
||||
*
|
||||
* Assert that there are no concurrent accesses to @var (no readers nor
|
||||
* writers). This assertion can be used to specify properties of concurrent
|
||||
* code, where violation cannot be detected as a normal data race.
|
||||
*
|
||||
* For example, where exclusive access is expected after determining no other
|
||||
* users of an object are left, but the object is not actually freed. We can
|
||||
* check that this property actually holds as follows:
|
||||
*
|
||||
* .. code-block:: c
|
||||
*
|
||||
* if (refcount_dec_and_test(&obj->refcnt)) {
|
||||
* ASSERT_EXCLUSIVE_ACCESS(*obj);
|
||||
* do_some_cleanup(obj);
|
||||
* release_for_reuse(obj);
|
||||
* }
|
||||
*
|
||||
* Note: ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
|
||||
* checking if a clear scope where no concurrent accesses are expected exists.
|
||||
*
|
||||
* Note: For cases where the object is freed, `KASAN <kasan.html>`_ is a better
|
||||
* fit to detect use-after-free bugs.
|
||||
*
|
||||
* @var: variable to assert on
|
||||
*/
|
||||
#define ASSERT_EXCLUSIVE_ACCESS(var) \
|
||||
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
|
||||
|
||||
/**
|
||||
* ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
|
||||
*
|
||||
* Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
|
||||
*
|
||||
* Assert that there are no concurrent accesses to @var (no readers nor writers)
|
||||
* for the entire duration of the scope in which it is introduced. This provides
|
||||
* a better way to fully cover the enclosing scope, compared to multiple
|
||||
* ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
|
||||
* racing accesses.
|
||||
*
|
||||
* @var: variable to assert on
|
||||
*/
|
||||
#define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) \
|
||||
__ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
|
||||
|
||||
/**
|
||||
* ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
|
||||
*
|
||||
* Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
|
||||
*
|
||||
* Assert that there are no concurrent writes to a subset of bits in @var;
|
||||
* concurrent readers are permitted. This assertion captures more detailed
|
||||
* bit-level properties, compared to the other (word granularity) assertions.
|
||||
* Only the bits set in @mask are checked for concurrent modifications, while
|
||||
* ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
|
||||
* are ignored.
|
||||
*
|
||||
* Use this for variables, where some bits must not be modified concurrently,
|
||||
* yet other bits are expected to be modified concurrently.
|
||||
*
|
||||
* For example, variables where, after initialization, some bits are read-only,
|
||||
* but other bits may still be modified concurrently. A reader may wish to
|
||||
* assert that this is true as follows:
|
||||
*
|
||||
* .. code-block:: c
|
||||
*
|
||||
* ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
|
||||
* foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
|
||||
*
|
||||
* Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
|
||||
* to access the masked bits only, and KCSAN optimistically assumes it is
|
||||
* therefore safe, even in the presence of data races, and marking it with
|
||||
* READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
|
||||
* it may still be advisable to do so, since we cannot reason about all compiler
|
||||
* optimizations when it comes to bit manipulations (on the reader and writer
|
||||
* side). If you are sure nothing can go wrong, we can write the above simply
|
||||
* as:
|
||||
*
|
||||
* .. code-block:: c
|
||||
*
|
||||
* ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
|
||||
* foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
|
||||
*
|
||||
* Another example, where this may be used, is when certain bits of @var may
|
||||
* only be modified when holding the appropriate lock, but other bits may still
|
||||
* be modified concurrently. Writers, where other bits may change concurrently,
|
||||
* could use the assertion as follows:
|
||||
*
|
||||
* .. code-block:: c
|
||||
*
|
||||
* spin_lock(&foo_lock);
|
||||
* ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
|
||||
* old_flags = flags;
|
||||
* new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
|
||||
* if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
|
||||
* spin_unlock(&foo_lock);
|
||||
*
|
||||
* @var: variable to assert on
|
||||
* @mask: only check for modifications to bits set in @mask
|
||||
*/
|
||||
#define ASSERT_EXCLUSIVE_BITS(var, mask) \
|
||||
do { \
|
||||
kcsan_set_access_mask(mask); \
|
||||
__kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
|
||||
kcsan_set_access_mask(0); \
|
||||
kcsan_atomic_next(1); \
|
||||
} while (0)
|
||||
|
||||
#endif /* _LINUX_KCSAN_CHECKS_H */
|
|
@ -0,0 +1,59 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
#ifndef _LINUX_KCSAN_H
|
||||
#define _LINUX_KCSAN_H
|
||||
|
||||
#include <linux/kcsan-checks.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#ifdef CONFIG_KCSAN
|
||||
|
||||
/*
|
||||
* Context for each thread of execution: for tasks, this is stored in
|
||||
* task_struct, and interrupts access internal per-CPU storage.
|
||||
*/
|
||||
struct kcsan_ctx {
|
||||
int disable_count; /* disable counter */
|
||||
int atomic_next; /* number of following atomic ops */
|
||||
|
||||
/*
|
||||
* We distinguish between: (a) nestable atomic regions that may contain
|
||||
* other nestable regions; and (b) flat atomic regions that do not keep
|
||||
* track of nesting. Both (a) and (b) are entirely independent of each
|
||||
* other, and a flat region may be started in a nestable region or
|
||||
* vice-versa.
|
||||
*
|
||||
* This is required because, for example, in the annotations for
|
||||
* seqlocks, we declare seqlock writer critical sections as (a) nestable
|
||||
* atomic regions, but reader critical sections as (b) flat atomic
|
||||
* regions, but have encountered cases where seqlock reader critical
|
||||
* sections are contained within writer critical sections (the opposite
|
||||
* may be possible, too).
|
||||
*
|
||||
* To support these cases, we independently track the depth of nesting
|
||||
* for (a), and whether the leaf level is flat for (b).
|
||||
*/
|
||||
int atomic_nest_count;
|
||||
bool in_flat_atomic;
|
||||
|
||||
/*
|
||||
* Access mask for all accesses if non-zero.
|
||||
*/
|
||||
unsigned long access_mask;
|
||||
|
||||
/* List of scoped accesses. */
|
||||
struct list_head scoped_accesses;
|
||||
};
|
||||
|
||||
/**
|
||||
* kcsan_init - initialize KCSAN runtime
|
||||
*/
|
||||
void kcsan_init(void);
|
||||
|
||||
#else /* CONFIG_KCSAN */
|
||||
|
||||
static inline void kcsan_init(void) { }
|
||||
|
||||
#endif /* CONFIG_KCSAN */
|
||||
|
||||
#endif /* _LINUX_KCSAN_H */
|
|
@ -31,6 +31,7 @@
|
|||
#include <linux/task_io_accounting.h>
|
||||
#include <linux/posix-timers.h>
|
||||
#include <linux/rseq.h>
|
||||
#include <linux/kcsan.h>
|
||||
|
||||
/* task_struct member predeclarations (sorted alphabetically): */
|
||||
struct audit_context;
|
||||
|
@ -1197,6 +1198,9 @@ struct task_struct {
|
|||
#ifdef CONFIG_KASAN
|
||||
unsigned int kasan_depth;
|
||||
#endif
|
||||
#ifdef CONFIG_KCSAN
|
||||
struct kcsan_ctx kcsan_ctx;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
|
||||
/* Index of current stored address in ret_stack: */
|
||||
|
|
|
@ -37,8 +37,24 @@
|
|||
#include <linux/preempt.h>
|
||||
#include <linux/lockdep.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/kcsan-checks.h>
|
||||
#include <asm/processor.h>
|
||||
|
||||
/*
|
||||
* The seqlock interface does not prescribe a precise sequence of read
|
||||
* begin/retry/end. For readers, typically there is a call to
|
||||
* read_seqcount_begin() and read_seqcount_retry(), however, there are more
|
||||
* esoteric cases which do not follow this pattern.
|
||||
*
|
||||
* As a consequence, we take the following best-effort approach for raw usage
|
||||
* via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
|
||||
* pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
|
||||
* atomics; if there is a matching read_seqcount_retry() call, no following
|
||||
* memory operations are considered atomic. Usage of seqlocks via seqlock_t
|
||||
* interface is not affected.
|
||||
*/
|
||||
#define KCSAN_SEQLOCK_REGION_MAX 1000
|
||||
|
||||
/*
|
||||
* Version using sequence counter only.
|
||||
* This can be used when code has its own mutex protecting the
|
||||
|
@ -115,6 +131,7 @@ repeat:
|
|||
cpu_relax();
|
||||
goto repeat;
|
||||
}
|
||||
kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -131,6 +148,7 @@ static inline unsigned raw_read_seqcount(const seqcount_t *s)
|
|||
{
|
||||
unsigned ret = READ_ONCE(s->sequence);
|
||||
smp_rmb();
|
||||
kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -183,6 +201,7 @@ static inline unsigned raw_seqcount_begin(const seqcount_t *s)
|
|||
{
|
||||
unsigned ret = READ_ONCE(s->sequence);
|
||||
smp_rmb();
|
||||
kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);
|
||||
return ret & ~1;
|
||||
}
|
||||
|
||||
|
@ -202,7 +221,8 @@ static inline unsigned raw_seqcount_begin(const seqcount_t *s)
|
|||
*/
|
||||
static inline int __read_seqcount_retry(const seqcount_t *s, unsigned start)
|
||||
{
|
||||
return unlikely(s->sequence != start);
|
||||
kcsan_atomic_next(0);
|
||||
return unlikely(READ_ONCE(s->sequence) != start);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -225,6 +245,7 @@ static inline int read_seqcount_retry(const seqcount_t *s, unsigned start)
|
|||
|
||||
static inline void raw_write_seqcount_begin(seqcount_t *s)
|
||||
{
|
||||
kcsan_nestable_atomic_begin();
|
||||
s->sequence++;
|
||||
smp_wmb();
|
||||
}
|
||||
|
@ -233,6 +254,7 @@ static inline void raw_write_seqcount_end(seqcount_t *s)
|
|||
{
|
||||
smp_wmb();
|
||||
s->sequence++;
|
||||
kcsan_nestable_atomic_end();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -243,6 +265,13 @@ static inline void raw_write_seqcount_end(seqcount_t *s)
|
|||
* usual consistency guarantee. It is one wmb cheaper, because we can
|
||||
* collapse the two back-to-back wmb()s.
|
||||
*
|
||||
* Note that writes surrounding the barrier should be declared atomic (e.g.
|
||||
* via WRITE_ONCE): a) to ensure the writes become visible to other threads
|
||||
* atomically, avoiding compiler optimizations; b) to document which writes are
|
||||
* meant to propagate to the reader critical section. This is necessary because
|
||||
* neither writes before and after the barrier are enclosed in a seq-writer
|
||||
* critical section that would ensure readers are aware of ongoing writes.
|
||||
*
|
||||
* seqcount_t seq;
|
||||
* bool X = true, Y = false;
|
||||
*
|
||||
|
@ -262,18 +291,20 @@ static inline void raw_write_seqcount_end(seqcount_t *s)
|
|||
*
|
||||
* void write(void)
|
||||
* {
|
||||
* Y = true;
|
||||
* WRITE_ONCE(Y, true);
|
||||
*
|
||||
* raw_write_seqcount_barrier(seq);
|
||||
*
|
||||
* X = false;
|
||||
* WRITE_ONCE(X, false);
|
||||
* }
|
||||
*/
|
||||
static inline void raw_write_seqcount_barrier(seqcount_t *s)
|
||||
{
|
||||
kcsan_nestable_atomic_begin();
|
||||
s->sequence++;
|
||||
smp_wmb();
|
||||
s->sequence++;
|
||||
kcsan_nestable_atomic_end();
|
||||
}
|
||||
|
||||
static inline int raw_read_seqcount_latch(seqcount_t *s)
|
||||
|
@ -398,7 +429,9 @@ static inline void write_seqcount_end(seqcount_t *s)
|
|||
static inline void write_seqcount_invalidate(seqcount_t *s)
|
||||
{
|
||||
smp_wmb();
|
||||
kcsan_nestable_atomic_begin();
|
||||
s->sequence+=2;
|
||||
kcsan_nestable_atomic_end();
|
||||
}
|
||||
|
||||
typedef struct {
|
||||
|
@ -430,11 +463,21 @@ typedef struct {
|
|||
*/
|
||||
static inline unsigned read_seqbegin(const seqlock_t *sl)
|
||||
{
|
||||
return read_seqcount_begin(&sl->seqcount);
|
||||
unsigned ret = read_seqcount_begin(&sl->seqcount);
|
||||
|
||||
kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */
|
||||
kcsan_flat_atomic_begin();
|
||||
return ret;
|
||||
}
|
||||
|
||||
static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
|
||||
{
|
||||
/*
|
||||
* Assume not nested: read_seqretry() may be called multiple times when
|
||||
* completing read critical section.
|
||||
*/
|
||||
kcsan_flat_atomic_end();
|
||||
|
||||
return read_seqcount_retry(&sl->seqcount, start);
|
||||
}
|
||||
|
||||
|
|
|
@ -2,9 +2,9 @@
|
|||
#ifndef __LINUX_UACCESS_H__
|
||||
#define __LINUX_UACCESS_H__
|
||||
|
||||
#include <linux/instrumented.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/thread_info.h>
|
||||
#include <linux/kasan-checks.h>
|
||||
|
||||
#define uaccess_kernel() segment_eq(get_fs(), KERNEL_DS)
|
||||
|
||||
|
@ -58,7 +58,7 @@
|
|||
static __always_inline __must_check unsigned long
|
||||
__copy_from_user_inatomic(void *to, const void __user *from, unsigned long n)
|
||||
{
|
||||
kasan_check_write(to, n);
|
||||
instrument_copy_from_user(to, from, n);
|
||||
check_object_size(to, n, false);
|
||||
return raw_copy_from_user(to, from, n);
|
||||
}
|
||||
|
@ -67,7 +67,7 @@ static __always_inline __must_check unsigned long
|
|||
__copy_from_user(void *to, const void __user *from, unsigned long n)
|
||||
{
|
||||
might_fault();
|
||||
kasan_check_write(to, n);
|
||||
instrument_copy_from_user(to, from, n);
|
||||
check_object_size(to, n, false);
|
||||
return raw_copy_from_user(to, from, n);
|
||||
}
|
||||
|
@ -88,7 +88,7 @@ __copy_from_user(void *to, const void __user *from, unsigned long n)
|
|||
static __always_inline __must_check unsigned long
|
||||
__copy_to_user_inatomic(void __user *to, const void *from, unsigned long n)
|
||||
{
|
||||
kasan_check_read(from, n);
|
||||
instrument_copy_to_user(to, from, n);
|
||||
check_object_size(from, n, true);
|
||||
return raw_copy_to_user(to, from, n);
|
||||
}
|
||||
|
@ -97,7 +97,7 @@ static __always_inline __must_check unsigned long
|
|||
__copy_to_user(void __user *to, const void *from, unsigned long n)
|
||||
{
|
||||
might_fault();
|
||||
kasan_check_read(from, n);
|
||||
instrument_copy_to_user(to, from, n);
|
||||
check_object_size(from, n, true);
|
||||
return raw_copy_to_user(to, from, n);
|
||||
}
|
||||
|
@ -109,7 +109,7 @@ _copy_from_user(void *to, const void __user *from, unsigned long n)
|
|||
unsigned long res = n;
|
||||
might_fault();
|
||||
if (likely(access_ok(from, n))) {
|
||||
kasan_check_write(to, n);
|
||||
instrument_copy_from_user(to, from, n);
|
||||
res = raw_copy_from_user(to, from, n);
|
||||
}
|
||||
if (unlikely(res))
|
||||
|
@ -127,7 +127,7 @@ _copy_to_user(void __user *to, const void *from, unsigned long n)
|
|||
{
|
||||
might_fault();
|
||||
if (access_ok(to, n)) {
|
||||
kasan_check_read(from, n);
|
||||
instrument_copy_to_user(to, from, n);
|
||||
n = raw_copy_to_user(to, from, n);
|
||||
}
|
||||
return n;
|
||||
|
|
|
@ -174,6 +174,16 @@ struct task_struct init_task
|
|||
#ifdef CONFIG_KASAN
|
||||
.kasan_depth = 1,
|
||||
#endif
|
||||
#ifdef CONFIG_KCSAN
|
||||
.kcsan_ctx = {
|
||||
.disable_count = 0,
|
||||
.atomic_next = 0,
|
||||
.atomic_nest_count = 0,
|
||||
.in_flat_atomic = false,
|
||||
.access_mask = 0,
|
||||
.scoped_accesses = {LIST_POISON1, NULL},
|
||||
},
|
||||
#endif
|
||||
#ifdef CONFIG_TRACE_IRQFLAGS
|
||||
.softirqs_enabled = 1,
|
||||
#endif
|
||||
|
|
|
@ -95,6 +95,7 @@
|
|||
#include <linux/rodata_test.h>
|
||||
#include <linux/jump_label.h>
|
||||
#include <linux/mem_encrypt.h>
|
||||
#include <linux/kcsan.h>
|
||||
|
||||
#include <asm/io.h>
|
||||
#include <asm/bugs.h>
|
||||
|
@ -1036,6 +1037,7 @@ asmlinkage __visible void __init start_kernel(void)
|
|||
acpi_subsystem_init();
|
||||
arch_post_acpi_subsys_init();
|
||||
sfi_init_late();
|
||||
kcsan_init();
|
||||
|
||||
/* Do the rest non-__init'ed, we're now alive */
|
||||
arch_call_rest_init();
|
||||
|
|
|
@ -23,6 +23,9 @@ endif
|
|||
# Prevents flicker of uninteresting __do_softirq()/__local_bh_disable_ip()
|
||||
# in coverage traces.
|
||||
KCOV_INSTRUMENT_softirq.o := n
|
||||
# Avoid KCSAN instrumentation in softirq ("No shared variables, all the data
|
||||
# are CPU local" => assume no data races), to reduce overhead in interrupts.
|
||||
KCSAN_SANITIZE_softirq.o = n
|
||||
# These are called from save_stack_trace() on slub debug path,
|
||||
# and produce insane amounts of uninteresting coverage.
|
||||
KCOV_INSTRUMENT_module.o := n
|
||||
|
@ -31,6 +34,7 @@ KCOV_INSTRUMENT_stacktrace.o := n
|
|||
# Don't self-instrument.
|
||||
KCOV_INSTRUMENT_kcov.o := n
|
||||
KASAN_SANITIZE_kcov.o := n
|
||||
KCSAN_SANITIZE_kcov.o := n
|
||||
CFLAGS_kcov.o := $(call cc-option, -fno-conserve-stack -fno-stack-protector)
|
||||
|
||||
# cond_syscall is currently not LTO compatible
|
||||
|
@ -103,6 +107,7 @@ obj-$(CONFIG_TRACEPOINTS) += trace/
|
|||
obj-$(CONFIG_IRQ_WORK) += irq_work.o
|
||||
obj-$(CONFIG_CPU_PM) += cpu_pm.o
|
||||
obj-$(CONFIG_BPF) += bpf/
|
||||
obj-$(CONFIG_KCSAN) += kcsan/
|
||||
obj-$(CONFIG_SHADOW_CALL_STACK) += scs.o
|
||||
|
||||
obj-$(CONFIG_PERF_EVENTS) += events/
|
||||
|
@ -121,6 +126,7 @@ obj-$(CONFIG_SYSCTL_KUNIT_TEST) += sysctl-test.o
|
|||
|
||||
obj-$(CONFIG_GCC_PLUGIN_STACKLEAK) += stackleak.o
|
||||
KASAN_SANITIZE_stackleak.o := n
|
||||
KCSAN_SANITIZE_stackleak.o := n
|
||||
KCOV_INSTRUMENT_stackleak.o := n
|
||||
|
||||
$(obj)/configs.o: $(obj)/config_data.gz
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
# SPDX-License-Identifier: GPL-2.0
|
||||
KCSAN_SANITIZE := n
|
||||
KCOV_INSTRUMENT := n
|
||||
UBSAN_SANITIZE := n
|
||||
|
||||
CFLAGS_REMOVE_core.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_debugfs.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_report.o = $(CC_FLAGS_FTRACE)
|
||||
|
||||
CFLAGS_core.o := $(call cc-option,-fno-conserve-stack,) \
|
||||
$(call cc-option,-fno-stack-protector,)
|
||||
|
||||
obj-y := core.o debugfs.o report.o
|
||||
obj-$(CONFIG_KCSAN_SELFTEST) += test.o
|
|
@ -0,0 +1,20 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
#ifndef _KERNEL_KCSAN_ATOMIC_H
|
||||
#define _KERNEL_KCSAN_ATOMIC_H
|
||||
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/sched.h>
|
||||
|
||||
/*
|
||||
* Special rules for certain memory where concurrent conflicting accesses are
|
||||
* common, however, the current convention is to not mark them; returns true if
|
||||
* access to @ptr should be considered atomic. Called from slow-path.
|
||||
*/
|
||||
static bool kcsan_is_atomic_special(const volatile void *ptr)
|
||||
{
|
||||
/* volatile globals that have been observed in data races. */
|
||||
return ptr == &jiffies || ptr == ¤t->state;
|
||||
}
|
||||
|
||||
#endif /* _KERNEL_KCSAN_ATOMIC_H */
|
|
@ -0,0 +1,807 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/bug.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/export.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/moduleparam.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/preempt.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/uaccess.h>
|
||||
|
||||
#include "atomic.h"
|
||||
#include "encoding.h"
|
||||
#include "kcsan.h"
|
||||
|
||||
static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
|
||||
unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
|
||||
unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
|
||||
static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
|
||||
static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
|
||||
|
||||
#ifdef MODULE_PARAM_PREFIX
|
||||
#undef MODULE_PARAM_PREFIX
|
||||
#endif
|
||||
#define MODULE_PARAM_PREFIX "kcsan."
|
||||
module_param_named(early_enable, kcsan_early_enable, bool, 0);
|
||||
module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
|
||||
module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
|
||||
module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
|
||||
module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
|
||||
|
||||
bool kcsan_enabled;
|
||||
|
||||
/* Per-CPU kcsan_ctx for interrupts */
|
||||
static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
|
||||
.disable_count = 0,
|
||||
.atomic_next = 0,
|
||||
.atomic_nest_count = 0,
|
||||
.in_flat_atomic = false,
|
||||
.access_mask = 0,
|
||||
.scoped_accesses = {LIST_POISON1, NULL},
|
||||
};
|
||||
|
||||
/*
|
||||
* Helper macros to index into adjacent slots, starting from address slot
|
||||
* itself, followed by the right and left slots.
|
||||
*
|
||||
* The purpose is 2-fold:
|
||||
*
|
||||
* 1. if during insertion the address slot is already occupied, check if
|
||||
* any adjacent slots are free;
|
||||
* 2. accesses that straddle a slot boundary due to size that exceeds a
|
||||
* slot's range may check adjacent slots if any watchpoint matches.
|
||||
*
|
||||
* Note that accesses with very large size may still miss a watchpoint; however,
|
||||
* given this should be rare, this is a reasonable trade-off to make, since this
|
||||
* will avoid:
|
||||
*
|
||||
* 1. excessive contention between watchpoint checks and setup;
|
||||
* 2. larger number of simultaneous watchpoints without sacrificing
|
||||
* performance.
|
||||
*
|
||||
* Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
|
||||
*
|
||||
* slot=0: [ 1, 2, 0]
|
||||
* slot=9: [10, 11, 9]
|
||||
* slot=63: [64, 65, 63]
|
||||
*/
|
||||
#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
|
||||
|
||||
/*
|
||||
* SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
|
||||
* slot (middle) is fine if we assume that races occur rarely. The set of
|
||||
* indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
|
||||
* {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
|
||||
*/
|
||||
#define SLOT_IDX_FAST(slot, i) (slot + i)
|
||||
|
||||
/*
|
||||
* Watchpoints, with each entry encoded as defined in encoding.h: in order to be
|
||||
* able to safely update and access a watchpoint without introducing locking
|
||||
* overhead, we encode each watchpoint as a single atomic long. The initial
|
||||
* zero-initialized state matches INVALID_WATCHPOINT.
|
||||
*
|
||||
* Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
|
||||
* use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
|
||||
*/
|
||||
static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
|
||||
|
||||
/*
|
||||
* Instructions to skip watching counter, used in should_watch(). We use a
|
||||
* per-CPU counter to avoid excessive contention.
|
||||
*/
|
||||
static DEFINE_PER_CPU(long, kcsan_skip);
|
||||
|
||||
static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
|
||||
size_t size,
|
||||
bool expect_write,
|
||||
long *encoded_watchpoint)
|
||||
{
|
||||
const int slot = watchpoint_slot(addr);
|
||||
const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
|
||||
atomic_long_t *watchpoint;
|
||||
unsigned long wp_addr_masked;
|
||||
size_t wp_size;
|
||||
bool is_write;
|
||||
int i;
|
||||
|
||||
BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
|
||||
|
||||
for (i = 0; i < NUM_SLOTS; ++i) {
|
||||
watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
|
||||
*encoded_watchpoint = atomic_long_read(watchpoint);
|
||||
if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
|
||||
&wp_size, &is_write))
|
||||
continue;
|
||||
|
||||
if (expect_write && !is_write)
|
||||
continue;
|
||||
|
||||
/* Check if the watchpoint matches the access. */
|
||||
if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
|
||||
return watchpoint;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static inline atomic_long_t *
|
||||
insert_watchpoint(unsigned long addr, size_t size, bool is_write)
|
||||
{
|
||||
const int slot = watchpoint_slot(addr);
|
||||
const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
|
||||
atomic_long_t *watchpoint;
|
||||
int i;
|
||||
|
||||
/* Check slot index logic, ensuring we stay within array bounds. */
|
||||
BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
|
||||
BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
|
||||
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
|
||||
BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
|
||||
|
||||
for (i = 0; i < NUM_SLOTS; ++i) {
|
||||
long expect_val = INVALID_WATCHPOINT;
|
||||
|
||||
/* Try to acquire this slot. */
|
||||
watchpoint = &watchpoints[SLOT_IDX(slot, i)];
|
||||
if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
|
||||
return watchpoint;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return true if watchpoint was successfully consumed, false otherwise.
|
||||
*
|
||||
* This may return false if:
|
||||
*
|
||||
* 1. another thread already consumed the watchpoint;
|
||||
* 2. the thread that set up the watchpoint already removed it;
|
||||
* 3. the watchpoint was removed and then re-used.
|
||||
*/
|
||||
static __always_inline bool
|
||||
try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
|
||||
{
|
||||
return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
|
||||
}
|
||||
|
||||
/* Return true if watchpoint was not touched, false if already consumed. */
|
||||
static inline bool consume_watchpoint(atomic_long_t *watchpoint)
|
||||
{
|
||||
return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
|
||||
}
|
||||
|
||||
/* Remove the watchpoint -- its slot may be reused after. */
|
||||
static inline void remove_watchpoint(atomic_long_t *watchpoint)
|
||||
{
|
||||
atomic_long_set(watchpoint, INVALID_WATCHPOINT);
|
||||
}
|
||||
|
||||
static __always_inline struct kcsan_ctx *get_ctx(void)
|
||||
{
|
||||
/*
|
||||
* In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
|
||||
* also result in calls that generate warnings in uaccess regions.
|
||||
*/
|
||||
return in_task() ? ¤t->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
|
||||
}
|
||||
|
||||
/* Check scoped accesses; never inline because this is a slow-path! */
|
||||
static noinline void kcsan_check_scoped_accesses(void)
|
||||
{
|
||||
struct kcsan_ctx *ctx = get_ctx();
|
||||
struct list_head *prev_save = ctx->scoped_accesses.prev;
|
||||
struct kcsan_scoped_access *scoped_access;
|
||||
|
||||
ctx->scoped_accesses.prev = NULL; /* Avoid recursion. */
|
||||
list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
|
||||
__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
|
||||
ctx->scoped_accesses.prev = prev_save;
|
||||
}
|
||||
|
||||
/* Rules for generic atomic accesses. Called from fast-path. */
|
||||
static __always_inline bool
|
||||
is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
|
||||
{
|
||||
if (type & KCSAN_ACCESS_ATOMIC)
|
||||
return true;
|
||||
|
||||
/*
|
||||
* Unless explicitly declared atomic, never consider an assertion access
|
||||
* as atomic. This allows using them also in atomic regions, such as
|
||||
* seqlocks, without implicitly changing their semantics.
|
||||
*/
|
||||
if (type & KCSAN_ACCESS_ASSERT)
|
||||
return false;
|
||||
|
||||
if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
|
||||
(type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
|
||||
IS_ALIGNED((unsigned long)ptr, size))
|
||||
return true; /* Assume aligned writes up to word size are atomic. */
|
||||
|
||||
if (ctx->atomic_next > 0) {
|
||||
/*
|
||||
* Because we do not have separate contexts for nested
|
||||
* interrupts, in case atomic_next is set, we simply assume that
|
||||
* the outer interrupt set atomic_next. In the worst case, we
|
||||
* will conservatively consider operations as atomic. This is a
|
||||
* reasonable trade-off to make, since this case should be
|
||||
* extremely rare; however, even if extremely rare, it could
|
||||
* lead to false positives otherwise.
|
||||
*/
|
||||
if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
|
||||
--ctx->atomic_next; /* in task, or outer interrupt */
|
||||
return true;
|
||||
}
|
||||
|
||||
return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
|
||||
}
|
||||
|
||||
static __always_inline bool
|
||||
should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
|
||||
{
|
||||
/*
|
||||
* Never set up watchpoints when memory operations are atomic.
|
||||
*
|
||||
* Need to check this first, before kcsan_skip check below: (1) atomics
|
||||
* should not count towards skipped instructions, and (2) to actually
|
||||
* decrement kcsan_atomic_next for consecutive instruction stream.
|
||||
*/
|
||||
if (is_atomic(ptr, size, type, ctx))
|
||||
return false;
|
||||
|
||||
if (this_cpu_dec_return(kcsan_skip) >= 0)
|
||||
return false;
|
||||
|
||||
/*
|
||||
* NOTE: If we get here, kcsan_skip must always be reset in slow path
|
||||
* via reset_kcsan_skip() to avoid underflow.
|
||||
*/
|
||||
|
||||
/* this operation should be watched */
|
||||
return true;
|
||||
}
|
||||
|
||||
static inline void reset_kcsan_skip(void)
|
||||
{
|
||||
long skip_count = kcsan_skip_watch -
|
||||
(IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
|
||||
prandom_u32_max(kcsan_skip_watch) :
|
||||
0);
|
||||
this_cpu_write(kcsan_skip, skip_count);
|
||||
}
|
||||
|
||||
static __always_inline bool kcsan_is_enabled(void)
|
||||
{
|
||||
return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
|
||||
}
|
||||
|
||||
static inline unsigned int get_delay(void)
|
||||
{
|
||||
unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
|
||||
return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
|
||||
prandom_u32_max(delay) :
|
||||
0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Pull everything together: check_access() below contains the performance
|
||||
* critical operations; the fast-path (including check_access) functions should
|
||||
* all be inlinable by the instrumentation functions.
|
||||
*
|
||||
* The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
|
||||
* non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
|
||||
* be filtered from the stacktrace, as well as give them unique names for the
|
||||
* UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
|
||||
* since they do not access any user memory, but instrumentation is still
|
||||
* emitted in UACCESS regions.
|
||||
*/
|
||||
|
||||
static noinline void kcsan_found_watchpoint(const volatile void *ptr,
|
||||
size_t size,
|
||||
int type,
|
||||
atomic_long_t *watchpoint,
|
||||
long encoded_watchpoint)
|
||||
{
|
||||
unsigned long flags;
|
||||
bool consumed;
|
||||
|
||||
if (!kcsan_is_enabled())
|
||||
return;
|
||||
|
||||
/*
|
||||
* The access_mask check relies on value-change comparison. To avoid
|
||||
* reporting a race where e.g. the writer set up the watchpoint, but the
|
||||
* reader has access_mask!=0, we have to ignore the found watchpoint.
|
||||
*/
|
||||
if (get_ctx()->access_mask != 0)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Consume the watchpoint as soon as possible, to minimize the chances
|
||||
* of !consumed. Consuming the watchpoint must always be guarded by
|
||||
* kcsan_is_enabled() check, as otherwise we might erroneously
|
||||
* triggering reports when disabled.
|
||||
*/
|
||||
consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
|
||||
|
||||
/* keep this after try_consume_watchpoint */
|
||||
flags = user_access_save();
|
||||
|
||||
if (consumed) {
|
||||
kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
|
||||
KCSAN_REPORT_CONSUMED_WATCHPOINT,
|
||||
watchpoint - watchpoints);
|
||||
} else {
|
||||
/*
|
||||
* The other thread may not print any diagnostics, as it has
|
||||
* already removed the watchpoint, or another thread consumed
|
||||
* the watchpoint before this thread.
|
||||
*/
|
||||
kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
|
||||
}
|
||||
|
||||
if ((type & KCSAN_ACCESS_ASSERT) != 0)
|
||||
kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
|
||||
else
|
||||
kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
|
||||
|
||||
user_access_restore(flags);
|
||||
}
|
||||
|
||||
static noinline void
|
||||
kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
|
||||
{
|
||||
const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
|
||||
const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
|
||||
atomic_long_t *watchpoint;
|
||||
union {
|
||||
u8 _1;
|
||||
u16 _2;
|
||||
u32 _4;
|
||||
u64 _8;
|
||||
} expect_value;
|
||||
unsigned long access_mask;
|
||||
enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
|
||||
unsigned long ua_flags = user_access_save();
|
||||
unsigned long irq_flags = 0;
|
||||
|
||||
/*
|
||||
* Always reset kcsan_skip counter in slow-path to avoid underflow; see
|
||||
* should_watch().
|
||||
*/
|
||||
reset_kcsan_skip();
|
||||
|
||||
if (!kcsan_is_enabled())
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Special atomic rules: unlikely to be true, so we check them here in
|
||||
* the slow-path, and not in the fast-path in is_atomic(). Call after
|
||||
* kcsan_is_enabled(), as we may access memory that is not yet
|
||||
* initialized during early boot.
|
||||
*/
|
||||
if (!is_assert && kcsan_is_atomic_special(ptr))
|
||||
goto out;
|
||||
|
||||
if (!check_encodable((unsigned long)ptr, size)) {
|
||||
kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (!kcsan_interrupt_watcher)
|
||||
/* Use raw to avoid lockdep recursion via IRQ flags tracing. */
|
||||
raw_local_irq_save(irq_flags);
|
||||
|
||||
watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
|
||||
if (watchpoint == NULL) {
|
||||
/*
|
||||
* Out of capacity: the size of 'watchpoints', and the frequency
|
||||
* with which should_watch() returns true should be tweaked so
|
||||
* that this case happens very rarely.
|
||||
*/
|
||||
kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
|
||||
goto out_unlock;
|
||||
}
|
||||
|
||||
kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
|
||||
kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
|
||||
|
||||
/*
|
||||
* Read the current value, to later check and infer a race if the data
|
||||
* was modified via a non-instrumented access, e.g. from a device.
|
||||
*/
|
||||
expect_value._8 = 0;
|
||||
switch (size) {
|
||||
case 1:
|
||||
expect_value._1 = READ_ONCE(*(const u8 *)ptr);
|
||||
break;
|
||||
case 2:
|
||||
expect_value._2 = READ_ONCE(*(const u16 *)ptr);
|
||||
break;
|
||||
case 4:
|
||||
expect_value._4 = READ_ONCE(*(const u32 *)ptr);
|
||||
break;
|
||||
case 8:
|
||||
expect_value._8 = READ_ONCE(*(const u64 *)ptr);
|
||||
break;
|
||||
default:
|
||||
break; /* ignore; we do not diff the values */
|
||||
}
|
||||
|
||||
if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
|
||||
kcsan_disable_current();
|
||||
pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
|
||||
is_write ? "write" : "read", size, ptr,
|
||||
watchpoint_slot((unsigned long)ptr),
|
||||
encode_watchpoint((unsigned long)ptr, size, is_write));
|
||||
kcsan_enable_current();
|
||||
}
|
||||
|
||||
/*
|
||||
* Delay this thread, to increase probability of observing a racy
|
||||
* conflicting access.
|
||||
*/
|
||||
udelay(get_delay());
|
||||
|
||||
/*
|
||||
* Re-read value, and check if it is as expected; if not, we infer a
|
||||
* racy access.
|
||||
*/
|
||||
access_mask = get_ctx()->access_mask;
|
||||
switch (size) {
|
||||
case 1:
|
||||
expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
|
||||
if (access_mask)
|
||||
expect_value._1 &= (u8)access_mask;
|
||||
break;
|
||||
case 2:
|
||||
expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
|
||||
if (access_mask)
|
||||
expect_value._2 &= (u16)access_mask;
|
||||
break;
|
||||
case 4:
|
||||
expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
|
||||
if (access_mask)
|
||||
expect_value._4 &= (u32)access_mask;
|
||||
break;
|
||||
case 8:
|
||||
expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
|
||||
if (access_mask)
|
||||
expect_value._8 &= (u64)access_mask;
|
||||
break;
|
||||
default:
|
||||
break; /* ignore; we do not diff the values */
|
||||
}
|
||||
|
||||
/* Were we able to observe a value-change? */
|
||||
if (expect_value._8 != 0)
|
||||
value_change = KCSAN_VALUE_CHANGE_TRUE;
|
||||
|
||||
/* Check if this access raced with another. */
|
||||
if (!consume_watchpoint(watchpoint)) {
|
||||
/*
|
||||
* Depending on the access type, map a value_change of MAYBE to
|
||||
* TRUE (always report) or FALSE (never report).
|
||||
*/
|
||||
if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
|
||||
if (access_mask != 0) {
|
||||
/*
|
||||
* For access with access_mask, we require a
|
||||
* value-change, as it is likely that races on
|
||||
* ~access_mask bits are expected.
|
||||
*/
|
||||
value_change = KCSAN_VALUE_CHANGE_FALSE;
|
||||
} else if (size > 8 || is_assert) {
|
||||
/* Always assume a value-change. */
|
||||
value_change = KCSAN_VALUE_CHANGE_TRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* No need to increment 'data_races' counter, as the racing
|
||||
* thread already did.
|
||||
*
|
||||
* Count 'assert_failures' for each failed ASSERT access,
|
||||
* therefore both this thread and the racing thread may
|
||||
* increment this counter.
|
||||
*/
|
||||
if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
|
||||
kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
|
||||
|
||||
kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
|
||||
watchpoint - watchpoints);
|
||||
} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
|
||||
/* Inferring a race, since the value should not have changed. */
|
||||
|
||||
kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
|
||||
if (is_assert)
|
||||
kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
|
||||
|
||||
if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
|
||||
kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
|
||||
KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
|
||||
watchpoint - watchpoints);
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove watchpoint; must be after reporting, since the slot may be
|
||||
* reused after this point.
|
||||
*/
|
||||
remove_watchpoint(watchpoint);
|
||||
kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
|
||||
out_unlock:
|
||||
if (!kcsan_interrupt_watcher)
|
||||
raw_local_irq_restore(irq_flags);
|
||||
out:
|
||||
user_access_restore(ua_flags);
|
||||
}
|
||||
|
||||
static __always_inline void check_access(const volatile void *ptr, size_t size,
|
||||
int type)
|
||||
{
|
||||
const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
|
||||
atomic_long_t *watchpoint;
|
||||
long encoded_watchpoint;
|
||||
|
||||
/*
|
||||
* Do nothing for 0 sized check; this comparison will be optimized out
|
||||
* for constant sized instrumentation (__tsan_{read,write}N).
|
||||
*/
|
||||
if (unlikely(size == 0))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Avoid user_access_save in fast-path: find_watchpoint is safe without
|
||||
* user_access_save, as the address that ptr points to is only used to
|
||||
* check if a watchpoint exists; ptr is never dereferenced.
|
||||
*/
|
||||
watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
|
||||
&encoded_watchpoint);
|
||||
/*
|
||||
* It is safe to check kcsan_is_enabled() after find_watchpoint in the
|
||||
* slow-path, as long as no state changes that cause a race to be
|
||||
* detected and reported have occurred until kcsan_is_enabled() is
|
||||
* checked.
|
||||
*/
|
||||
|
||||
if (unlikely(watchpoint != NULL))
|
||||
kcsan_found_watchpoint(ptr, size, type, watchpoint,
|
||||
encoded_watchpoint);
|
||||
else {
|
||||
struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
|
||||
|
||||
if (unlikely(should_watch(ptr, size, type, ctx)))
|
||||
kcsan_setup_watchpoint(ptr, size, type);
|
||||
else if (unlikely(ctx->scoped_accesses.prev))
|
||||
kcsan_check_scoped_accesses();
|
||||
}
|
||||
}
|
||||
|
||||
/* === Public interface ===================================================== */
|
||||
|
||||
void __init kcsan_init(void)
|
||||
{
|
||||
BUG_ON(!in_task());
|
||||
|
||||
kcsan_debugfs_init();
|
||||
|
||||
/*
|
||||
* We are in the init task, and no other tasks should be running;
|
||||
* WRITE_ONCE without memory barrier is sufficient.
|
||||
*/
|
||||
if (kcsan_early_enable)
|
||||
WRITE_ONCE(kcsan_enabled, true);
|
||||
}
|
||||
|
||||
/* === Exported interface =================================================== */
|
||||
|
||||
void kcsan_disable_current(void)
|
||||
{
|
||||
++get_ctx()->disable_count;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_disable_current);
|
||||
|
||||
void kcsan_enable_current(void)
|
||||
{
|
||||
if (get_ctx()->disable_count-- == 0) {
|
||||
/*
|
||||
* Warn if kcsan_enable_current() calls are unbalanced with
|
||||
* kcsan_disable_current() calls, which causes disable_count to
|
||||
* become negative and should not happen.
|
||||
*/
|
||||
kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
|
||||
kcsan_disable_current(); /* disable to generate warning */
|
||||
WARN(1, "Unbalanced %s()", __func__);
|
||||
kcsan_enable_current();
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_enable_current);
|
||||
|
||||
void kcsan_enable_current_nowarn(void)
|
||||
{
|
||||
if (get_ctx()->disable_count-- == 0)
|
||||
kcsan_disable_current();
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_enable_current_nowarn);
|
||||
|
||||
void kcsan_nestable_atomic_begin(void)
|
||||
{
|
||||
/*
|
||||
* Do *not* check and warn if we are in a flat atomic region: nestable
|
||||
* and flat atomic regions are independent from each other.
|
||||
* See include/linux/kcsan.h: struct kcsan_ctx comments for more
|
||||
* comments.
|
||||
*/
|
||||
|
||||
++get_ctx()->atomic_nest_count;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
|
||||
|
||||
void kcsan_nestable_atomic_end(void)
|
||||
{
|
||||
if (get_ctx()->atomic_nest_count-- == 0) {
|
||||
/*
|
||||
* Warn if kcsan_nestable_atomic_end() calls are unbalanced with
|
||||
* kcsan_nestable_atomic_begin() calls, which causes
|
||||
* atomic_nest_count to become negative and should not happen.
|
||||
*/
|
||||
kcsan_nestable_atomic_begin(); /* restore to 0 */
|
||||
kcsan_disable_current(); /* disable to generate warning */
|
||||
WARN(1, "Unbalanced %s()", __func__);
|
||||
kcsan_enable_current();
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_nestable_atomic_end);
|
||||
|
||||
void kcsan_flat_atomic_begin(void)
|
||||
{
|
||||
get_ctx()->in_flat_atomic = true;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_flat_atomic_begin);
|
||||
|
||||
void kcsan_flat_atomic_end(void)
|
||||
{
|
||||
get_ctx()->in_flat_atomic = false;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_flat_atomic_end);
|
||||
|
||||
void kcsan_atomic_next(int n)
|
||||
{
|
||||
get_ctx()->atomic_next = n;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_atomic_next);
|
||||
|
||||
void kcsan_set_access_mask(unsigned long mask)
|
||||
{
|
||||
get_ctx()->access_mask = mask;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_set_access_mask);
|
||||
|
||||
struct kcsan_scoped_access *
|
||||
kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
|
||||
struct kcsan_scoped_access *sa)
|
||||
{
|
||||
struct kcsan_ctx *ctx = get_ctx();
|
||||
|
||||
__kcsan_check_access(ptr, size, type);
|
||||
|
||||
ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
|
||||
|
||||
INIT_LIST_HEAD(&sa->list);
|
||||
sa->ptr = ptr;
|
||||
sa->size = size;
|
||||
sa->type = type;
|
||||
|
||||
if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
|
||||
INIT_LIST_HEAD(&ctx->scoped_accesses);
|
||||
list_add(&sa->list, &ctx->scoped_accesses);
|
||||
|
||||
ctx->disable_count--;
|
||||
return sa;
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_begin_scoped_access);
|
||||
|
||||
void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
|
||||
{
|
||||
struct kcsan_ctx *ctx = get_ctx();
|
||||
|
||||
if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
|
||||
return;
|
||||
|
||||
ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
|
||||
|
||||
list_del(&sa->list);
|
||||
if (list_empty(&ctx->scoped_accesses))
|
||||
/*
|
||||
* Ensure we do not enter kcsan_check_scoped_accesses()
|
||||
* slow-path if unnecessary, and avoids requiring list_empty()
|
||||
* in the fast-path (to avoid a READ_ONCE() and potential
|
||||
* uaccess warning).
|
||||
*/
|
||||
ctx->scoped_accesses.prev = NULL;
|
||||
|
||||
ctx->disable_count--;
|
||||
|
||||
__kcsan_check_access(sa->ptr, sa->size, sa->type);
|
||||
}
|
||||
EXPORT_SYMBOL(kcsan_end_scoped_access);
|
||||
|
||||
void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
|
||||
{
|
||||
check_access(ptr, size, type);
|
||||
}
|
||||
EXPORT_SYMBOL(__kcsan_check_access);
|
||||
|
||||
/*
|
||||
* KCSAN uses the same instrumentation that is emitted by supported compilers
|
||||
* for ThreadSanitizer (TSAN).
|
||||
*
|
||||
* When enabled, the compiler emits instrumentation calls (the functions
|
||||
* prefixed with "__tsan" below) for all loads and stores that it generated;
|
||||
* inline asm is not instrumented.
|
||||
*
|
||||
* Note that, not all supported compiler versions distinguish aligned/unaligned
|
||||
* accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
|
||||
* version to the generic version, which can handle both.
|
||||
*/
|
||||
|
||||
#define DEFINE_TSAN_READ_WRITE(size) \
|
||||
void __tsan_read##size(void *ptr) \
|
||||
{ \
|
||||
check_access(ptr, size, 0); \
|
||||
} \
|
||||
EXPORT_SYMBOL(__tsan_read##size); \
|
||||
void __tsan_unaligned_read##size(void *ptr) \
|
||||
__alias(__tsan_read##size); \
|
||||
EXPORT_SYMBOL(__tsan_unaligned_read##size); \
|
||||
void __tsan_write##size(void *ptr) \
|
||||
{ \
|
||||
check_access(ptr, size, KCSAN_ACCESS_WRITE); \
|
||||
} \
|
||||
EXPORT_SYMBOL(__tsan_write##size); \
|
||||
void __tsan_unaligned_write##size(void *ptr) \
|
||||
__alias(__tsan_write##size); \
|
||||
EXPORT_SYMBOL(__tsan_unaligned_write##size)
|
||||
|
||||
DEFINE_TSAN_READ_WRITE(1);
|
||||
DEFINE_TSAN_READ_WRITE(2);
|
||||
DEFINE_TSAN_READ_WRITE(4);
|
||||
DEFINE_TSAN_READ_WRITE(8);
|
||||
DEFINE_TSAN_READ_WRITE(16);
|
||||
|
||||
void __tsan_read_range(void *ptr, size_t size)
|
||||
{
|
||||
check_access(ptr, size, 0);
|
||||
}
|
||||
EXPORT_SYMBOL(__tsan_read_range);
|
||||
|
||||
void __tsan_write_range(void *ptr, size_t size)
|
||||
{
|
||||
check_access(ptr, size, KCSAN_ACCESS_WRITE);
|
||||
}
|
||||
EXPORT_SYMBOL(__tsan_write_range);
|
||||
|
||||
/*
|
||||
* The below are not required by KCSAN, but can still be emitted by the
|
||||
* compiler.
|
||||
*/
|
||||
void __tsan_func_entry(void *call_pc)
|
||||
{
|
||||
}
|
||||
EXPORT_SYMBOL(__tsan_func_entry);
|
||||
void __tsan_func_exit(void)
|
||||
{
|
||||
}
|
||||
EXPORT_SYMBOL(__tsan_func_exit);
|
||||
void __tsan_init(void)
|
||||
{
|
||||
}
|
||||
EXPORT_SYMBOL(__tsan_init);
|
|
@ -0,0 +1,349 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
#include <linux/atomic.h>
|
||||
#include <linux/bsearch.h>
|
||||
#include <linux/bug.h>
|
||||
#include <linux/debugfs.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/kallsyms.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/sort.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/uaccess.h>
|
||||
|
||||
#include "kcsan.h"
|
||||
|
||||
/*
|
||||
* Statistics counters.
|
||||
*/
|
||||
static atomic_long_t counters[KCSAN_COUNTER_COUNT];
|
||||
|
||||
/*
|
||||
* Addresses for filtering functions from reporting. This list can be used as a
|
||||
* whitelist or blacklist.
|
||||
*/
|
||||
static struct {
|
||||
unsigned long *addrs; /* array of addresses */
|
||||
size_t size; /* current size */
|
||||
int used; /* number of elements used */
|
||||
bool sorted; /* if elements are sorted */
|
||||
bool whitelist; /* if list is a blacklist or whitelist */
|
||||
} report_filterlist = {
|
||||
.addrs = NULL,
|
||||
.size = 8, /* small initial size */
|
||||
.used = 0,
|
||||
.sorted = false,
|
||||
.whitelist = false, /* default is blacklist */
|
||||
};
|
||||
static DEFINE_SPINLOCK(report_filterlist_lock);
|
||||
|
||||
static const char *counter_to_name(enum kcsan_counter_id id)
|
||||
{
|
||||
switch (id) {
|
||||
case KCSAN_COUNTER_USED_WATCHPOINTS: return "used_watchpoints";
|
||||
case KCSAN_COUNTER_SETUP_WATCHPOINTS: return "setup_watchpoints";
|
||||
case KCSAN_COUNTER_DATA_RACES: return "data_races";
|
||||
case KCSAN_COUNTER_ASSERT_FAILURES: return "assert_failures";
|
||||
case KCSAN_COUNTER_NO_CAPACITY: return "no_capacity";
|
||||
case KCSAN_COUNTER_REPORT_RACES: return "report_races";
|
||||
case KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN: return "races_unknown_origin";
|
||||
case KCSAN_COUNTER_UNENCODABLE_ACCESSES: return "unencodable_accesses";
|
||||
case KCSAN_COUNTER_ENCODING_FALSE_POSITIVES: return "encoding_false_positives";
|
||||
case KCSAN_COUNTER_COUNT:
|
||||
BUG();
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
void kcsan_counter_inc(enum kcsan_counter_id id)
|
||||
{
|
||||
atomic_long_inc(&counters[id]);
|
||||
}
|
||||
|
||||
void kcsan_counter_dec(enum kcsan_counter_id id)
|
||||
{
|
||||
atomic_long_dec(&counters[id]);
|
||||
}
|
||||
|
||||
/*
|
||||
* The microbenchmark allows benchmarking KCSAN core runtime only. To run
|
||||
* multiple threads, pipe 'microbench=<iters>' from multiple tasks into the
|
||||
* debugfs file. This will not generate any conflicts, and tests fast-path only.
|
||||
*/
|
||||
static noinline void microbenchmark(unsigned long iters)
|
||||
{
|
||||
const struct kcsan_ctx ctx_save = current->kcsan_ctx;
|
||||
const bool was_enabled = READ_ONCE(kcsan_enabled);
|
||||
cycles_t cycles;
|
||||
|
||||
/* We may have been called from an atomic region; reset context. */
|
||||
memset(¤t->kcsan_ctx, 0, sizeof(current->kcsan_ctx));
|
||||
/*
|
||||
* Disable to benchmark fast-path for all accesses, and (expected
|
||||
* negligible) call into slow-path, but never set up watchpoints.
|
||||
*/
|
||||
WRITE_ONCE(kcsan_enabled, false);
|
||||
|
||||
pr_info("KCSAN: %s begin | iters: %lu\n", __func__, iters);
|
||||
|
||||
cycles = get_cycles();
|
||||
while (iters--) {
|
||||
unsigned long addr = iters & ((PAGE_SIZE << 8) - 1);
|
||||
int type = !(iters & 0x7f) ? KCSAN_ACCESS_ATOMIC :
|
||||
(!(iters & 0xf) ? KCSAN_ACCESS_WRITE : 0);
|
||||
__kcsan_check_access((void *)addr, sizeof(long), type);
|
||||
}
|
||||
cycles = get_cycles() - cycles;
|
||||
|
||||
pr_info("KCSAN: %s end | cycles: %llu\n", __func__, cycles);
|
||||
|
||||
WRITE_ONCE(kcsan_enabled, was_enabled);
|
||||
/* restore context */
|
||||
current->kcsan_ctx = ctx_save;
|
||||
}
|
||||
|
||||
/*
|
||||
* Simple test to create conflicting accesses. Write 'test=<iters>' to KCSAN's
|
||||
* debugfs file from multiple tasks to generate real conflicts and show reports.
|
||||
*/
|
||||
static long test_dummy;
|
||||
static long test_flags;
|
||||
static long test_scoped;
|
||||
static noinline void test_thread(unsigned long iters)
|
||||
{
|
||||
const long CHANGE_BITS = 0xff00ff00ff00ff00L;
|
||||
const struct kcsan_ctx ctx_save = current->kcsan_ctx;
|
||||
cycles_t cycles;
|
||||
|
||||
/* We may have been called from an atomic region; reset context. */
|
||||
memset(¤t->kcsan_ctx, 0, sizeof(current->kcsan_ctx));
|
||||
|
||||
pr_info("KCSAN: %s begin | iters: %lu\n", __func__, iters);
|
||||
pr_info("test_dummy@%px, test_flags@%px, test_scoped@%px,\n",
|
||||
&test_dummy, &test_flags, &test_scoped);
|
||||
|
||||
cycles = get_cycles();
|
||||
while (iters--) {
|
||||
/* These all should generate reports. */
|
||||
__kcsan_check_read(&test_dummy, sizeof(test_dummy));
|
||||
ASSERT_EXCLUSIVE_WRITER(test_dummy);
|
||||
ASSERT_EXCLUSIVE_ACCESS(test_dummy);
|
||||
|
||||
ASSERT_EXCLUSIVE_BITS(test_flags, ~CHANGE_BITS); /* no report */
|
||||
__kcsan_check_read(&test_flags, sizeof(test_flags)); /* no report */
|
||||
|
||||
ASSERT_EXCLUSIVE_BITS(test_flags, CHANGE_BITS); /* report */
|
||||
__kcsan_check_read(&test_flags, sizeof(test_flags)); /* no report */
|
||||
|
||||
/* not actually instrumented */
|
||||
WRITE_ONCE(test_dummy, iters); /* to observe value-change */
|
||||
__kcsan_check_write(&test_dummy, sizeof(test_dummy));
|
||||
|
||||
test_flags ^= CHANGE_BITS; /* generate value-change */
|
||||
__kcsan_check_write(&test_flags, sizeof(test_flags));
|
||||
|
||||
BUG_ON(current->kcsan_ctx.scoped_accesses.prev);
|
||||
{
|
||||
/* Should generate reports anywhere in this block. */
|
||||
ASSERT_EXCLUSIVE_WRITER_SCOPED(test_scoped);
|
||||
ASSERT_EXCLUSIVE_ACCESS_SCOPED(test_scoped);
|
||||
BUG_ON(!current->kcsan_ctx.scoped_accesses.prev);
|
||||
/* Unrelated accesses. */
|
||||
__kcsan_check_access(&cycles, sizeof(cycles), 0);
|
||||
__kcsan_check_access(&cycles, sizeof(cycles), KCSAN_ACCESS_ATOMIC);
|
||||
}
|
||||
BUG_ON(current->kcsan_ctx.scoped_accesses.prev);
|
||||
}
|
||||
cycles = get_cycles() - cycles;
|
||||
|
||||
pr_info("KCSAN: %s end | cycles: %llu\n", __func__, cycles);
|
||||
|
||||
/* restore context */
|
||||
current->kcsan_ctx = ctx_save;
|
||||
}
|
||||
|
||||
static int cmp_filterlist_addrs(const void *rhs, const void *lhs)
|
||||
{
|
||||
const unsigned long a = *(const unsigned long *)rhs;
|
||||
const unsigned long b = *(const unsigned long *)lhs;
|
||||
|
||||
return a < b ? -1 : a == b ? 0 : 1;
|
||||
}
|
||||
|
||||
bool kcsan_skip_report_debugfs(unsigned long func_addr)
|
||||
{
|
||||
unsigned long symbolsize, offset;
|
||||
unsigned long flags;
|
||||
bool ret = false;
|
||||
|
||||
if (!kallsyms_lookup_size_offset(func_addr, &symbolsize, &offset))
|
||||
return false;
|
||||
func_addr -= offset; /* Get function start */
|
||||
|
||||
spin_lock_irqsave(&report_filterlist_lock, flags);
|
||||
if (report_filterlist.used == 0)
|
||||
goto out;
|
||||
|
||||
/* Sort array if it is unsorted, and then do a binary search. */
|
||||
if (!report_filterlist.sorted) {
|
||||
sort(report_filterlist.addrs, report_filterlist.used,
|
||||
sizeof(unsigned long), cmp_filterlist_addrs, NULL);
|
||||
report_filterlist.sorted = true;
|
||||
}
|
||||
ret = !!bsearch(&func_addr, report_filterlist.addrs,
|
||||
report_filterlist.used, sizeof(unsigned long),
|
||||
cmp_filterlist_addrs);
|
||||
if (report_filterlist.whitelist)
|
||||
ret = !ret;
|
||||
|
||||
out:
|
||||
spin_unlock_irqrestore(&report_filterlist_lock, flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void set_report_filterlist_whitelist(bool whitelist)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&report_filterlist_lock, flags);
|
||||
report_filterlist.whitelist = whitelist;
|
||||
spin_unlock_irqrestore(&report_filterlist_lock, flags);
|
||||
}
|
||||
|
||||
/* Returns 0 on success, error-code otherwise. */
|
||||
static ssize_t insert_report_filterlist(const char *func)
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned long addr = kallsyms_lookup_name(func);
|
||||
ssize_t ret = 0;
|
||||
|
||||
if (!addr) {
|
||||
pr_err("KCSAN: could not find function: '%s'\n", func);
|
||||
return -ENOENT;
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&report_filterlist_lock, flags);
|
||||
|
||||
if (report_filterlist.addrs == NULL) {
|
||||
/* initial allocation */
|
||||
report_filterlist.addrs =
|
||||
kmalloc_array(report_filterlist.size,
|
||||
sizeof(unsigned long), GFP_ATOMIC);
|
||||
if (report_filterlist.addrs == NULL) {
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
} else if (report_filterlist.used == report_filterlist.size) {
|
||||
/* resize filterlist */
|
||||
size_t new_size = report_filterlist.size * 2;
|
||||
unsigned long *new_addrs =
|
||||
krealloc(report_filterlist.addrs,
|
||||
new_size * sizeof(unsigned long), GFP_ATOMIC);
|
||||
|
||||
if (new_addrs == NULL) {
|
||||
/* leave filterlist itself untouched */
|
||||
ret = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
|
||||
report_filterlist.size = new_size;
|
||||
report_filterlist.addrs = new_addrs;
|
||||
}
|
||||
|
||||
/* Note: deduplicating should be done in userspace. */
|
||||
report_filterlist.addrs[report_filterlist.used++] =
|
||||
kallsyms_lookup_name(func);
|
||||
report_filterlist.sorted = false;
|
||||
|
||||
out:
|
||||
spin_unlock_irqrestore(&report_filterlist_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int show_info(struct seq_file *file, void *v)
|
||||
{
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
/* show stats */
|
||||
seq_printf(file, "enabled: %i\n", READ_ONCE(kcsan_enabled));
|
||||
for (i = 0; i < KCSAN_COUNTER_COUNT; ++i)
|
||||
seq_printf(file, "%s: %ld\n", counter_to_name(i),
|
||||
atomic_long_read(&counters[i]));
|
||||
|
||||
/* show filter functions, and filter type */
|
||||
spin_lock_irqsave(&report_filterlist_lock, flags);
|
||||
seq_printf(file, "\n%s functions: %s\n",
|
||||
report_filterlist.whitelist ? "whitelisted" : "blacklisted",
|
||||
report_filterlist.used == 0 ? "none" : "");
|
||||
for (i = 0; i < report_filterlist.used; ++i)
|
||||
seq_printf(file, " %ps\n", (void *)report_filterlist.addrs[i]);
|
||||
spin_unlock_irqrestore(&report_filterlist_lock, flags);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int debugfs_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
return single_open(file, show_info, NULL);
|
||||
}
|
||||
|
||||
static ssize_t
|
||||
debugfs_write(struct file *file, const char __user *buf, size_t count, loff_t *off)
|
||||
{
|
||||
char kbuf[KSYM_NAME_LEN];
|
||||
char *arg;
|
||||
int read_len = count < (sizeof(kbuf) - 1) ? count : (sizeof(kbuf) - 1);
|
||||
|
||||
if (copy_from_user(kbuf, buf, read_len))
|
||||
return -EFAULT;
|
||||
kbuf[read_len] = '\0';
|
||||
arg = strstrip(kbuf);
|
||||
|
||||
if (!strcmp(arg, "on")) {
|
||||
WRITE_ONCE(kcsan_enabled, true);
|
||||
} else if (!strcmp(arg, "off")) {
|
||||
WRITE_ONCE(kcsan_enabled, false);
|
||||
} else if (!strncmp(arg, "microbench=", sizeof("microbench=") - 1)) {
|
||||
unsigned long iters;
|
||||
|
||||
if (kstrtoul(&arg[sizeof("microbench=") - 1], 0, &iters))
|
||||
return -EINVAL;
|
||||
microbenchmark(iters);
|
||||
} else if (!strncmp(arg, "test=", sizeof("test=") - 1)) {
|
||||
unsigned long iters;
|
||||
|
||||
if (kstrtoul(&arg[sizeof("test=") - 1], 0, &iters))
|
||||
return -EINVAL;
|
||||
test_thread(iters);
|
||||
} else if (!strcmp(arg, "whitelist")) {
|
||||
set_report_filterlist_whitelist(true);
|
||||
} else if (!strcmp(arg, "blacklist")) {
|
||||
set_report_filterlist_whitelist(false);
|
||||
} else if (arg[0] == '!') {
|
||||
ssize_t ret = insert_report_filterlist(&arg[1]);
|
||||
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
} else {
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static const struct file_operations debugfs_ops =
|
||||
{
|
||||
.read = seq_read,
|
||||
.open = debugfs_open,
|
||||
.write = debugfs_write,
|
||||
.release = single_release
|
||||
};
|
||||
|
||||
void __init kcsan_debugfs_init(void)
|
||||
{
|
||||
debugfs_create_file("kcsan", 0644, NULL, NULL, &debugfs_ops);
|
||||
}
|
|
@ -0,0 +1,95 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
#ifndef _KERNEL_KCSAN_ENCODING_H
|
||||
#define _KERNEL_KCSAN_ENCODING_H
|
||||
|
||||
#include <linux/bits.h>
|
||||
#include <linux/log2.h>
|
||||
#include <linux/mm.h>
|
||||
|
||||
#include "kcsan.h"
|
||||
|
||||
#define SLOT_RANGE PAGE_SIZE
|
||||
|
||||
#define INVALID_WATCHPOINT 0
|
||||
#define CONSUMED_WATCHPOINT 1
|
||||
|
||||
/*
|
||||
* The maximum useful size of accesses for which we set up watchpoints is the
|
||||
* max range of slots we check on an access.
|
||||
*/
|
||||
#define MAX_ENCODABLE_SIZE (SLOT_RANGE * (1 + KCSAN_CHECK_ADJACENT))
|
||||
|
||||
/*
|
||||
* Number of bits we use to store size info.
|
||||
*/
|
||||
#define WATCHPOINT_SIZE_BITS bits_per(MAX_ENCODABLE_SIZE)
|
||||
/*
|
||||
* This encoding for addresses discards the upper (1 for is-write + SIZE_BITS);
|
||||
* however, most 64-bit architectures do not use the full 64-bit address space.
|
||||
* Also, in order for a false positive to be observable 2 things need to happen:
|
||||
*
|
||||
* 1. different addresses but with the same encoded address race;
|
||||
* 2. and both map onto the same watchpoint slots;
|
||||
*
|
||||
* Both these are assumed to be very unlikely. However, in case it still happens
|
||||
* happens, the report logic will filter out the false positive (see report.c).
|
||||
*/
|
||||
#define WATCHPOINT_ADDR_BITS (BITS_PER_LONG-1 - WATCHPOINT_SIZE_BITS)
|
||||
|
||||
/*
|
||||
* Masks to set/retrieve the encoded data.
|
||||
*/
|
||||
#define WATCHPOINT_WRITE_MASK BIT(BITS_PER_LONG-1)
|
||||
#define WATCHPOINT_SIZE_MASK \
|
||||
GENMASK(BITS_PER_LONG-2, BITS_PER_LONG-2 - WATCHPOINT_SIZE_BITS)
|
||||
#define WATCHPOINT_ADDR_MASK \
|
||||
GENMASK(BITS_PER_LONG-3 - WATCHPOINT_SIZE_BITS, 0)
|
||||
|
||||
static inline bool check_encodable(unsigned long addr, size_t size)
|
||||
{
|
||||
return size <= MAX_ENCODABLE_SIZE;
|
||||
}
|
||||
|
||||
static inline long
|
||||
encode_watchpoint(unsigned long addr, size_t size, bool is_write)
|
||||
{
|
||||
return (long)((is_write ? WATCHPOINT_WRITE_MASK : 0) |
|
||||
(size << WATCHPOINT_ADDR_BITS) |
|
||||
(addr & WATCHPOINT_ADDR_MASK));
|
||||
}
|
||||
|
||||
static __always_inline bool decode_watchpoint(long watchpoint,
|
||||
unsigned long *addr_masked,
|
||||
size_t *size,
|
||||
bool *is_write)
|
||||
{
|
||||
if (watchpoint == INVALID_WATCHPOINT ||
|
||||
watchpoint == CONSUMED_WATCHPOINT)
|
||||
return false;
|
||||
|
||||
*addr_masked = (unsigned long)watchpoint & WATCHPOINT_ADDR_MASK;
|
||||
*size = ((unsigned long)watchpoint & WATCHPOINT_SIZE_MASK) >> WATCHPOINT_ADDR_BITS;
|
||||
*is_write = !!((unsigned long)watchpoint & WATCHPOINT_WRITE_MASK);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return watchpoint slot for an address.
|
||||
*/
|
||||
static __always_inline int watchpoint_slot(unsigned long addr)
|
||||
{
|
||||
return (addr / PAGE_SIZE) % CONFIG_KCSAN_NUM_WATCHPOINTS;
|
||||
}
|
||||
|
||||
static __always_inline bool matching_access(unsigned long addr1, size_t size1,
|
||||
unsigned long addr2, size_t size2)
|
||||
{
|
||||
unsigned long end_range1 = addr1 + size1 - 1;
|
||||
unsigned long end_range2 = addr2 + size2 - 1;
|
||||
|
||||
return addr1 <= end_range2 && addr2 <= end_range1;
|
||||
}
|
||||
|
||||
#endif /* _KERNEL_KCSAN_ENCODING_H */
|
|
@ -0,0 +1,142 @@
|
|||
/* SPDX-License-Identifier: GPL-2.0 */
|
||||
|
||||
/*
|
||||
* The Kernel Concurrency Sanitizer (KCSAN) infrastructure. For more info please
|
||||
* see Documentation/dev-tools/kcsan.rst.
|
||||
*/
|
||||
|
||||
#ifndef _KERNEL_KCSAN_KCSAN_H
|
||||
#define _KERNEL_KCSAN_KCSAN_H
|
||||
|
||||
#include <linux/kcsan.h>
|
||||
|
||||
/* The number of adjacent watchpoints to check. */
|
||||
#define KCSAN_CHECK_ADJACENT 1
|
||||
#define NUM_SLOTS (1 + 2*KCSAN_CHECK_ADJACENT)
|
||||
|
||||
extern unsigned int kcsan_udelay_task;
|
||||
extern unsigned int kcsan_udelay_interrupt;
|
||||
|
||||
/*
|
||||
* Globally enable and disable KCSAN.
|
||||
*/
|
||||
extern bool kcsan_enabled;
|
||||
|
||||
/*
|
||||
* Initialize debugfs file.
|
||||
*/
|
||||
void kcsan_debugfs_init(void);
|
||||
|
||||
enum kcsan_counter_id {
|
||||
/*
|
||||
* Number of watchpoints currently in use.
|
||||
*/
|
||||
KCSAN_COUNTER_USED_WATCHPOINTS,
|
||||
|
||||
/*
|
||||
* Total number of watchpoints set up.
|
||||
*/
|
||||
KCSAN_COUNTER_SETUP_WATCHPOINTS,
|
||||
|
||||
/*
|
||||
* Total number of data races.
|
||||
*/
|
||||
KCSAN_COUNTER_DATA_RACES,
|
||||
|
||||
/*
|
||||
* Total number of ASSERT failures due to races. If the observed race is
|
||||
* due to two conflicting ASSERT type accesses, then both will be
|
||||
* counted.
|
||||
*/
|
||||
KCSAN_COUNTER_ASSERT_FAILURES,
|
||||
|
||||
/*
|
||||
* Number of times no watchpoints were available.
|
||||
*/
|
||||
KCSAN_COUNTER_NO_CAPACITY,
|
||||
|
||||
/*
|
||||
* A thread checking a watchpoint raced with another checking thread;
|
||||
* only one will be reported.
|
||||
*/
|
||||
KCSAN_COUNTER_REPORT_RACES,
|
||||
|
||||
/*
|
||||
* Observed data value change, but writer thread unknown.
|
||||
*/
|
||||
KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN,
|
||||
|
||||
/*
|
||||
* The access cannot be encoded to a valid watchpoint.
|
||||
*/
|
||||
KCSAN_COUNTER_UNENCODABLE_ACCESSES,
|
||||
|
||||
/*
|
||||
* Watchpoint encoding caused a watchpoint to fire on mismatching
|
||||
* accesses.
|
||||
*/
|
||||
KCSAN_COUNTER_ENCODING_FALSE_POSITIVES,
|
||||
|
||||
KCSAN_COUNTER_COUNT, /* number of counters */
|
||||
};
|
||||
|
||||
/*
|
||||
* Increment/decrement counter with given id; avoid calling these in fast-path.
|
||||
*/
|
||||
extern void kcsan_counter_inc(enum kcsan_counter_id id);
|
||||
extern void kcsan_counter_dec(enum kcsan_counter_id id);
|
||||
|
||||
/*
|
||||
* Returns true if data races in the function symbol that maps to func_addr
|
||||
* (offsets are ignored) should *not* be reported.
|
||||
*/
|
||||
extern bool kcsan_skip_report_debugfs(unsigned long func_addr);
|
||||
|
||||
/*
|
||||
* Value-change states.
|
||||
*/
|
||||
enum kcsan_value_change {
|
||||
/*
|
||||
* Did not observe a value-change, however, it is valid to report the
|
||||
* race, depending on preferences.
|
||||
*/
|
||||
KCSAN_VALUE_CHANGE_MAYBE,
|
||||
|
||||
/*
|
||||
* Did not observe a value-change, and it is invalid to report the race.
|
||||
*/
|
||||
KCSAN_VALUE_CHANGE_FALSE,
|
||||
|
||||
/*
|
||||
* The value was observed to change, and the race should be reported.
|
||||
*/
|
||||
KCSAN_VALUE_CHANGE_TRUE,
|
||||
};
|
||||
|
||||
enum kcsan_report_type {
|
||||
/*
|
||||
* The thread that set up the watchpoint and briefly stalled was
|
||||
* signalled that another thread triggered the watchpoint.
|
||||
*/
|
||||
KCSAN_REPORT_RACE_SIGNAL,
|
||||
|
||||
/*
|
||||
* A thread found and consumed a matching watchpoint.
|
||||
*/
|
||||
KCSAN_REPORT_CONSUMED_WATCHPOINT,
|
||||
|
||||
/*
|
||||
* No other thread was observed to race with the access, but the data
|
||||
* value before and after the stall differs.
|
||||
*/
|
||||
KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
|
||||
};
|
||||
|
||||
/*
|
||||
* Print a race report from thread that encountered the race.
|
||||
*/
|
||||
extern void kcsan_report(const volatile void *ptr, size_t size, int access_type,
|
||||
enum kcsan_value_change value_change,
|
||||
enum kcsan_report_type type, int watchpoint_idx);
|
||||
|
||||
#endif /* _KERNEL_KCSAN_KCSAN_H */
|
|
@ -0,0 +1,634 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
#include <linux/debug_locks.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/lockdep.h>
|
||||
#include <linux/preempt.h>
|
||||
#include <linux/printk.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/stacktrace.h>
|
||||
|
||||
#include "kcsan.h"
|
||||
#include "encoding.h"
|
||||
|
||||
/*
|
||||
* Max. number of stack entries to show in the report.
|
||||
*/
|
||||
#define NUM_STACK_ENTRIES 64
|
||||
|
||||
/* Common access info. */
|
||||
struct access_info {
|
||||
const volatile void *ptr;
|
||||
size_t size;
|
||||
int access_type;
|
||||
int task_pid;
|
||||
int cpu_id;
|
||||
};
|
||||
|
||||
/*
|
||||
* Other thread info: communicated from other racing thread to thread that set
|
||||
* up the watchpoint, which then prints the complete report atomically.
|
||||
*/
|
||||
struct other_info {
|
||||
struct access_info ai;
|
||||
unsigned long stack_entries[NUM_STACK_ENTRIES];
|
||||
int num_stack_entries;
|
||||
|
||||
/*
|
||||
* Optionally pass @current. Typically we do not need to pass @current
|
||||
* via @other_info since just @task_pid is sufficient. Passing @current
|
||||
* has additional overhead.
|
||||
*
|
||||
* To safely pass @current, we must either use get_task_struct/
|
||||
* put_task_struct, or stall the thread that populated @other_info.
|
||||
*
|
||||
* We cannot rely on get_task_struct/put_task_struct in case
|
||||
* release_report() races with a task being released, and would have to
|
||||
* free it in release_report(). This may result in deadlock if we want
|
||||
* to use KCSAN on the allocators.
|
||||
*
|
||||
* Since we also want to reliably print held locks for
|
||||
* CONFIG_KCSAN_VERBOSE, the current implementation stalls the thread
|
||||
* that populated @other_info until it has been consumed.
|
||||
*/
|
||||
struct task_struct *task;
|
||||
};
|
||||
|
||||
/*
|
||||
* To never block any producers of struct other_info, we need as many elements
|
||||
* as we have watchpoints (upper bound on concurrent races to report).
|
||||
*/
|
||||
static struct other_info other_infos[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
|
||||
|
||||
/*
|
||||
* Information about reported races; used to rate limit reporting.
|
||||
*/
|
||||
struct report_time {
|
||||
/*
|
||||
* The last time the race was reported.
|
||||
*/
|
||||
unsigned long time;
|
||||
|
||||
/*
|
||||
* The frames of the 2 threads; if only 1 thread is known, one frame
|
||||
* will be 0.
|
||||
*/
|
||||
unsigned long frame1;
|
||||
unsigned long frame2;
|
||||
};
|
||||
|
||||
/*
|
||||
* Since we also want to be able to debug allocators with KCSAN, to avoid
|
||||
* deadlock, report_times cannot be dynamically resized with krealloc in
|
||||
* rate_limit_report.
|
||||
*
|
||||
* Therefore, we use a fixed-size array, which at most will occupy a page. This
|
||||
* still adequately rate limits reports, assuming that a) number of unique data
|
||||
* races is not excessive, and b) occurrence of unique races within the
|
||||
* same time window is limited.
|
||||
*/
|
||||
#define REPORT_TIMES_MAX (PAGE_SIZE / sizeof(struct report_time))
|
||||
#define REPORT_TIMES_SIZE \
|
||||
(CONFIG_KCSAN_REPORT_ONCE_IN_MS > REPORT_TIMES_MAX ? \
|
||||
REPORT_TIMES_MAX : \
|
||||
CONFIG_KCSAN_REPORT_ONCE_IN_MS)
|
||||
static struct report_time report_times[REPORT_TIMES_SIZE];
|
||||
|
||||
/*
|
||||
* Spinlock serializing report generation, and access to @other_infos. Although
|
||||
* it could make sense to have a finer-grained locking story for @other_infos,
|
||||
* report generation needs to be serialized either way, so not much is gained.
|
||||
*/
|
||||
static DEFINE_RAW_SPINLOCK(report_lock);
|
||||
|
||||
/*
|
||||
* Checks if the race identified by thread frames frame1 and frame2 has
|
||||
* been reported since (now - KCSAN_REPORT_ONCE_IN_MS).
|
||||
*/
|
||||
static bool rate_limit_report(unsigned long frame1, unsigned long frame2)
|
||||
{
|
||||
struct report_time *use_entry = &report_times[0];
|
||||
unsigned long invalid_before;
|
||||
int i;
|
||||
|
||||
BUILD_BUG_ON(CONFIG_KCSAN_REPORT_ONCE_IN_MS != 0 && REPORT_TIMES_SIZE == 0);
|
||||
|
||||
if (CONFIG_KCSAN_REPORT_ONCE_IN_MS == 0)
|
||||
return false;
|
||||
|
||||
invalid_before = jiffies - msecs_to_jiffies(CONFIG_KCSAN_REPORT_ONCE_IN_MS);
|
||||
|
||||
/* Check if a matching race report exists. */
|
||||
for (i = 0; i < REPORT_TIMES_SIZE; ++i) {
|
||||
struct report_time *rt = &report_times[i];
|
||||
|
||||
/*
|
||||
* Must always select an entry for use to store info as we
|
||||
* cannot resize report_times; at the end of the scan, use_entry
|
||||
* will be the oldest entry, which ideally also happened before
|
||||
* KCSAN_REPORT_ONCE_IN_MS ago.
|
||||
*/
|
||||
if (time_before(rt->time, use_entry->time))
|
||||
use_entry = rt;
|
||||
|
||||
/*
|
||||
* Initially, no need to check any further as this entry as well
|
||||
* as following entries have never been used.
|
||||
*/
|
||||
if (rt->time == 0)
|
||||
break;
|
||||
|
||||
/* Check if entry expired. */
|
||||
if (time_before(rt->time, invalid_before))
|
||||
continue; /* before KCSAN_REPORT_ONCE_IN_MS ago */
|
||||
|
||||
/* Reported recently, check if race matches. */
|
||||
if ((rt->frame1 == frame1 && rt->frame2 == frame2) ||
|
||||
(rt->frame1 == frame2 && rt->frame2 == frame1))
|
||||
return true;
|
||||
}
|
||||
|
||||
use_entry->time = jiffies;
|
||||
use_entry->frame1 = frame1;
|
||||
use_entry->frame2 = frame2;
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Special rules to skip reporting.
|
||||
*/
|
||||
static bool
|
||||
skip_report(enum kcsan_value_change value_change, unsigned long top_frame)
|
||||
{
|
||||
/* Should never get here if value_change==FALSE. */
|
||||
WARN_ON_ONCE(value_change == KCSAN_VALUE_CHANGE_FALSE);
|
||||
|
||||
/*
|
||||
* The first call to skip_report always has value_change==TRUE, since we
|
||||
* cannot know the value written of an instrumented access. For the 2nd
|
||||
* call there are 6 cases with CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY:
|
||||
*
|
||||
* 1. read watchpoint, conflicting write (value_change==TRUE): report;
|
||||
* 2. read watchpoint, conflicting write (value_change==MAYBE): skip;
|
||||
* 3. write watchpoint, conflicting write (value_change==TRUE): report;
|
||||
* 4. write watchpoint, conflicting write (value_change==MAYBE): skip;
|
||||
* 5. write watchpoint, conflicting read (value_change==MAYBE): skip;
|
||||
* 6. write watchpoint, conflicting read (value_change==TRUE): report;
|
||||
*
|
||||
* Cases 1-4 are intuitive and expected; case 5 ensures we do not report
|
||||
* data races where the write may have rewritten the same value; case 6
|
||||
* is possible either if the size is larger than what we check value
|
||||
* changes for or the access type is KCSAN_ACCESS_ASSERT.
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) &&
|
||||
value_change == KCSAN_VALUE_CHANGE_MAYBE) {
|
||||
/*
|
||||
* The access is a write, but the data value did not change.
|
||||
*
|
||||
* We opt-out of this filter for certain functions at request of
|
||||
* maintainers.
|
||||
*/
|
||||
char buf[64];
|
||||
int len = scnprintf(buf, sizeof(buf), "%ps", (void *)top_frame);
|
||||
|
||||
if (!strnstr(buf, "rcu_", len) &&
|
||||
!strnstr(buf, "_rcu", len) &&
|
||||
!strnstr(buf, "_srcu", len))
|
||||
return true;
|
||||
}
|
||||
|
||||
return kcsan_skip_report_debugfs(top_frame);
|
||||
}
|
||||
|
||||
static const char *get_access_type(int type)
|
||||
{
|
||||
if (type & KCSAN_ACCESS_ASSERT) {
|
||||
if (type & KCSAN_ACCESS_SCOPED) {
|
||||
if (type & KCSAN_ACCESS_WRITE)
|
||||
return "assert no accesses (scoped)";
|
||||
else
|
||||
return "assert no writes (scoped)";
|
||||
} else {
|
||||
if (type & KCSAN_ACCESS_WRITE)
|
||||
return "assert no accesses";
|
||||
else
|
||||
return "assert no writes";
|
||||
}
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case 0:
|
||||
return "read";
|
||||
case KCSAN_ACCESS_ATOMIC:
|
||||
return "read (marked)";
|
||||
case KCSAN_ACCESS_WRITE:
|
||||
return "write";
|
||||
case KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
||||
return "write (marked)";
|
||||
case KCSAN_ACCESS_SCOPED:
|
||||
return "read (scoped)";
|
||||
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_ATOMIC:
|
||||
return "read (marked, scoped)";
|
||||
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE:
|
||||
return "write (scoped)";
|
||||
case KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC:
|
||||
return "write (marked, scoped)";
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
}
|
||||
|
||||
static const char *get_bug_type(int type)
|
||||
{
|
||||
return (type & KCSAN_ACCESS_ASSERT) != 0 ? "assert: race" : "data-race";
|
||||
}
|
||||
|
||||
/* Return thread description: in task or interrupt. */
|
||||
static const char *get_thread_desc(int task_id)
|
||||
{
|
||||
if (task_id != -1) {
|
||||
static char buf[32]; /* safe: protected by report_lock */
|
||||
|
||||
snprintf(buf, sizeof(buf), "task %i", task_id);
|
||||
return buf;
|
||||
}
|
||||
return "interrupt";
|
||||
}
|
||||
|
||||
/* Helper to skip KCSAN-related functions in stack-trace. */
|
||||
static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries)
|
||||
{
|
||||
char buf[64];
|
||||
char *cur;
|
||||
int len, skip;
|
||||
|
||||
for (skip = 0; skip < num_entries; ++skip) {
|
||||
len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skip]);
|
||||
|
||||
/* Never show tsan_* or {read,write}_once_size. */
|
||||
if (strnstr(buf, "tsan_", len) ||
|
||||
strnstr(buf, "_once_size", len))
|
||||
continue;
|
||||
|
||||
cur = strnstr(buf, "kcsan_", len);
|
||||
if (cur) {
|
||||
cur += sizeof("kcsan_") - 1;
|
||||
if (strncmp(cur, "test", sizeof("test") - 1))
|
||||
continue; /* KCSAN runtime function. */
|
||||
/* KCSAN related test. */
|
||||
}
|
||||
|
||||
/*
|
||||
* No match for runtime functions -- @skip entries to skip to
|
||||
* get to first frame of interest.
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
return skip;
|
||||
}
|
||||
|
||||
/* Compares symbolized strings of addr1 and addr2. */
|
||||
static int sym_strcmp(void *addr1, void *addr2)
|
||||
{
|
||||
char buf1[64];
|
||||
char buf2[64];
|
||||
|
||||
snprintf(buf1, sizeof(buf1), "%pS", addr1);
|
||||
snprintf(buf2, sizeof(buf2), "%pS", addr2);
|
||||
|
||||
return strncmp(buf1, buf2, sizeof(buf1));
|
||||
}
|
||||
|
||||
static void print_verbose_info(struct task_struct *task)
|
||||
{
|
||||
if (!task)
|
||||
return;
|
||||
|
||||
pr_err("\n");
|
||||
debug_show_held_locks(task);
|
||||
print_irqtrace_events(task);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns true if a report was generated, false otherwise.
|
||||
*/
|
||||
static bool print_report(enum kcsan_value_change value_change,
|
||||
enum kcsan_report_type type,
|
||||
const struct access_info *ai,
|
||||
const struct other_info *other_info)
|
||||
{
|
||||
unsigned long stack_entries[NUM_STACK_ENTRIES] = { 0 };
|
||||
int num_stack_entries = stack_trace_save(stack_entries, NUM_STACK_ENTRIES, 1);
|
||||
int skipnr = get_stack_skipnr(stack_entries, num_stack_entries);
|
||||
unsigned long this_frame = stack_entries[skipnr];
|
||||
unsigned long other_frame = 0;
|
||||
int other_skipnr = 0; /* silence uninit warnings */
|
||||
|
||||
/*
|
||||
* Must check report filter rules before starting to print.
|
||||
*/
|
||||
if (skip_report(KCSAN_VALUE_CHANGE_TRUE, stack_entries[skipnr]))
|
||||
return false;
|
||||
|
||||
if (type == KCSAN_REPORT_RACE_SIGNAL) {
|
||||
other_skipnr = get_stack_skipnr(other_info->stack_entries,
|
||||
other_info->num_stack_entries);
|
||||
other_frame = other_info->stack_entries[other_skipnr];
|
||||
|
||||
/* @value_change is only known for the other thread */
|
||||
if (skip_report(value_change, other_frame))
|
||||
return false;
|
||||
}
|
||||
|
||||
if (rate_limit_report(this_frame, other_frame))
|
||||
return false;
|
||||
|
||||
/* Print report header. */
|
||||
pr_err("==================================================================\n");
|
||||
switch (type) {
|
||||
case KCSAN_REPORT_RACE_SIGNAL: {
|
||||
int cmp;
|
||||
|
||||
/*
|
||||
* Order functions lexographically for consistent bug titles.
|
||||
* Do not print offset of functions to keep title short.
|
||||
*/
|
||||
cmp = sym_strcmp((void *)other_frame, (void *)this_frame);
|
||||
pr_err("BUG: KCSAN: %s in %ps / %ps\n",
|
||||
get_bug_type(ai->access_type | other_info->ai.access_type),
|
||||
(void *)(cmp < 0 ? other_frame : this_frame),
|
||||
(void *)(cmp < 0 ? this_frame : other_frame));
|
||||
} break;
|
||||
|
||||
case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
|
||||
pr_err("BUG: KCSAN: %s in %pS\n", get_bug_type(ai->access_type),
|
||||
(void *)this_frame);
|
||||
break;
|
||||
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
|
||||
pr_err("\n");
|
||||
|
||||
/* Print information about the racing accesses. */
|
||||
switch (type) {
|
||||
case KCSAN_REPORT_RACE_SIGNAL:
|
||||
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
||||
get_access_type(other_info->ai.access_type), other_info->ai.ptr,
|
||||
other_info->ai.size, get_thread_desc(other_info->ai.task_pid),
|
||||
other_info->ai.cpu_id);
|
||||
|
||||
/* Print the other thread's stack trace. */
|
||||
stack_trace_print(other_info->stack_entries + other_skipnr,
|
||||
other_info->num_stack_entries - other_skipnr,
|
||||
0);
|
||||
|
||||
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
||||
print_verbose_info(other_info->task);
|
||||
|
||||
pr_err("\n");
|
||||
pr_err("%s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
||||
get_access_type(ai->access_type), ai->ptr, ai->size,
|
||||
get_thread_desc(ai->task_pid), ai->cpu_id);
|
||||
break;
|
||||
|
||||
case KCSAN_REPORT_RACE_UNKNOWN_ORIGIN:
|
||||
pr_err("race at unknown origin, with %s to 0x%px of %zu bytes by %s on cpu %i:\n",
|
||||
get_access_type(ai->access_type), ai->ptr, ai->size,
|
||||
get_thread_desc(ai->task_pid), ai->cpu_id);
|
||||
break;
|
||||
|
||||
default:
|
||||
BUG();
|
||||
}
|
||||
/* Print stack trace of this thread. */
|
||||
stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr,
|
||||
0);
|
||||
|
||||
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
||||
print_verbose_info(current);
|
||||
|
||||
/* Print report footer. */
|
||||
pr_err("\n");
|
||||
pr_err("Reported by Kernel Concurrency Sanitizer on:\n");
|
||||
dump_stack_print_info(KERN_DEFAULT);
|
||||
pr_err("==================================================================\n");
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void release_report(unsigned long *flags, struct other_info *other_info)
|
||||
{
|
||||
if (other_info)
|
||||
/*
|
||||
* Use size to denote valid/invalid, since KCSAN entirely
|
||||
* ignores 0-sized accesses.
|
||||
*/
|
||||
other_info->ai.size = 0;
|
||||
|
||||
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* Sets @other_info->task and awaits consumption of @other_info.
|
||||
*
|
||||
* Precondition: report_lock is held.
|
||||
* Postcondition: report_lock is held.
|
||||
*/
|
||||
static void set_other_info_task_blocking(unsigned long *flags,
|
||||
const struct access_info *ai,
|
||||
struct other_info *other_info)
|
||||
{
|
||||
/*
|
||||
* We may be instrumenting a code-path where current->state is already
|
||||
* something other than TASK_RUNNING.
|
||||
*/
|
||||
const bool is_running = current->state == TASK_RUNNING;
|
||||
/*
|
||||
* To avoid deadlock in case we are in an interrupt here and this is a
|
||||
* race with a task on the same CPU (KCSAN_INTERRUPT_WATCHER), provide a
|
||||
* timeout to ensure this works in all contexts.
|
||||
*
|
||||
* Await approximately the worst case delay of the reporting thread (if
|
||||
* we are not interrupted).
|
||||
*/
|
||||
int timeout = max(kcsan_udelay_task, kcsan_udelay_interrupt);
|
||||
|
||||
other_info->task = current;
|
||||
do {
|
||||
if (is_running) {
|
||||
/*
|
||||
* Let lockdep know the real task is sleeping, to print
|
||||
* the held locks (recall we turned lockdep off, so
|
||||
* locking/unlocking @report_lock won't be recorded).
|
||||
*/
|
||||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
}
|
||||
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
||||
/*
|
||||
* We cannot call schedule() since we also cannot reliably
|
||||
* determine if sleeping here is permitted -- see in_atomic().
|
||||
*/
|
||||
|
||||
udelay(1);
|
||||
raw_spin_lock_irqsave(&report_lock, *flags);
|
||||
if (timeout-- < 0) {
|
||||
/*
|
||||
* Abort. Reset @other_info->task to NULL, since it
|
||||
* appears the other thread is still going to consume
|
||||
* it. It will result in no verbose info printed for
|
||||
* this task.
|
||||
*/
|
||||
other_info->task = NULL;
|
||||
break;
|
||||
}
|
||||
/*
|
||||
* If invalid, or @ptr nor @current matches, then @other_info
|
||||
* has been consumed and we may continue. If not, retry.
|
||||
*/
|
||||
} while (other_info->ai.size && other_info->ai.ptr == ai->ptr &&
|
||||
other_info->task == current);
|
||||
if (is_running)
|
||||
set_current_state(TASK_RUNNING);
|
||||
}
|
||||
|
||||
/* Populate @other_info; requires that the provided @other_info not in use. */
|
||||
static void prepare_report_producer(unsigned long *flags,
|
||||
const struct access_info *ai,
|
||||
struct other_info *other_info)
|
||||
{
|
||||
raw_spin_lock_irqsave(&report_lock, *flags);
|
||||
|
||||
/*
|
||||
* The same @other_infos entry cannot be used concurrently, because
|
||||
* there is a one-to-one mapping to watchpoint slots (@watchpoints in
|
||||
* core.c), and a watchpoint is only released for reuse after reporting
|
||||
* is done by the consumer of @other_info. Therefore, it is impossible
|
||||
* for another concurrent prepare_report_producer() to set the same
|
||||
* @other_info, and are guaranteed exclusivity for the @other_infos
|
||||
* entry pointed to by @other_info.
|
||||
*
|
||||
* To check this property holds, size should never be non-zero here,
|
||||
* because every consumer of struct other_info resets size to 0 in
|
||||
* release_report().
|
||||
*/
|
||||
WARN_ON(other_info->ai.size);
|
||||
|
||||
other_info->ai = *ai;
|
||||
other_info->num_stack_entries = stack_trace_save(other_info->stack_entries, NUM_STACK_ENTRIES, 2);
|
||||
|
||||
if (IS_ENABLED(CONFIG_KCSAN_VERBOSE))
|
||||
set_other_info_task_blocking(flags, ai, other_info);
|
||||
|
||||
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
||||
}
|
||||
|
||||
/* Awaits producer to fill @other_info and then returns. */
|
||||
static bool prepare_report_consumer(unsigned long *flags,
|
||||
const struct access_info *ai,
|
||||
struct other_info *other_info)
|
||||
{
|
||||
|
||||
raw_spin_lock_irqsave(&report_lock, *flags);
|
||||
while (!other_info->ai.size) { /* Await valid @other_info. */
|
||||
raw_spin_unlock_irqrestore(&report_lock, *flags);
|
||||
cpu_relax();
|
||||
raw_spin_lock_irqsave(&report_lock, *flags);
|
||||
}
|
||||
|
||||
/* Should always have a matching access based on watchpoint encoding. */
|
||||
if (WARN_ON(!matching_access((unsigned long)other_info->ai.ptr & WATCHPOINT_ADDR_MASK, other_info->ai.size,
|
||||
(unsigned long)ai->ptr & WATCHPOINT_ADDR_MASK, ai->size)))
|
||||
goto discard;
|
||||
|
||||
if (!matching_access((unsigned long)other_info->ai.ptr, other_info->ai.size,
|
||||
(unsigned long)ai->ptr, ai->size)) {
|
||||
/*
|
||||
* If the actual accesses to not match, this was a false
|
||||
* positive due to watchpoint encoding.
|
||||
*/
|
||||
kcsan_counter_inc(KCSAN_COUNTER_ENCODING_FALSE_POSITIVES);
|
||||
goto discard;
|
||||
}
|
||||
|
||||
return true;
|
||||
|
||||
discard:
|
||||
release_report(flags, other_info);
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Depending on the report type either sets @other_info and returns false, or
|
||||
* awaits @other_info and returns true. If @other_info is not required for the
|
||||
* report type, simply acquires @report_lock and returns true.
|
||||
*/
|
||||
static noinline bool prepare_report(unsigned long *flags,
|
||||
enum kcsan_report_type type,
|
||||
const struct access_info *ai,
|
||||
struct other_info *other_info)
|
||||
{
|
||||
switch (type) {
|
||||
case KCSAN_REPORT_CONSUMED_WATCHPOINT:
|
||||
prepare_report_producer(flags, ai, other_info);
|
||||
return false;
|
||||
case KCSAN_REPORT_RACE_SIGNAL:
|
||||
return prepare_report_consumer(flags, ai, other_info);
|
||||
default:
|
||||
/* @other_info not required; just acquire @report_lock. */
|
||||
raw_spin_lock_irqsave(&report_lock, *flags);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void kcsan_report(const volatile void *ptr, size_t size, int access_type,
|
||||
enum kcsan_value_change value_change,
|
||||
enum kcsan_report_type type, int watchpoint_idx)
|
||||
{
|
||||
unsigned long flags = 0;
|
||||
const struct access_info ai = {
|
||||
.ptr = ptr,
|
||||
.size = size,
|
||||
.access_type = access_type,
|
||||
.task_pid = in_task() ? task_pid_nr(current) : -1,
|
||||
.cpu_id = raw_smp_processor_id()
|
||||
};
|
||||
struct other_info *other_info = type == KCSAN_REPORT_RACE_UNKNOWN_ORIGIN
|
||||
? NULL : &other_infos[watchpoint_idx];
|
||||
|
||||
kcsan_disable_current();
|
||||
if (WARN_ON(watchpoint_idx < 0 || watchpoint_idx >= ARRAY_SIZE(other_infos)))
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* With TRACE_IRQFLAGS, lockdep's IRQ trace state becomes corrupted if
|
||||
* we do not turn off lockdep here; this could happen due to recursion
|
||||
* into lockdep via KCSAN if we detect a race in utilities used by
|
||||
* lockdep.
|
||||
*/
|
||||
lockdep_off();
|
||||
|
||||
if (prepare_report(&flags, type, &ai, other_info)) {
|
||||
/*
|
||||
* Never report if value_change is FALSE, only if we it is
|
||||
* either TRUE or MAYBE. In case of MAYBE, further filtering may
|
||||
* be done once we know the full stack trace in print_report().
|
||||
*/
|
||||
bool reported = value_change != KCSAN_VALUE_CHANGE_FALSE &&
|
||||
print_report(value_change, type, &ai, other_info);
|
||||
|
||||
if (reported && panic_on_warn)
|
||||
panic("panic_on_warn set ...\n");
|
||||
|
||||
release_report(&flags, other_info);
|
||||
}
|
||||
|
||||
lockdep_on();
|
||||
out:
|
||||
kcsan_enable_current();
|
||||
}
|
|
@ -0,0 +1,131 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/printk.h>
|
||||
#include <linux/random.h>
|
||||
#include <linux/types.h>
|
||||
|
||||
#include "encoding.h"
|
||||
|
||||
#define ITERS_PER_TEST 2000
|
||||
|
||||
/* Test requirements. */
|
||||
static bool test_requires(void)
|
||||
{
|
||||
/* random should be initialized for the below tests */
|
||||
return prandom_u32() + prandom_u32() != 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Test watchpoint encode and decode: check that encoding some access's info,
|
||||
* and then subsequent decode preserves the access's info.
|
||||
*/
|
||||
static bool test_encode_decode(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ITERS_PER_TEST; ++i) {
|
||||
size_t size = prandom_u32_max(MAX_ENCODABLE_SIZE) + 1;
|
||||
bool is_write = !!prandom_u32_max(2);
|
||||
unsigned long addr;
|
||||
|
||||
prandom_bytes(&addr, sizeof(addr));
|
||||
if (WARN_ON(!check_encodable(addr, size)))
|
||||
return false;
|
||||
|
||||
/* Encode and decode */
|
||||
{
|
||||
const long encoded_watchpoint =
|
||||
encode_watchpoint(addr, size, is_write);
|
||||
unsigned long verif_masked_addr;
|
||||
size_t verif_size;
|
||||
bool verif_is_write;
|
||||
|
||||
/* Check special watchpoints */
|
||||
if (WARN_ON(decode_watchpoint(
|
||||
INVALID_WATCHPOINT, &verif_masked_addr,
|
||||
&verif_size, &verif_is_write)))
|
||||
return false;
|
||||
if (WARN_ON(decode_watchpoint(
|
||||
CONSUMED_WATCHPOINT, &verif_masked_addr,
|
||||
&verif_size, &verif_is_write)))
|
||||
return false;
|
||||
|
||||
/* Check decoding watchpoint returns same data */
|
||||
if (WARN_ON(!decode_watchpoint(
|
||||
encoded_watchpoint, &verif_masked_addr,
|
||||
&verif_size, &verif_is_write)))
|
||||
return false;
|
||||
if (WARN_ON(verif_masked_addr !=
|
||||
(addr & WATCHPOINT_ADDR_MASK)))
|
||||
goto fail;
|
||||
if (WARN_ON(verif_size != size))
|
||||
goto fail;
|
||||
if (WARN_ON(is_write != verif_is_write))
|
||||
goto fail;
|
||||
|
||||
continue;
|
||||
fail:
|
||||
pr_err("%s fail: %s %zu bytes @ %lx -> encoded: %lx -> %s %zu bytes @ %lx\n",
|
||||
__func__, is_write ? "write" : "read", size,
|
||||
addr, encoded_watchpoint,
|
||||
verif_is_write ? "write" : "read", verif_size,
|
||||
verif_masked_addr);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Test access matching function. */
|
||||
static bool test_matching_access(void)
|
||||
{
|
||||
if (WARN_ON(!matching_access(10, 1, 10, 1)))
|
||||
return false;
|
||||
if (WARN_ON(!matching_access(10, 2, 11, 1)))
|
||||
return false;
|
||||
if (WARN_ON(!matching_access(10, 1, 9, 2)))
|
||||
return false;
|
||||
if (WARN_ON(matching_access(10, 1, 11, 1)))
|
||||
return false;
|
||||
if (WARN_ON(matching_access(9, 1, 10, 1)))
|
||||
return false;
|
||||
|
||||
/*
|
||||
* An access of size 0 could match another access, as demonstrated here.
|
||||
* Rather than add more comparisons to 'matching_access()', which would
|
||||
* end up in the fast-path for *all* checks, check_access() simply
|
||||
* returns for all accesses of size 0.
|
||||
*/
|
||||
if (WARN_ON(!matching_access(8, 8, 12, 0)))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int __init kcsan_selftest(void)
|
||||
{
|
||||
int passed = 0;
|
||||
int total = 0;
|
||||
|
||||
#define RUN_TEST(do_test) \
|
||||
do { \
|
||||
++total; \
|
||||
if (do_test()) \
|
||||
++passed; \
|
||||
else \
|
||||
pr_err("KCSAN selftest: " #do_test " failed"); \
|
||||
} while (0)
|
||||
|
||||
RUN_TEST(test_requires);
|
||||
RUN_TEST(test_encode_decode);
|
||||
RUN_TEST(test_matching_access);
|
||||
|
||||
pr_info("KCSAN selftest: %d/%d tests passed\n", passed, total);
|
||||
if (passed != total)
|
||||
panic("KCSAN selftests failed");
|
||||
return 0;
|
||||
}
|
||||
postcore_initcall(kcsan_selftest);
|
|
@ -5,6 +5,9 @@ KCOV_INSTRUMENT := n
|
|||
|
||||
obj-y += mutex.o semaphore.o rwsem.o percpu-rwsem.o
|
||||
|
||||
# Avoid recursion lockdep -> KCSAN -> ... -> lockdep.
|
||||
KCSAN_SANITIZE_lockdep.o := n
|
||||
|
||||
ifdef CONFIG_FUNCTION_TRACER
|
||||
CFLAGS_REMOVE_lockdep.o = $(CC_FLAGS_FTRACE)
|
||||
CFLAGS_REMOVE_lockdep_proc.o = $(CC_FLAGS_FTRACE)
|
||||
|
|
|
@ -7,6 +7,12 @@ endif
|
|||
# that is not a function of syscall inputs. E.g. involuntary context switches.
|
||||
KCOV_INSTRUMENT := n
|
||||
|
||||
# There are numerous data races here, however, most of them are due to plain accesses.
|
||||
# This would make it even harder for syzbot to find reproducers, because these
|
||||
# bugs trigger without specific input. Disable by default, but should re-enable
|
||||
# eventually.
|
||||
KCSAN_SANITIZE := n
|
||||
|
||||
ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y)
|
||||
# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
|
||||
# needed for x86 only. Why this used to be enabled for all architectures is beyond
|
||||
|
|
|
@ -6,6 +6,9 @@ ifdef CONFIG_FUNCTION_TRACER
|
|||
ORIG_CFLAGS := $(KBUILD_CFLAGS)
|
||||
KBUILD_CFLAGS = $(subst $(CC_FLAGS_FTRACE),,$(ORIG_CFLAGS))
|
||||
|
||||
# Avoid recursion due to instrumentation.
|
||||
KCSAN_SANITIZE := n
|
||||
|
||||
ifdef CONFIG_FTRACE_SELFTEST
|
||||
# selftest needs instrumentation
|
||||
CFLAGS_trace_selftest_dynamic.o = $(CC_FLAGS_FTRACE)
|
||||
|
|
|
@ -1570,6 +1570,8 @@ config PROVIDE_OHCI1394_DMA_INIT
|
|||
|
||||
source "samples/Kconfig"
|
||||
|
||||
source "lib/Kconfig.kcsan"
|
||||
|
||||
config ARCH_HAS_DEVMEM_IS_ALLOWED
|
||||
bool
|
||||
|
||||
|
|
|
@ -0,0 +1,181 @@
|
|||
# SPDX-License-Identifier: GPL-2.0-only
|
||||
|
||||
config HAVE_ARCH_KCSAN
|
||||
bool
|
||||
|
||||
menuconfig KCSAN
|
||||
bool "KCSAN: dynamic data race detector"
|
||||
depends on HAVE_ARCH_KCSAN && DEBUG_KERNEL && !KASAN
|
||||
select STACKTRACE
|
||||
help
|
||||
The Kernel Concurrency Sanitizer (KCSAN) is a dynamic
|
||||
data-race detector that relies on compile-time instrumentation.
|
||||
KCSAN uses a watchpoint-based sampling approach to detect races.
|
||||
|
||||
While KCSAN's primary purpose is to detect data races, it
|
||||
also provides assertions to check data access constraints.
|
||||
These assertions can expose bugs that do not manifest as
|
||||
data races.
|
||||
|
||||
See <file:Documentation/dev-tools/kcsan.rst> for more details.
|
||||
|
||||
if KCSAN
|
||||
|
||||
config KCSAN_VERBOSE
|
||||
bool "Show verbose reports with more information about system state"
|
||||
depends on PROVE_LOCKING
|
||||
help
|
||||
If enabled, reports show more information about the system state that
|
||||
may help better analyze and debug races. This includes held locks and
|
||||
IRQ trace events.
|
||||
|
||||
While this option should generally be benign, we call into more
|
||||
external functions on report generation; if a race report is
|
||||
generated from any one of them, system stability may suffer due to
|
||||
deadlocks or recursion. If in doubt, say N.
|
||||
|
||||
config KCSAN_DEBUG
|
||||
bool "Debugging of KCSAN internals"
|
||||
|
||||
config KCSAN_SELFTEST
|
||||
bool "Perform short selftests on boot"
|
||||
default y
|
||||
help
|
||||
Run KCSAN selftests on boot. On test failure, causes the kernel to panic.
|
||||
|
||||
config KCSAN_EARLY_ENABLE
|
||||
bool "Early enable during boot"
|
||||
default y
|
||||
help
|
||||
If KCSAN should be enabled globally as soon as possible. KCSAN can
|
||||
later be enabled/disabled via debugfs.
|
||||
|
||||
config KCSAN_NUM_WATCHPOINTS
|
||||
int "Number of available watchpoints"
|
||||
default 64
|
||||
help
|
||||
Total number of available watchpoints. An address range maps into a
|
||||
specific watchpoint slot as specified in kernel/kcsan/encoding.h.
|
||||
Although larger number of watchpoints may not be usable due to
|
||||
limited number of CPUs, a larger value helps to improve performance
|
||||
due to reducing cache-line contention. The chosen default is a
|
||||
conservative value; we should almost never observe "no_capacity"
|
||||
events (see /sys/kernel/debug/kcsan).
|
||||
|
||||
config KCSAN_UDELAY_TASK
|
||||
int "Delay in microseconds (for tasks)"
|
||||
default 80
|
||||
help
|
||||
For tasks, the microsecond delay after setting up a watchpoint.
|
||||
|
||||
config KCSAN_UDELAY_INTERRUPT
|
||||
int "Delay in microseconds (for interrupts)"
|
||||
default 20
|
||||
help
|
||||
For interrupts, the microsecond delay after setting up a watchpoint.
|
||||
Interrupts have tighter latency requirements, and their delay should
|
||||
be lower than for tasks.
|
||||
|
||||
config KCSAN_DELAY_RANDOMIZE
|
||||
bool "Randomize above delays"
|
||||
default y
|
||||
help
|
||||
If delays should be randomized, where the maximum is KCSAN_UDELAY_*.
|
||||
If false, the chosen delays are always the KCSAN_UDELAY_* values
|
||||
as defined above.
|
||||
|
||||
config KCSAN_SKIP_WATCH
|
||||
int "Skip instructions before setting up watchpoint"
|
||||
default 4000
|
||||
help
|
||||
The number of per-CPU memory operations to skip, before another
|
||||
watchpoint is set up, i.e. one in KCSAN_WATCH_SKIP per-CPU
|
||||
memory operations are used to set up a watchpoint. A smaller value
|
||||
results in more aggressive race detection, whereas a larger value
|
||||
improves system performance at the cost of missing some races.
|
||||
|
||||
config KCSAN_SKIP_WATCH_RANDOMIZE
|
||||
bool "Randomize watchpoint instruction skip count"
|
||||
default y
|
||||
help
|
||||
If instruction skip count should be randomized, where the maximum is
|
||||
KCSAN_WATCH_SKIP. If false, the chosen value is always
|
||||
KCSAN_WATCH_SKIP.
|
||||
|
||||
config KCSAN_INTERRUPT_WATCHER
|
||||
bool "Interruptible watchers"
|
||||
help
|
||||
If enabled, a task that set up a watchpoint may be interrupted while
|
||||
delayed. This option will allow KCSAN to detect races between
|
||||
interrupted tasks and other threads of execution on the same CPU.
|
||||
|
||||
Currently disabled by default, because not all safe per-CPU access
|
||||
primitives and patterns may be accounted for, and therefore could
|
||||
result in false positives.
|
||||
|
||||
config KCSAN_REPORT_ONCE_IN_MS
|
||||
int "Duration in milliseconds, in which any given race is only reported once"
|
||||
default 3000
|
||||
help
|
||||
Any given race is only reported once in the defined time window.
|
||||
Different races may still generate reports within a duration that is
|
||||
smaller than the duration defined here. This allows rate limiting
|
||||
reporting to avoid flooding the console with reports. Setting this
|
||||
to 0 disables rate limiting.
|
||||
|
||||
# The main purpose of the below options is to control reported data races (e.g.
|
||||
# in fuzzer configs), and are not expected to be switched frequently by other
|
||||
# users. We could turn some of them into boot parameters, but given they should
|
||||
# not be switched normally, let's keep them here to simplify configuration.
|
||||
#
|
||||
# The defaults below are chosen to be very conservative, and may miss certain
|
||||
# bugs.
|
||||
|
||||
config KCSAN_REPORT_RACE_UNKNOWN_ORIGIN
|
||||
bool "Report races of unknown origin"
|
||||
default y
|
||||
help
|
||||
If KCSAN should report races where only one access is known, and the
|
||||
conflicting access is of unknown origin. This type of race is
|
||||
reported if it was only possible to infer a race due to a data value
|
||||
change while an access is being delayed on a watchpoint.
|
||||
|
||||
config KCSAN_REPORT_VALUE_CHANGE_ONLY
|
||||
bool "Only report races where watcher observed a data value change"
|
||||
default y
|
||||
help
|
||||
If enabled and a conflicting write is observed via a watchpoint, but
|
||||
the data value of the memory location was observed to remain
|
||||
unchanged, do not report the data race.
|
||||
|
||||
config KCSAN_ASSUME_PLAIN_WRITES_ATOMIC
|
||||
bool "Assume that plain aligned writes up to word size are atomic"
|
||||
default y
|
||||
help
|
||||
Assume that plain aligned writes up to word size are atomic by
|
||||
default, and also not subject to other unsafe compiler optimizations
|
||||
resulting in data races. This will cause KCSAN to not report data
|
||||
races due to conflicts where the only plain accesses are aligned
|
||||
writes up to word size: conflicts between marked reads and plain
|
||||
aligned writes up to word size will not be reported as data races;
|
||||
notice that data races between two conflicting plain aligned writes
|
||||
will also not be reported.
|
||||
|
||||
config KCSAN_IGNORE_ATOMICS
|
||||
bool "Do not instrument marked atomic accesses"
|
||||
help
|
||||
Never instrument marked atomic accesses. This option can be used for
|
||||
additional filtering. Conflicting marked atomic reads and plain
|
||||
writes will never be reported as a data race, however, will cause
|
||||
plain reads and marked writes to result in "unknown origin" reports.
|
||||
If combined with CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n, data
|
||||
races where at least one access is marked atomic will never be
|
||||
reported.
|
||||
|
||||
Similar to KCSAN_ASSUME_PLAIN_WRITES_ATOMIC, but including unaligned
|
||||
accesses, conflicting marked atomic reads and plain writes will not
|
||||
be reported as data races; however, unlike that option, data races
|
||||
due to two conflicting plain writes will be reported (aligned and
|
||||
unaligned, if CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC=n).
|
||||
|
||||
endif # KCSAN
|
|
@ -25,6 +25,9 @@ KASAN_SANITIZE_string.o := n
|
|||
CFLAGS_string.o := $(call cc-option, -fno-stack-protector)
|
||||
endif
|
||||
|
||||
# Used by KCSAN while enabled, avoid recursion.
|
||||
KCSAN_SANITIZE_random32.o := n
|
||||
|
||||
lib-y := ctype.o string.o vsprintf.o cmdline.o \
|
||||
rbtree.o radix-tree.o timerqueue.o xarray.o \
|
||||
idr.o extable.o sha1.o irq_regs.o argv_split.o \
|
||||
|
@ -296,6 +299,7 @@ endif
|
|||
|
||||
UBSAN_SANITIZE_ubsan.o := n
|
||||
KASAN_SANITIZE_ubsan.o := n
|
||||
KCSAN_SANITIZE_ubsan.o := n
|
||||
CFLAGS_ubsan.o := $(call cc-option, -fno-stack-protector) $(DISABLE_STACKLEAK_PLUGIN)
|
||||
|
||||
obj-$(CONFIG_SBITMAP) += sbitmap.o
|
||||
|
|
|
@ -8,6 +8,7 @@
|
|||
#include <linux/splice.h>
|
||||
#include <net/checksum.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <linux/instrumented.h>
|
||||
|
||||
#define PIPE_PARANOIA /* for now */
|
||||
|
||||
|
@ -138,7 +139,7 @@
|
|||
static int copyout(void __user *to, const void *from, size_t n)
|
||||
{
|
||||
if (access_ok(to, n)) {
|
||||
kasan_check_read(from, n);
|
||||
instrument_copy_to_user(to, from, n);
|
||||
n = raw_copy_to_user(to, from, n);
|
||||
}
|
||||
return n;
|
||||
|
@ -147,7 +148,7 @@ static int copyout(void __user *to, const void *from, size_t n)
|
|||
static int copyin(void *to, const void __user *from, size_t n)
|
||||
{
|
||||
if (access_ok(from, n)) {
|
||||
kasan_check_write(to, n);
|
||||
instrument_copy_from_user(to, from, n);
|
||||
n = raw_copy_from_user(to, from, n);
|
||||
}
|
||||
return n;
|
||||
|
@ -639,7 +640,7 @@ EXPORT_SYMBOL(_copy_to_iter);
|
|||
static int copyout_mcsafe(void __user *to, const void *from, size_t n)
|
||||
{
|
||||
if (access_ok(to, n)) {
|
||||
kasan_check_read(from, n);
|
||||
instrument_copy_to_user(to, from, n);
|
||||
n = copy_to_user_mcsafe((__force void *) to, from, n);
|
||||
}
|
||||
return n;
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
// SPDX-License-Identifier: GPL-2.0
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/bitops.h>
|
||||
#include <linux/instrumented.h>
|
||||
#include <linux/uaccess.h>
|
||||
|
||||
/* out-of-line parts */
|
||||
|
||||
|
@ -10,7 +11,7 @@ unsigned long _copy_from_user(void *to, const void __user *from, unsigned long n
|
|||
unsigned long res = n;
|
||||
might_fault();
|
||||
if (likely(access_ok(from, n))) {
|
||||
kasan_check_write(to, n);
|
||||
instrument_copy_from_user(to, from, n);
|
||||
res = raw_copy_from_user(to, from, n);
|
||||
}
|
||||
if (unlikely(res))
|
||||
|
@ -25,7 +26,7 @@ unsigned long _copy_to_user(void __user *to, const void *from, unsigned long n)
|
|||
{
|
||||
might_fault();
|
||||
if (likely(access_ok(to, n))) {
|
||||
kasan_check_read(from, n);
|
||||
instrument_copy_to_user(to, from, n);
|
||||
n = raw_copy_to_user(to, from, n);
|
||||
}
|
||||
return n;
|
||||
|
|
|
@ -8,6 +8,14 @@ KASAN_SANITIZE_slab.o := n
|
|||
KASAN_SANITIZE_slub.o := n
|
||||
KCSAN_SANITIZE_kmemleak.o := n
|
||||
|
||||
# These produce frequent data race reports: most of them are due to races on
|
||||
# the same word but accesses to different bits of that word. Re-enable KCSAN
|
||||
# for these when we have more consensus on what to do about them.
|
||||
KCSAN_SANITIZE_slab_common.o := n
|
||||
KCSAN_SANITIZE_slab.o := n
|
||||
KCSAN_SANITIZE_slub.o := n
|
||||
KCSAN_SANITIZE_page_alloc.o := n
|
||||
|
||||
# These files are disabled because they produce non-interesting and/or
|
||||
# flaky coverage that is not a function of syscall inputs. E.g. slab is out of
|
||||
# free pages, or a task is migrated between nodes.
|
||||
|
|
|
@ -0,0 +1,6 @@
|
|||
# SPDX-License-Identifier: GPL-2.0
|
||||
ifdef CONFIG_KCSAN
|
||||
|
||||
CFLAGS_KCSAN := -fsanitize=thread
|
||||
|
||||
endif # CONFIG_KCSAN
|
|
@ -152,6 +152,16 @@ _c_flags += $(if $(patsubst n%,, \
|
|||
$(CFLAGS_KCOV))
|
||||
endif
|
||||
|
||||
#
|
||||
# Enable KCSAN flags except some files or directories we don't want to check
|
||||
# (depends on variables KCSAN_SANITIZE_obj.o, KCSAN_SANITIZE)
|
||||
#
|
||||
ifeq ($(CONFIG_KCSAN),y)
|
||||
_c_flags += $(if $(patsubst n%,, \
|
||||
$(KCSAN_SANITIZE_$(basetarget).o)$(KCSAN_SANITIZE)y), \
|
||||
$(CFLAGS_KCSAN))
|
||||
endif
|
||||
|
||||
# $(srctree)/$(src) for including checkin headers from generated source files
|
||||
# $(objtree)/$(obj) for including generated headers from checkin source files
|
||||
ifeq ($(KBUILD_EXTMOD),)
|
||||
|
|
|
@ -20,7 +20,7 @@ gen_param_check()
|
|||
# We don't write to constant parameters
|
||||
[ ${type#c} != ${type} ] && rw="read"
|
||||
|
||||
printf "\tkasan_check_${rw}(${name}, sizeof(*${name}));\n"
|
||||
printf "\tinstrument_atomic_${rw}(${name}, sizeof(*${name}));\n"
|
||||
}
|
||||
|
||||
#gen_param_check(arg...)
|
||||
|
@ -84,7 +84,7 @@ gen_proto_order_variant()
|
|||
[ ! -z "${guard}" ] && printf "#if ${guard}\n"
|
||||
|
||||
cat <<EOF
|
||||
static inline ${ret}
|
||||
static __always_inline ${ret}
|
||||
${atomicname}(${params})
|
||||
{
|
||||
${checks}
|
||||
|
@ -107,7 +107,7 @@ cat <<EOF
|
|||
#define ${xchg}(ptr, ...) \\
|
||||
({ \\
|
||||
typeof(ptr) __ai_ptr = (ptr); \\
|
||||
kasan_check_write(__ai_ptr, ${mult}sizeof(*__ai_ptr)); \\
|
||||
instrument_atomic_write(__ai_ptr, ${mult}sizeof(*__ai_ptr)); \\
|
||||
arch_${xchg}(__ai_ptr, __VA_ARGS__); \\
|
||||
})
|
||||
EOF
|
||||
|
@ -147,7 +147,8 @@ cat << EOF
|
|||
#define _ASM_GENERIC_ATOMIC_INSTRUMENTED_H
|
||||
|
||||
#include <linux/build_bug.h>
|
||||
#include <linux/kasan-checks.h>
|
||||
#include <linux/compiler.h>
|
||||
#include <linux/instrumented.h>
|
||||
|
||||
EOF
|
||||
|
||||
|
|
|
@ -46,7 +46,7 @@ gen_proto_order_variant()
|
|||
local retstmt="$(gen_ret_stmt "${meta}")"
|
||||
|
||||
cat <<EOF
|
||||
static inline ${ret}
|
||||
static __always_inline ${ret}
|
||||
atomic_long_${name}(${params})
|
||||
{
|
||||
${retstmt}${atomic}_${name}(${argscast});
|
||||
|
@ -64,6 +64,7 @@ cat << EOF
|
|||
#ifndef _ASM_GENERIC_ATOMIC_LONG_H
|
||||
#define _ASM_GENERIC_ATOMIC_LONG_H
|
||||
|
||||
#include <linux/compiler.h>
|
||||
#include <asm/types.h>
|
||||
|
||||
#ifdef CONFIG_64BIT
|
||||
|
|
|
@ -5945,6 +5945,14 @@ sub process {
|
|||
}
|
||||
}
|
||||
|
||||
# check for data_race without a comment.
|
||||
if ($line =~ /\bdata_race\s*\(/) {
|
||||
if (!ctx_has_comment($first_line, $linenr)) {
|
||||
WARN("DATA_RACE",
|
||||
"data_race without comment\n" . $herecurr);
|
||||
}
|
||||
}
|
||||
|
||||
# check for smp_read_barrier_depends and read_barrier_depends
|
||||
if (!$file && $line =~ /\b(smp_|)read_barrier_depends\s*\(/) {
|
||||
WARN("READ_BARRIER_DEPENDS",
|
||||
|
|
|
@ -505,6 +505,28 @@ static const char *uaccess_safe_builtin[] = {
|
|||
"__asan_report_store4_noabort",
|
||||
"__asan_report_store8_noabort",
|
||||
"__asan_report_store16_noabort",
|
||||
/* KCSAN */
|
||||
"__kcsan_check_access",
|
||||
"kcsan_found_watchpoint",
|
||||
"kcsan_setup_watchpoint",
|
||||
"kcsan_check_scoped_accesses",
|
||||
"kcsan_disable_current",
|
||||
"kcsan_enable_current_nowarn",
|
||||
/* KCSAN/TSAN */
|
||||
"__tsan_func_entry",
|
||||
"__tsan_func_exit",
|
||||
"__tsan_read_range",
|
||||
"__tsan_write_range",
|
||||
"__tsan_read1",
|
||||
"__tsan_read2",
|
||||
"__tsan_read4",
|
||||
"__tsan_read8",
|
||||
"__tsan_read16",
|
||||
"__tsan_write1",
|
||||
"__tsan_write2",
|
||||
"__tsan_write4",
|
||||
"__tsan_write8",
|
||||
"__tsan_write16",
|
||||
/* KCOV */
|
||||
"write_comp_data",
|
||||
"check_kcov_mode",
|
||||
|
|
Загрузка…
Ссылка в новой задаче