- Add the ability to use select or poll /dev/mapper/control to wait for
events from multiple DM devices. - Convert DM's printk macros over to using pr_<level> macros. - Add a big-endian variant of plain64 IV to dm-crypt. - Add support for zoned (aka SMR) devices to DM core. DM kcopyd was also improved to provide a sequential write feature needed by zoned devices. - Introduce DM zoned target that provides support for host-managed zoned devices, the result dm-zoned device acts as a drive-managed interface to the underlying host-managed device. - A DM raid fix to avoid using BUG() for error handling. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJZXle7AAoJEMUj8QotnQNaItIH/jIhEOHV6C3YVCN34bPgypqw 6FWX3q1WQVLNaGCVC4zD6moJtW/GUoVTqCYLFVePRbcPxdDxTMLXUOgBGiuAKsl9 TS9O7xXRp9jO4ZhjxPTo8QnhxmcpOAwaLha6pQMBqfpR83+0Sp4SCG8sAUHJlw1v etuEWHlzhTX3qrZmg0cuMnmnxiGoMmmK40BmoD603ZlhMlXFL3k9asLIfYurZoth FpkRoihTAP9Lo4Tl9W+KOkAcXuSG/ABEPYZwrboZIkjFGIbbaJSUXwXtBK94REVG 8fNlekrX3JZ53xgmtD50WAK8RDou8G+oR2Zd6+CO90vyvEWNVhSjKUFfw8J9Q0U= =LDjV -----END PGP SIGNATURE----- Merge tag 'for-4.13/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm Pull device mapper updates from Mike Snitzer: - Add the ability to use select or poll /dev/mapper/control to wait for events from multiple DM devices. - Convert DM's printk macros over to using pr_<level> macros. - Add a big-endian variant of plain64 IV to dm-crypt. - Add support for zoned (aka SMR) devices to DM core. DM kcopyd was also improved to provide a sequential write feature needed by zoned devices. - Introduce DM zoned target that provides support for host-managed zoned devices, the result dm-zoned device acts as a drive-managed interface to the underlying host-managed device. - A DM raid fix to avoid using BUG() for error handling. * tag 'for-4.13/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: dm zoned: fix overflow when converting zone ID to sectors dm raid: stop using BUG() in __rdev_sectors() dm zoned: drive-managed zoned block device target dm kcopyd: add sequential write feature dm linear: add support for zoned block devices dm flakey: add support for zoned block devices dm: introduce dm_remap_zone_report() dm: fix REQ_OP_ZONE_REPORT bio handling dm: fix REQ_OP_ZONE_RESET bio handling dm table: add zoned block devices validation dm: convert DM printk macros to pr_<level> macros dm crypt: add big-endian variant of plain64 IV dm bio prison: use rb_entry() rather than container_of() dm ioctl: report event number in DM_LIST_DEVICES dm ioctl: add a new DM_DEV_ARM_POLL ioctl dm: add basic support for using the select or poll function
This commit is contained in:
Коммит
3a564bb3a8
|
@ -0,0 +1,144 @@
|
|||
dm-zoned
|
||||
========
|
||||
|
||||
The dm-zoned device mapper target exposes a zoned block device (ZBC and
|
||||
ZAC compliant devices) as a regular block device without any write
|
||||
pattern constraints. In effect, it implements a drive-managed zoned
|
||||
block device which hides from the user (a file system or an application
|
||||
doing raw block device accesses) the sequential write constraints of
|
||||
host-managed zoned block devices and can mitigate the potential
|
||||
device-side performance degradation due to excessive random writes on
|
||||
host-aware zoned block devices.
|
||||
|
||||
For a more detailed description of the zoned block device models and
|
||||
their constraints see (for SCSI devices):
|
||||
|
||||
http://www.t10.org/drafts.htm#ZBC_Family
|
||||
|
||||
and (for ATA devices):
|
||||
|
||||
http://www.t13.org/Documents/UploadedDocuments/docs2015/di537r05-Zoned_Device_ATA_Command_Set_ZAC.pdf
|
||||
|
||||
The dm-zoned implementation is simple and minimizes system overhead (CPU
|
||||
and memory usage as well as storage capacity loss). For a 10TB
|
||||
host-managed disk with 256 MB zones, dm-zoned memory usage per disk
|
||||
instance is at most 4.5 MB and as little as 5 zones will be used
|
||||
internally for storing metadata and performaing reclaim operations.
|
||||
|
||||
dm-zoned target devices are formatted and checked using the dmzadm
|
||||
utility available at:
|
||||
|
||||
https://github.com/hgst/dm-zoned-tools
|
||||
|
||||
Algorithm
|
||||
=========
|
||||
|
||||
dm-zoned implements an on-disk buffering scheme to handle non-sequential
|
||||
write accesses to the sequential zones of a zoned block device.
|
||||
Conventional zones are used for caching as well as for storing internal
|
||||
metadata.
|
||||
|
||||
The zones of the device are separated into 2 types:
|
||||
|
||||
1) Metadata zones: these are conventional zones used to store metadata.
|
||||
Metadata zones are not reported as useable capacity to the user.
|
||||
|
||||
2) Data zones: all remaining zones, the vast majority of which will be
|
||||
sequential zones used exclusively to store user data. The conventional
|
||||
zones of the device may be used also for buffering user random writes.
|
||||
Data in these zones may be directly mapped to the conventional zone, but
|
||||
later moved to a sequential zone so that the conventional zone can be
|
||||
reused for buffering incoming random writes.
|
||||
|
||||
dm-zoned exposes a logical device with a sector size of 4096 bytes,
|
||||
irrespective of the physical sector size of the backend zoned block
|
||||
device being used. This allows reducing the amount of metadata needed to
|
||||
manage valid blocks (blocks written).
|
||||
|
||||
The on-disk metadata format is as follows:
|
||||
|
||||
1) The first block of the first conventional zone found contains the
|
||||
super block which describes the on disk amount and position of metadata
|
||||
blocks.
|
||||
|
||||
2) Following the super block, a set of blocks is used to describe the
|
||||
mapping of the logical device blocks. The mapping is done per chunk of
|
||||
blocks, with the chunk size equal to the zoned block device size. The
|
||||
mapping table is indexed by chunk number and each mapping entry
|
||||
indicates the zone number of the device storing the chunk of data. Each
|
||||
mapping entry may also indicate if the zone number of a conventional
|
||||
zone used to buffer random modification to the data zone.
|
||||
|
||||
3) A set of blocks used to store bitmaps indicating the validity of
|
||||
blocks in the data zones follows the mapping table. A valid block is
|
||||
defined as a block that was written and not discarded. For a buffered
|
||||
data chunk, a block is always valid only in the data zone mapping the
|
||||
chunk or in the buffer zone of the chunk.
|
||||
|
||||
For a logical chunk mapped to a conventional zone, all write operations
|
||||
are processed by directly writing to the zone. If the mapping zone is a
|
||||
sequential zone, the write operation is processed directly only if the
|
||||
write offset within the logical chunk is equal to the write pointer
|
||||
offset within of the sequential data zone (i.e. the write operation is
|
||||
aligned on the zone write pointer). Otherwise, write operations are
|
||||
processed indirectly using a buffer zone. In that case, an unused
|
||||
conventional zone is allocated and assigned to the chunk being
|
||||
accessed. Writing a block to the buffer zone of a chunk will
|
||||
automatically invalidate the same block in the sequential zone mapping
|
||||
the chunk. If all blocks of the sequential zone become invalid, the zone
|
||||
is freed and the chunk buffer zone becomes the primary zone mapping the
|
||||
chunk, resulting in native random write performance similar to a regular
|
||||
block device.
|
||||
|
||||
Read operations are processed according to the block validity
|
||||
information provided by the bitmaps. Valid blocks are read either from
|
||||
the sequential zone mapping a chunk, or if the chunk is buffered, from
|
||||
the buffer zone assigned. If the accessed chunk has no mapping, or the
|
||||
accessed blocks are invalid, the read buffer is zeroed and the read
|
||||
operation terminated.
|
||||
|
||||
After some time, the limited number of convnetional zones available may
|
||||
be exhausted (all used to map chunks or buffer sequential zones) and
|
||||
unaligned writes to unbuffered chunks become impossible. To avoid this
|
||||
situation, a reclaim process regularly scans used conventional zones and
|
||||
tries to reclaim the least recently used zones by copying the valid
|
||||
blocks of the buffer zone to a free sequential zone. Once the copy
|
||||
completes, the chunk mapping is updated to point to the sequential zone
|
||||
and the buffer zone freed for reuse.
|
||||
|
||||
Metadata Protection
|
||||
===================
|
||||
|
||||
To protect metadata against corruption in case of sudden power loss or
|
||||
system crash, 2 sets of metadata zones are used. One set, the primary
|
||||
set, is used as the main metadata region, while the secondary set is
|
||||
used as a staging area. Modified metadata is first written to the
|
||||
secondary set and validated by updating the super block in the secondary
|
||||
set, a generation counter is used to indicate that this set contains the
|
||||
newest metadata. Once this operation completes, in place of metadata
|
||||
block updates can be done in the primary metadata set. This ensures that
|
||||
one of the set is always consistent (all modifications committed or none
|
||||
at all). Flush operations are used as a commit point. Upon reception of
|
||||
a flush request, metadata modification activity is temporarily blocked
|
||||
(for both incoming BIO processing and reclaim process) and all dirty
|
||||
metadata blocks are staged and updated. Normal operation is then
|
||||
resumed. Flushing metadata thus only temporarily delays write and
|
||||
discard requests. Read requests can be processed concurrently while
|
||||
metadata flush is being executed.
|
||||
|
||||
Usage
|
||||
=====
|
||||
|
||||
A zoned block device must first be formatted using the dmzadm tool. This
|
||||
will analyze the device zone configuration, determine where to place the
|
||||
metadata sets on the device and initialize the metadata sets.
|
||||
|
||||
Ex:
|
||||
|
||||
dmzadm --format /dev/sdxx
|
||||
|
||||
For a formatted device, the target can be created normally with the
|
||||
dmsetup utility. The only parameter that dm-zoned requires is the
|
||||
underlying zoned block device name. Ex:
|
||||
|
||||
echo "0 `blockdev --getsize ${dev}` zoned ${dev}" | dmsetup create dmz-`basename ${dev}`
|
|
@ -521,6 +521,23 @@ config DM_INTEGRITY
|
|||
To compile this code as a module, choose M here: the module will
|
||||
be called dm-integrity.
|
||||
|
||||
config DM_ZONED
|
||||
tristate "Drive-managed zoned block device target support"
|
||||
depends on BLK_DEV_DM
|
||||
depends on BLK_DEV_ZONED
|
||||
---help---
|
||||
This device-mapper target takes a host-managed or host-aware zoned
|
||||
block device and exposes most of its capacity as a regular block
|
||||
device (drive-managed zoned block device) without any write
|
||||
constraints. This is mainly intended for use with file systems that
|
||||
do not natively support zoned block devices but still want to
|
||||
benefit from the increased capacity offered by SMR disks. Other uses
|
||||
by applications using raw block devices (for example object stores)
|
||||
are also possible.
|
||||
|
||||
To compile this code as a module, choose M here: the module will
|
||||
be called dm-zoned.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
endif # MD
|
||||
|
|
|
@ -20,6 +20,7 @@ dm-era-y += dm-era-target.o
|
|||
dm-verity-y += dm-verity-target.o
|
||||
md-mod-y += md.o bitmap.o
|
||||
raid456-y += raid5.o raid5-cache.o raid5-ppl.o
|
||||
dm-zoned-y += dm-zoned-target.o dm-zoned-metadata.o dm-zoned-reclaim.o
|
||||
|
||||
# Note: link order is important. All raid personalities
|
||||
# and must come before md.o, as they each initialise
|
||||
|
@ -60,6 +61,7 @@ obj-$(CONFIG_DM_CACHE_SMQ) += dm-cache-smq.o
|
|||
obj-$(CONFIG_DM_ERA) += dm-era.o
|
||||
obj-$(CONFIG_DM_LOG_WRITES) += dm-log-writes.o
|
||||
obj-$(CONFIG_DM_INTEGRITY) += dm-integrity.o
|
||||
obj-$(CONFIG_DM_ZONED) += dm-zoned.o
|
||||
|
||||
ifeq ($(CONFIG_DM_UEVENT),y)
|
||||
dm-mod-objs += dm-uevent.o
|
||||
|
|
|
@ -116,7 +116,7 @@ static int __bio_detain(struct dm_bio_prison *prison,
|
|||
|
||||
while (*new) {
|
||||
struct dm_bio_prison_cell *cell =
|
||||
container_of(*new, struct dm_bio_prison_cell, node);
|
||||
rb_entry(*new, struct dm_bio_prison_cell, node);
|
||||
|
||||
r = cmp_keys(key, &cell->key);
|
||||
|
||||
|
|
|
@ -120,7 +120,7 @@ static bool __find_or_insert(struct dm_bio_prison_v2 *prison,
|
|||
|
||||
while (*new) {
|
||||
struct dm_bio_prison_cell_v2 *cell =
|
||||
container_of(*new, struct dm_bio_prison_cell_v2, node);
|
||||
rb_entry(*new, struct dm_bio_prison_cell_v2, node);
|
||||
|
||||
r = cmp_keys(key, &cell->key);
|
||||
|
||||
|
|
|
@ -147,4 +147,7 @@ static inline bool dm_message_test_buffer_overflow(char *result, unsigned maxlen
|
|||
return !maxlen || strlen(result) + 1 >= maxlen;
|
||||
}
|
||||
|
||||
extern atomic_t dm_global_event_nr;
|
||||
extern wait_queue_head_t dm_global_eventq;
|
||||
|
||||
#endif
|
||||
|
|
|
@ -246,6 +246,9 @@ static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
|
|||
* plain64: the initial vector is the 64-bit little-endian version of the sector
|
||||
* number, padded with zeros if necessary.
|
||||
*
|
||||
* plain64be: the initial vector is the 64-bit big-endian version of the sector
|
||||
* number, padded with zeros if necessary.
|
||||
*
|
||||
* essiv: "encrypted sector|salt initial vector", the sector number is
|
||||
* encrypted with the bulk cipher using a salt as key. The salt
|
||||
* should be derived from the bulk cipher's key via hashing.
|
||||
|
@ -302,6 +305,16 @@ static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
|
||||
struct dm_crypt_request *dmreq)
|
||||
{
|
||||
memset(iv, 0, cc->iv_size);
|
||||
/* iv_size is at least of size u64; usually it is 16 bytes */
|
||||
*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Initialise ESSIV - compute salt but no local memory allocations */
|
||||
static int crypt_iv_essiv_init(struct crypt_config *cc)
|
||||
{
|
||||
|
@ -835,6 +848,10 @@ static const struct crypt_iv_operations crypt_iv_plain64_ops = {
|
|||
.generator = crypt_iv_plain64_gen
|
||||
};
|
||||
|
||||
static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
|
||||
.generator = crypt_iv_plain64be_gen
|
||||
};
|
||||
|
||||
static const struct crypt_iv_operations crypt_iv_essiv_ops = {
|
||||
.ctr = crypt_iv_essiv_ctr,
|
||||
.dtr = crypt_iv_essiv_dtr,
|
||||
|
@ -2208,6 +2225,8 @@ static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
|
|||
cc->iv_gen_ops = &crypt_iv_plain_ops;
|
||||
else if (strcmp(ivmode, "plain64") == 0)
|
||||
cc->iv_gen_ops = &crypt_iv_plain64_ops;
|
||||
else if (strcmp(ivmode, "plain64be") == 0)
|
||||
cc->iv_gen_ops = &crypt_iv_plain64be_ops;
|
||||
else if (strcmp(ivmode, "essiv") == 0)
|
||||
cc->iv_gen_ops = &crypt_iv_essiv_ops;
|
||||
else if (strcmp(ivmode, "benbi") == 0)
|
||||
|
@ -2987,7 +3006,7 @@ static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
|||
|
||||
static struct target_type crypt_target = {
|
||||
.name = "crypt",
|
||||
.version = {1, 17, 0},
|
||||
.version = {1, 18, 0},
|
||||
.module = THIS_MODULE,
|
||||
.ctr = crypt_ctr,
|
||||
.dtr = crypt_dtr,
|
||||
|
|
|
@ -275,7 +275,7 @@ static void flakey_map_bio(struct dm_target *ti, struct bio *bio)
|
|||
struct flakey_c *fc = ti->private;
|
||||
|
||||
bio->bi_bdev = fc->dev->bdev;
|
||||
if (bio_sectors(bio))
|
||||
if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)
|
||||
bio->bi_iter.bi_sector =
|
||||
flakey_map_sector(ti, bio->bi_iter.bi_sector);
|
||||
}
|
||||
|
@ -306,6 +306,14 @@ static int flakey_map(struct dm_target *ti, struct bio *bio)
|
|||
struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
|
||||
pb->bio_submitted = false;
|
||||
|
||||
/* Do not fail reset zone */
|
||||
if (bio_op(bio) == REQ_OP_ZONE_RESET)
|
||||
goto map_bio;
|
||||
|
||||
/* We need to remap reported zones, so remember the BIO iter */
|
||||
if (bio_op(bio) == REQ_OP_ZONE_REPORT)
|
||||
goto map_bio;
|
||||
|
||||
/* Are we alive ? */
|
||||
elapsed = (jiffies - fc->start_time) / HZ;
|
||||
if (elapsed % (fc->up_interval + fc->down_interval) >= fc->up_interval) {
|
||||
|
@ -359,11 +367,19 @@ map_bio:
|
|||
}
|
||||
|
||||
static int flakey_end_io(struct dm_target *ti, struct bio *bio,
|
||||
blk_status_t *error)
|
||||
blk_status_t *error)
|
||||
{
|
||||
struct flakey_c *fc = ti->private;
|
||||
struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
|
||||
|
||||
if (bio_op(bio) == REQ_OP_ZONE_RESET)
|
||||
return DM_ENDIO_DONE;
|
||||
|
||||
if (bio_op(bio) == REQ_OP_ZONE_REPORT) {
|
||||
dm_remap_zone_report(ti, bio, fc->start);
|
||||
return DM_ENDIO_DONE;
|
||||
}
|
||||
|
||||
if (!*error && pb->bio_submitted && (bio_data_dir(bio) == READ)) {
|
||||
if (fc->corrupt_bio_byte && (fc->corrupt_bio_rw == READ) &&
|
||||
all_corrupt_bio_flags_match(bio, fc)) {
|
||||
|
@ -446,7 +462,8 @@ static int flakey_iterate_devices(struct dm_target *ti, iterate_devices_callout_
|
|||
|
||||
static struct target_type flakey_target = {
|
||||
.name = "flakey",
|
||||
.version = {1, 4, 0},
|
||||
.version = {1, 5, 0},
|
||||
.features = DM_TARGET_ZONED_HM,
|
||||
.module = THIS_MODULE,
|
||||
.ctr = flakey_ctr,
|
||||
.dtr = flakey_dtr,
|
||||
|
|
|
@ -23,6 +23,14 @@
|
|||
#define DM_MSG_PREFIX "ioctl"
|
||||
#define DM_DRIVER_EMAIL "dm-devel@redhat.com"
|
||||
|
||||
struct dm_file {
|
||||
/*
|
||||
* poll will wait until the global event number is greater than
|
||||
* this value.
|
||||
*/
|
||||
volatile unsigned global_event_nr;
|
||||
};
|
||||
|
||||
/*-----------------------------------------------------------------
|
||||
* The ioctl interface needs to be able to look up devices by
|
||||
* name or uuid.
|
||||
|
@ -456,9 +464,9 @@ void dm_deferred_remove(void)
|
|||
* All the ioctl commands get dispatched to functions with this
|
||||
* prototype.
|
||||
*/
|
||||
typedef int (*ioctl_fn)(struct dm_ioctl *param, size_t param_size);
|
||||
typedef int (*ioctl_fn)(struct file *filp, struct dm_ioctl *param, size_t param_size);
|
||||
|
||||
static int remove_all(struct dm_ioctl *param, size_t param_size)
|
||||
static int remove_all(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
dm_hash_remove_all(true, !!(param->flags & DM_DEFERRED_REMOVE), false);
|
||||
param->data_size = 0;
|
||||
|
@ -491,13 +499,14 @@ static void *get_result_buffer(struct dm_ioctl *param, size_t param_size,
|
|||
return ((void *) param) + param->data_start;
|
||||
}
|
||||
|
||||
static int list_devices(struct dm_ioctl *param, size_t param_size)
|
||||
static int list_devices(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
unsigned int i;
|
||||
struct hash_cell *hc;
|
||||
size_t len, needed = 0;
|
||||
struct gendisk *disk;
|
||||
struct dm_name_list *nl, *old_nl = NULL;
|
||||
uint32_t *event_nr;
|
||||
|
||||
down_write(&_hash_lock);
|
||||
|
||||
|
@ -510,6 +519,7 @@ static int list_devices(struct dm_ioctl *param, size_t param_size)
|
|||
needed += sizeof(struct dm_name_list);
|
||||
needed += strlen(hc->name) + 1;
|
||||
needed += ALIGN_MASK;
|
||||
needed += (sizeof(uint32_t) + ALIGN_MASK) & ~ALIGN_MASK;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -539,7 +549,9 @@ static int list_devices(struct dm_ioctl *param, size_t param_size)
|
|||
strcpy(nl->name, hc->name);
|
||||
|
||||
old_nl = nl;
|
||||
nl = align_ptr(((void *) ++nl) + strlen(hc->name) + 1);
|
||||
event_nr = align_ptr(((void *) (nl + 1)) + strlen(hc->name) + 1);
|
||||
*event_nr = dm_get_event_nr(hc->md);
|
||||
nl = align_ptr(event_nr + 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -582,7 +594,7 @@ static void list_version_get_info(struct target_type *tt, void *param)
|
|||
info->vers = align_ptr(((void *) ++info->vers) + strlen(tt->name) + 1);
|
||||
}
|
||||
|
||||
static int list_versions(struct dm_ioctl *param, size_t param_size)
|
||||
static int list_versions(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
size_t len, needed = 0;
|
||||
struct dm_target_versions *vers;
|
||||
|
@ -724,7 +736,7 @@ static void __dev_status(struct mapped_device *md, struct dm_ioctl *param)
|
|||
}
|
||||
}
|
||||
|
||||
static int dev_create(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_create(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
int r, m = DM_ANY_MINOR;
|
||||
struct mapped_device *md;
|
||||
|
@ -816,7 +828,7 @@ static struct mapped_device *find_device(struct dm_ioctl *param)
|
|||
return md;
|
||||
}
|
||||
|
||||
static int dev_remove(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_remove(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
struct hash_cell *hc;
|
||||
struct mapped_device *md;
|
||||
|
@ -881,7 +893,7 @@ static int invalid_str(char *str, void *end)
|
|||
return -EINVAL;
|
||||
}
|
||||
|
||||
static int dev_rename(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_rename(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
int r;
|
||||
char *new_data = (char *) param + param->data_start;
|
||||
|
@ -911,7 +923,7 @@ static int dev_rename(struct dm_ioctl *param, size_t param_size)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int dev_set_geometry(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_set_geometry(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
int r = -EINVAL, x;
|
||||
struct mapped_device *md;
|
||||
|
@ -1060,7 +1072,7 @@ static int do_resume(struct dm_ioctl *param)
|
|||
* Set or unset the suspension state of a device.
|
||||
* If the device already is in the requested state we just return its status.
|
||||
*/
|
||||
static int dev_suspend(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_suspend(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
if (param->flags & DM_SUSPEND_FLAG)
|
||||
return do_suspend(param);
|
||||
|
@ -1072,7 +1084,7 @@ static int dev_suspend(struct dm_ioctl *param, size_t param_size)
|
|||
* Copies device info back to user space, used by
|
||||
* the create and info ioctls.
|
||||
*/
|
||||
static int dev_status(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_status(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
struct mapped_device *md;
|
||||
|
||||
|
@ -1163,7 +1175,7 @@ static void retrieve_status(struct dm_table *table,
|
|||
/*
|
||||
* Wait for a device to report an event
|
||||
*/
|
||||
static int dev_wait(struct dm_ioctl *param, size_t param_size)
|
||||
static int dev_wait(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
int r = 0;
|
||||
struct mapped_device *md;
|
||||
|
@ -1200,6 +1212,19 @@ out:
|
|||
return r;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remember the global event number and make it possible to poll
|
||||
* for further events.
|
||||
*/
|
||||
static int dev_arm_poll(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
struct dm_file *priv = filp->private_data;
|
||||
|
||||
priv->global_event_nr = atomic_read(&dm_global_event_nr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline fmode_t get_mode(struct dm_ioctl *param)
|
||||
{
|
||||
fmode_t mode = FMODE_READ | FMODE_WRITE;
|
||||
|
@ -1269,7 +1294,7 @@ static bool is_valid_type(enum dm_queue_mode cur, enum dm_queue_mode new)
|
|||
return false;
|
||||
}
|
||||
|
||||
static int table_load(struct dm_ioctl *param, size_t param_size)
|
||||
static int table_load(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
int r;
|
||||
struct hash_cell *hc;
|
||||
|
@ -1356,7 +1381,7 @@ err:
|
|||
return r;
|
||||
}
|
||||
|
||||
static int table_clear(struct dm_ioctl *param, size_t param_size)
|
||||
static int table_clear(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
struct hash_cell *hc;
|
||||
struct mapped_device *md;
|
||||
|
@ -1430,7 +1455,7 @@ static void retrieve_deps(struct dm_table *table,
|
|||
param->data_size = param->data_start + needed;
|
||||
}
|
||||
|
||||
static int table_deps(struct dm_ioctl *param, size_t param_size)
|
||||
static int table_deps(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
struct mapped_device *md;
|
||||
struct dm_table *table;
|
||||
|
@ -1456,7 +1481,7 @@ static int table_deps(struct dm_ioctl *param, size_t param_size)
|
|||
* Return the status of a device as a text string for each
|
||||
* target.
|
||||
*/
|
||||
static int table_status(struct dm_ioctl *param, size_t param_size)
|
||||
static int table_status(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
struct mapped_device *md;
|
||||
struct dm_table *table;
|
||||
|
@ -1511,7 +1536,7 @@ static int message_for_md(struct mapped_device *md, unsigned argc, char **argv,
|
|||
/*
|
||||
* Pass a message to the target that's at the supplied device offset.
|
||||
*/
|
||||
static int target_message(struct dm_ioctl *param, size_t param_size)
|
||||
static int target_message(struct file *filp, struct dm_ioctl *param, size_t param_size)
|
||||
{
|
||||
int r, argc;
|
||||
char **argv;
|
||||
|
@ -1628,7 +1653,8 @@ static ioctl_fn lookup_ioctl(unsigned int cmd, int *ioctl_flags)
|
|||
{DM_LIST_VERSIONS_CMD, 0, list_versions},
|
||||
|
||||
{DM_TARGET_MSG_CMD, 0, target_message},
|
||||
{DM_DEV_SET_GEOMETRY_CMD, 0, dev_set_geometry}
|
||||
{DM_DEV_SET_GEOMETRY_CMD, 0, dev_set_geometry},
|
||||
{DM_DEV_ARM_POLL, IOCTL_FLAGS_NO_PARAMS, dev_arm_poll},
|
||||
};
|
||||
|
||||
if (unlikely(cmd >= ARRAY_SIZE(_ioctls)))
|
||||
|
@ -1783,7 +1809,7 @@ static int validate_params(uint cmd, struct dm_ioctl *param)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int ctl_ioctl(uint command, struct dm_ioctl __user *user)
|
||||
static int ctl_ioctl(struct file *file, uint command, struct dm_ioctl __user *user)
|
||||
{
|
||||
int r = 0;
|
||||
int ioctl_flags;
|
||||
|
@ -1837,7 +1863,7 @@ static int ctl_ioctl(uint command, struct dm_ioctl __user *user)
|
|||
goto out;
|
||||
|
||||
param->data_size = offsetof(struct dm_ioctl, data);
|
||||
r = fn(param, input_param_size);
|
||||
r = fn(file, param, input_param_size);
|
||||
|
||||
if (unlikely(param->flags & DM_BUFFER_FULL_FLAG) &&
|
||||
unlikely(ioctl_flags & IOCTL_FLAGS_NO_PARAMS))
|
||||
|
@ -1856,7 +1882,7 @@ out:
|
|||
|
||||
static long dm_ctl_ioctl(struct file *file, uint command, ulong u)
|
||||
{
|
||||
return (long)ctl_ioctl(command, (struct dm_ioctl __user *)u);
|
||||
return (long)ctl_ioctl(file, command, (struct dm_ioctl __user *)u);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_COMPAT
|
||||
|
@ -1868,8 +1894,47 @@ static long dm_compat_ctl_ioctl(struct file *file, uint command, ulong u)
|
|||
#define dm_compat_ctl_ioctl NULL
|
||||
#endif
|
||||
|
||||
static int dm_open(struct inode *inode, struct file *filp)
|
||||
{
|
||||
int r;
|
||||
struct dm_file *priv;
|
||||
|
||||
r = nonseekable_open(inode, filp);
|
||||
if (unlikely(r))
|
||||
return r;
|
||||
|
||||
priv = filp->private_data = kmalloc(sizeof(struct dm_file), GFP_KERNEL);
|
||||
if (!priv)
|
||||
return -ENOMEM;
|
||||
|
||||
priv->global_event_nr = atomic_read(&dm_global_event_nr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int dm_release(struct inode *inode, struct file *filp)
|
||||
{
|
||||
kfree(filp->private_data);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned dm_poll(struct file *filp, poll_table *wait)
|
||||
{
|
||||
struct dm_file *priv = filp->private_data;
|
||||
unsigned mask = 0;
|
||||
|
||||
poll_wait(filp, &dm_global_eventq, wait);
|
||||
|
||||
if ((int)(atomic_read(&dm_global_event_nr) - priv->global_event_nr) > 0)
|
||||
mask |= POLLIN;
|
||||
|
||||
return mask;
|
||||
}
|
||||
|
||||
static const struct file_operations _ctl_fops = {
|
||||
.open = nonseekable_open,
|
||||
.open = dm_open,
|
||||
.release = dm_release,
|
||||
.poll = dm_poll,
|
||||
.unlocked_ioctl = dm_ctl_ioctl,
|
||||
.compat_ioctl = dm_compat_ctl_ioctl,
|
||||
.owner = THIS_MODULE,
|
||||
|
|
|
@ -356,6 +356,7 @@ struct kcopyd_job {
|
|||
struct mutex lock;
|
||||
atomic_t sub_jobs;
|
||||
sector_t progress;
|
||||
sector_t write_offset;
|
||||
|
||||
struct kcopyd_job *master_job;
|
||||
};
|
||||
|
@ -386,6 +387,31 @@ void dm_kcopyd_exit(void)
|
|||
* Functions to push and pop a job onto the head of a given job
|
||||
* list.
|
||||
*/
|
||||
static struct kcopyd_job *pop_io_job(struct list_head *jobs,
|
||||
struct dm_kcopyd_client *kc)
|
||||
{
|
||||
struct kcopyd_job *job;
|
||||
|
||||
/*
|
||||
* For I/O jobs, pop any read, any write without sequential write
|
||||
* constraint and sequential writes that are at the right position.
|
||||
*/
|
||||
list_for_each_entry(job, jobs, list) {
|
||||
if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
|
||||
list_del(&job->list);
|
||||
return job;
|
||||
}
|
||||
|
||||
if (job->write_offset == job->master_job->write_offset) {
|
||||
job->master_job->write_offset += job->source.count;
|
||||
list_del(&job->list);
|
||||
return job;
|
||||
}
|
||||
}
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static struct kcopyd_job *pop(struct list_head *jobs,
|
||||
struct dm_kcopyd_client *kc)
|
||||
{
|
||||
|
@ -395,8 +421,12 @@ static struct kcopyd_job *pop(struct list_head *jobs,
|
|||
spin_lock_irqsave(&kc->job_lock, flags);
|
||||
|
||||
if (!list_empty(jobs)) {
|
||||
job = list_entry(jobs->next, struct kcopyd_job, list);
|
||||
list_del(&job->list);
|
||||
if (jobs == &kc->io_jobs)
|
||||
job = pop_io_job(jobs, kc);
|
||||
else {
|
||||
job = list_entry(jobs->next, struct kcopyd_job, list);
|
||||
list_del(&job->list);
|
||||
}
|
||||
}
|
||||
spin_unlock_irqrestore(&kc->job_lock, flags);
|
||||
|
||||
|
@ -506,6 +536,14 @@ static int run_io_job(struct kcopyd_job *job)
|
|||
.client = job->kc->io_client,
|
||||
};
|
||||
|
||||
/*
|
||||
* If we need to write sequentially and some reads or writes failed,
|
||||
* no point in continuing.
|
||||
*/
|
||||
if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
|
||||
job->master_job->write_err)
|
||||
return -EIO;
|
||||
|
||||
io_job_start(job->kc->throttle);
|
||||
|
||||
if (job->rw == READ)
|
||||
|
@ -655,6 +693,7 @@ static void segment_complete(int read_err, unsigned long write_err,
|
|||
int i;
|
||||
|
||||
*sub_job = *job;
|
||||
sub_job->write_offset = progress;
|
||||
sub_job->source.sector += progress;
|
||||
sub_job->source.count = count;
|
||||
|
||||
|
@ -723,6 +762,27 @@ int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
|
|||
job->num_dests = num_dests;
|
||||
memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
|
||||
|
||||
/*
|
||||
* If one of the destination is a host-managed zoned block device,
|
||||
* we need to write sequentially. If one of the destination is a
|
||||
* host-aware device, then leave it to the caller to choose what to do.
|
||||
*/
|
||||
if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
|
||||
for (i = 0; i < job->num_dests; i++) {
|
||||
if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
|
||||
set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If we need to write sequentially, errors cannot be ignored.
|
||||
*/
|
||||
if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
|
||||
test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
|
||||
clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
|
||||
|
||||
if (from) {
|
||||
job->source = *from;
|
||||
job->pages = NULL;
|
||||
|
@ -746,6 +806,7 @@ int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
|
|||
job->fn = fn;
|
||||
job->context = context;
|
||||
job->master_job = job;
|
||||
job->write_offset = 0;
|
||||
|
||||
if (job->source.count <= SUB_JOB_SIZE)
|
||||
dispatch_job(job);
|
||||
|
|
|
@ -89,7 +89,7 @@ static void linear_map_bio(struct dm_target *ti, struct bio *bio)
|
|||
struct linear_c *lc = ti->private;
|
||||
|
||||
bio->bi_bdev = lc->dev->bdev;
|
||||
if (bio_sectors(bio))
|
||||
if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)
|
||||
bio->bi_iter.bi_sector =
|
||||
linear_map_sector(ti, bio->bi_iter.bi_sector);
|
||||
}
|
||||
|
@ -101,6 +101,17 @@ static int linear_map(struct dm_target *ti, struct bio *bio)
|
|||
return DM_MAPIO_REMAPPED;
|
||||
}
|
||||
|
||||
static int linear_end_io(struct dm_target *ti, struct bio *bio,
|
||||
blk_status_t *error)
|
||||
{
|
||||
struct linear_c *lc = ti->private;
|
||||
|
||||
if (!*error && bio_op(bio) == REQ_OP_ZONE_REPORT)
|
||||
dm_remap_zone_report(ti, bio, lc->start);
|
||||
|
||||
return DM_ENDIO_DONE;
|
||||
}
|
||||
|
||||
static void linear_status(struct dm_target *ti, status_type_t type,
|
||||
unsigned status_flags, char *result, unsigned maxlen)
|
||||
{
|
||||
|
@ -161,12 +172,13 @@ static long linear_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
|
|||
|
||||
static struct target_type linear_target = {
|
||||
.name = "linear",
|
||||
.version = {1, 3, 0},
|
||||
.features = DM_TARGET_PASSES_INTEGRITY,
|
||||
.version = {1, 4, 0},
|
||||
.features = DM_TARGET_PASSES_INTEGRITY | DM_TARGET_ZONED_HM,
|
||||
.module = THIS_MODULE,
|
||||
.ctr = linear_ctr,
|
||||
.dtr = linear_dtr,
|
||||
.map = linear_map,
|
||||
.end_io = linear_end_io,
|
||||
.status = linear_status,
|
||||
.prepare_ioctl = linear_prepare_ioctl,
|
||||
.iterate_devices = linear_iterate_devices,
|
||||
|
|
|
@ -1571,7 +1571,7 @@ static sector_t __rdev_sectors(struct raid_set *rs)
|
|||
return rdev->sectors;
|
||||
}
|
||||
|
||||
BUG(); /* Constructor ensures we got some. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Calculate the sectors per device and per array used for @rs */
|
||||
|
@ -2941,7 +2941,7 @@ static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
|
|||
bool resize;
|
||||
struct raid_type *rt;
|
||||
unsigned int num_raid_params, num_raid_devs;
|
||||
sector_t calculated_dev_sectors;
|
||||
sector_t calculated_dev_sectors, rdev_sectors;
|
||||
struct raid_set *rs = NULL;
|
||||
const char *arg;
|
||||
struct rs_layout rs_layout;
|
||||
|
@ -3017,7 +3017,14 @@ static int raid_ctr(struct dm_target *ti, unsigned int argc, char **argv)
|
|||
if (r)
|
||||
goto bad;
|
||||
|
||||
resize = calculated_dev_sectors != __rdev_sectors(rs);
|
||||
rdev_sectors = __rdev_sectors(rs);
|
||||
if (!rdev_sectors) {
|
||||
ti->error = "Invalid rdev size";
|
||||
r = -EINVAL;
|
||||
goto bad;
|
||||
}
|
||||
|
||||
resize = calculated_dev_sectors != rdev_sectors;
|
||||
|
||||
INIT_WORK(&rs->md.event_work, do_table_event);
|
||||
ti->private = rs;
|
||||
|
|
|
@ -319,6 +319,39 @@ static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
|
|||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* If the target is mapped to zoned block device(s), check
|
||||
* that the zones are not partially mapped.
|
||||
*/
|
||||
if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
|
||||
unsigned int zone_sectors = bdev_zone_sectors(bdev);
|
||||
|
||||
if (start & (zone_sectors - 1)) {
|
||||
DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
|
||||
dm_device_name(ti->table->md),
|
||||
(unsigned long long)start,
|
||||
zone_sectors, bdevname(bdev, b));
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Note: The last zone of a zoned block device may be smaller
|
||||
* than other zones. So for a target mapping the end of a
|
||||
* zoned block device with such a zone, len would not be zone
|
||||
* aligned. We do not allow such last smaller zone to be part
|
||||
* of the mapping here to ensure that mappings with multiple
|
||||
* devices do not end up with a smaller zone in the middle of
|
||||
* the sector range.
|
||||
*/
|
||||
if (len & (zone_sectors - 1)) {
|
||||
DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
|
||||
dm_device_name(ti->table->md),
|
||||
(unsigned long long)len,
|
||||
zone_sectors, bdevname(bdev, b));
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (logical_block_size_sectors <= 1)
|
||||
return 0;
|
||||
|
||||
|
@ -456,6 +489,8 @@ static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
|
|||
q->limits.alignment_offset,
|
||||
(unsigned long long) start << SECTOR_SHIFT);
|
||||
|
||||
limits->zoned = blk_queue_zoned_model(q);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1346,6 +1381,88 @@ bool dm_table_has_no_data_devices(struct dm_table *table)
|
|||
return true;
|
||||
}
|
||||
|
||||
static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
|
||||
sector_t start, sector_t len, void *data)
|
||||
{
|
||||
struct request_queue *q = bdev_get_queue(dev->bdev);
|
||||
enum blk_zoned_model *zoned_model = data;
|
||||
|
||||
return q && blk_queue_zoned_model(q) == *zoned_model;
|
||||
}
|
||||
|
||||
static bool dm_table_supports_zoned_model(struct dm_table *t,
|
||||
enum blk_zoned_model zoned_model)
|
||||
{
|
||||
struct dm_target *ti;
|
||||
unsigned i;
|
||||
|
||||
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
||||
ti = dm_table_get_target(t, i);
|
||||
|
||||
if (zoned_model == BLK_ZONED_HM &&
|
||||
!dm_target_supports_zoned_hm(ti->type))
|
||||
return false;
|
||||
|
||||
if (!ti->type->iterate_devices ||
|
||||
!ti->type->iterate_devices(ti, device_is_zoned_model, &zoned_model))
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int device_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
|
||||
sector_t start, sector_t len, void *data)
|
||||
{
|
||||
struct request_queue *q = bdev_get_queue(dev->bdev);
|
||||
unsigned int *zone_sectors = data;
|
||||
|
||||
return q && blk_queue_zone_sectors(q) == *zone_sectors;
|
||||
}
|
||||
|
||||
static bool dm_table_matches_zone_sectors(struct dm_table *t,
|
||||
unsigned int zone_sectors)
|
||||
{
|
||||
struct dm_target *ti;
|
||||
unsigned i;
|
||||
|
||||
for (i = 0; i < dm_table_get_num_targets(t); i++) {
|
||||
ti = dm_table_get_target(t, i);
|
||||
|
||||
if (!ti->type->iterate_devices ||
|
||||
!ti->type->iterate_devices(ti, device_matches_zone_sectors, &zone_sectors))
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int validate_hardware_zoned_model(struct dm_table *table,
|
||||
enum blk_zoned_model zoned_model,
|
||||
unsigned int zone_sectors)
|
||||
{
|
||||
if (zoned_model == BLK_ZONED_NONE)
|
||||
return 0;
|
||||
|
||||
if (!dm_table_supports_zoned_model(table, zoned_model)) {
|
||||
DMERR("%s: zoned model is not consistent across all devices",
|
||||
dm_device_name(table->md));
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Check zone size validity and compatibility */
|
||||
if (!zone_sectors || !is_power_of_2(zone_sectors))
|
||||
return -EINVAL;
|
||||
|
||||
if (!dm_table_matches_zone_sectors(table, zone_sectors)) {
|
||||
DMERR("%s: zone sectors is not consistent across all devices",
|
||||
dm_device_name(table->md));
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Establish the new table's queue_limits and validate them.
|
||||
*/
|
||||
|
@ -1355,6 +1472,8 @@ int dm_calculate_queue_limits(struct dm_table *table,
|
|||
struct dm_target *ti;
|
||||
struct queue_limits ti_limits;
|
||||
unsigned i;
|
||||
enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
|
||||
unsigned int zone_sectors = 0;
|
||||
|
||||
blk_set_stacking_limits(limits);
|
||||
|
||||
|
@ -1372,6 +1491,15 @@ int dm_calculate_queue_limits(struct dm_table *table,
|
|||
ti->type->iterate_devices(ti, dm_set_device_limits,
|
||||
&ti_limits);
|
||||
|
||||
if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
|
||||
/*
|
||||
* After stacking all limits, validate all devices
|
||||
* in table support this zoned model and zone sectors.
|
||||
*/
|
||||
zoned_model = ti_limits.zoned;
|
||||
zone_sectors = ti_limits.chunk_sectors;
|
||||
}
|
||||
|
||||
/* Set I/O hints portion of queue limits */
|
||||
if (ti->type->io_hints)
|
||||
ti->type->io_hints(ti, &ti_limits);
|
||||
|
@ -1396,8 +1524,42 @@ combine_limits:
|
|||
dm_device_name(table->md),
|
||||
(unsigned long long) ti->begin,
|
||||
(unsigned long long) ti->len);
|
||||
|
||||
/*
|
||||
* FIXME: this should likely be moved to blk_stack_limits(), would
|
||||
* also eliminate limits->zoned stacking hack in dm_set_device_limits()
|
||||
*/
|
||||
if (limits->zoned == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
|
||||
/*
|
||||
* By default, the stacked limits zoned model is set to
|
||||
* BLK_ZONED_NONE in blk_set_stacking_limits(). Update
|
||||
* this model using the first target model reported
|
||||
* that is not BLK_ZONED_NONE. This will be either the
|
||||
* first target device zoned model or the model reported
|
||||
* by the target .io_hints.
|
||||
*/
|
||||
limits->zoned = ti_limits.zoned;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Verify that the zoned model and zone sectors, as determined before
|
||||
* any .io_hints override, are the same across all devices in the table.
|
||||
* - this is especially relevant if .io_hints is emulating a disk-managed
|
||||
* zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
|
||||
* BUT...
|
||||
*/
|
||||
if (limits->zoned != BLK_ZONED_NONE) {
|
||||
/*
|
||||
* ...IF the above limits stacking determined a zoned model
|
||||
* validate that all of the table's devices conform to it.
|
||||
*/
|
||||
zoned_model = limits->zoned;
|
||||
zone_sectors = limits->chunk_sectors;
|
||||
}
|
||||
if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
|
||||
return -EINVAL;
|
||||
|
||||
return validate_hardware_logical_block_alignment(table, limits);
|
||||
}
|
||||
|
||||
|
|
Разница между файлами не показана из-за своего большого размера
Загрузить разницу
|
@ -0,0 +1,570 @@
|
|||
/*
|
||||
* Copyright (C) 2017 Western Digital Corporation or its affiliates.
|
||||
*
|
||||
* This file is released under the GPL.
|
||||
*/
|
||||
|
||||
#include "dm-zoned.h"
|
||||
|
||||
#include <linux/module.h>
|
||||
|
||||
#define DM_MSG_PREFIX "zoned reclaim"
|
||||
|
||||
struct dmz_reclaim {
|
||||
struct dmz_metadata *metadata;
|
||||
struct dmz_dev *dev;
|
||||
|
||||
struct delayed_work work;
|
||||
struct workqueue_struct *wq;
|
||||
|
||||
struct dm_kcopyd_client *kc;
|
||||
struct dm_kcopyd_throttle kc_throttle;
|
||||
int kc_err;
|
||||
|
||||
unsigned long flags;
|
||||
|
||||
/* Last target access time */
|
||||
unsigned long atime;
|
||||
};
|
||||
|
||||
/*
|
||||
* Reclaim state flags.
|
||||
*/
|
||||
enum {
|
||||
DMZ_RECLAIM_KCOPY,
|
||||
};
|
||||
|
||||
/*
|
||||
* Number of seconds of target BIO inactivity to consider the target idle.
|
||||
*/
|
||||
#define DMZ_IDLE_PERIOD (10UL * HZ)
|
||||
|
||||
/*
|
||||
* Percentage of unmapped (free) random zones below which reclaim starts
|
||||
* even if the target is busy.
|
||||
*/
|
||||
#define DMZ_RECLAIM_LOW_UNMAP_RND 30
|
||||
|
||||
/*
|
||||
* Percentage of unmapped (free) random zones above which reclaim will
|
||||
* stop if the target is busy.
|
||||
*/
|
||||
#define DMZ_RECLAIM_HIGH_UNMAP_RND 50
|
||||
|
||||
/*
|
||||
* Align a sequential zone write pointer to chunk_block.
|
||||
*/
|
||||
static int dmz_reclaim_align_wp(struct dmz_reclaim *zrc, struct dm_zone *zone,
|
||||
sector_t block)
|
||||
{
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
sector_t wp_block = zone->wp_block;
|
||||
unsigned int nr_blocks;
|
||||
int ret;
|
||||
|
||||
if (wp_block == block)
|
||||
return 0;
|
||||
|
||||
if (wp_block > block)
|
||||
return -EIO;
|
||||
|
||||
/*
|
||||
* Zeroout the space between the write
|
||||
* pointer and the requested position.
|
||||
*/
|
||||
nr_blocks = block - wp_block;
|
||||
ret = blkdev_issue_zeroout(zrc->dev->bdev,
|
||||
dmz_start_sect(zmd, zone) + dmz_blk2sect(wp_block),
|
||||
dmz_blk2sect(nr_blocks), GFP_NOFS, false);
|
||||
if (ret) {
|
||||
dmz_dev_err(zrc->dev,
|
||||
"Align zone %u wp %llu to %llu (wp+%u) blocks failed %d",
|
||||
dmz_id(zmd, zone), (unsigned long long)wp_block,
|
||||
(unsigned long long)block, nr_blocks, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
zone->wp_block = block;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* dm_kcopyd_copy end notification.
|
||||
*/
|
||||
static void dmz_reclaim_kcopy_end(int read_err, unsigned long write_err,
|
||||
void *context)
|
||||
{
|
||||
struct dmz_reclaim *zrc = context;
|
||||
|
||||
if (read_err || write_err)
|
||||
zrc->kc_err = -EIO;
|
||||
else
|
||||
zrc->kc_err = 0;
|
||||
|
||||
clear_bit_unlock(DMZ_RECLAIM_KCOPY, &zrc->flags);
|
||||
smp_mb__after_atomic();
|
||||
wake_up_bit(&zrc->flags, DMZ_RECLAIM_KCOPY);
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy valid blocks of src_zone into dst_zone.
|
||||
*/
|
||||
static int dmz_reclaim_copy(struct dmz_reclaim *zrc,
|
||||
struct dm_zone *src_zone, struct dm_zone *dst_zone)
|
||||
{
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
struct dmz_dev *dev = zrc->dev;
|
||||
struct dm_io_region src, dst;
|
||||
sector_t block = 0, end_block;
|
||||
sector_t nr_blocks;
|
||||
sector_t src_zone_block;
|
||||
sector_t dst_zone_block;
|
||||
unsigned long flags = 0;
|
||||
int ret;
|
||||
|
||||
if (dmz_is_seq(src_zone))
|
||||
end_block = src_zone->wp_block;
|
||||
else
|
||||
end_block = dev->zone_nr_blocks;
|
||||
src_zone_block = dmz_start_block(zmd, src_zone);
|
||||
dst_zone_block = dmz_start_block(zmd, dst_zone);
|
||||
|
||||
if (dmz_is_seq(dst_zone))
|
||||
set_bit(DM_KCOPYD_WRITE_SEQ, &flags);
|
||||
|
||||
while (block < end_block) {
|
||||
/* Get a valid region from the source zone */
|
||||
ret = dmz_first_valid_block(zmd, src_zone, &block);
|
||||
if (ret <= 0)
|
||||
return ret;
|
||||
nr_blocks = ret;
|
||||
|
||||
/*
|
||||
* If we are writing in a sequential zone, we must make sure
|
||||
* that writes are sequential. So Zeroout any eventual hole
|
||||
* between writes.
|
||||
*/
|
||||
if (dmz_is_seq(dst_zone)) {
|
||||
ret = dmz_reclaim_align_wp(zrc, dst_zone, block);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
src.bdev = dev->bdev;
|
||||
src.sector = dmz_blk2sect(src_zone_block + block);
|
||||
src.count = dmz_blk2sect(nr_blocks);
|
||||
|
||||
dst.bdev = dev->bdev;
|
||||
dst.sector = dmz_blk2sect(dst_zone_block + block);
|
||||
dst.count = src.count;
|
||||
|
||||
/* Copy the valid region */
|
||||
set_bit(DMZ_RECLAIM_KCOPY, &zrc->flags);
|
||||
ret = dm_kcopyd_copy(zrc->kc, &src, 1, &dst, flags,
|
||||
dmz_reclaim_kcopy_end, zrc);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* Wait for copy to complete */
|
||||
wait_on_bit_io(&zrc->flags, DMZ_RECLAIM_KCOPY,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
if (zrc->kc_err)
|
||||
return zrc->kc_err;
|
||||
|
||||
block += nr_blocks;
|
||||
if (dmz_is_seq(dst_zone))
|
||||
dst_zone->wp_block = block;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Move valid blocks of dzone buffer zone into dzone (after its write pointer)
|
||||
* and free the buffer zone.
|
||||
*/
|
||||
static int dmz_reclaim_buf(struct dmz_reclaim *zrc, struct dm_zone *dzone)
|
||||
{
|
||||
struct dm_zone *bzone = dzone->bzone;
|
||||
sector_t chunk_block = dzone->wp_block;
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
int ret;
|
||||
|
||||
dmz_dev_debug(zrc->dev,
|
||||
"Chunk %u, move buf zone %u (weight %u) to data zone %u (weight %u)",
|
||||
dzone->chunk, dmz_id(zmd, bzone), dmz_weight(bzone),
|
||||
dmz_id(zmd, dzone), dmz_weight(dzone));
|
||||
|
||||
/* Flush data zone into the buffer zone */
|
||||
ret = dmz_reclaim_copy(zrc, bzone, dzone);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
dmz_lock_flush(zmd);
|
||||
|
||||
/* Validate copied blocks */
|
||||
ret = dmz_merge_valid_blocks(zmd, bzone, dzone, chunk_block);
|
||||
if (ret == 0) {
|
||||
/* Free the buffer zone */
|
||||
dmz_invalidate_blocks(zmd, bzone, 0, zrc->dev->zone_nr_blocks);
|
||||
dmz_lock_map(zmd);
|
||||
dmz_unmap_zone(zmd, bzone);
|
||||
dmz_unlock_zone_reclaim(dzone);
|
||||
dmz_free_zone(zmd, bzone);
|
||||
dmz_unlock_map(zmd);
|
||||
}
|
||||
|
||||
dmz_unlock_flush(zmd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Merge valid blocks of dzone into its buffer zone and free dzone.
|
||||
*/
|
||||
static int dmz_reclaim_seq_data(struct dmz_reclaim *zrc, struct dm_zone *dzone)
|
||||
{
|
||||
unsigned int chunk = dzone->chunk;
|
||||
struct dm_zone *bzone = dzone->bzone;
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
int ret = 0;
|
||||
|
||||
dmz_dev_debug(zrc->dev,
|
||||
"Chunk %u, move data zone %u (weight %u) to buf zone %u (weight %u)",
|
||||
chunk, dmz_id(zmd, dzone), dmz_weight(dzone),
|
||||
dmz_id(zmd, bzone), dmz_weight(bzone));
|
||||
|
||||
/* Flush data zone into the buffer zone */
|
||||
ret = dmz_reclaim_copy(zrc, dzone, bzone);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
dmz_lock_flush(zmd);
|
||||
|
||||
/* Validate copied blocks */
|
||||
ret = dmz_merge_valid_blocks(zmd, dzone, bzone, 0);
|
||||
if (ret == 0) {
|
||||
/*
|
||||
* Free the data zone and remap the chunk to
|
||||
* the buffer zone.
|
||||
*/
|
||||
dmz_invalidate_blocks(zmd, dzone, 0, zrc->dev->zone_nr_blocks);
|
||||
dmz_lock_map(zmd);
|
||||
dmz_unmap_zone(zmd, bzone);
|
||||
dmz_unmap_zone(zmd, dzone);
|
||||
dmz_unlock_zone_reclaim(dzone);
|
||||
dmz_free_zone(zmd, dzone);
|
||||
dmz_map_zone(zmd, bzone, chunk);
|
||||
dmz_unlock_map(zmd);
|
||||
}
|
||||
|
||||
dmz_unlock_flush(zmd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Move valid blocks of the random data zone dzone into a free sequential zone.
|
||||
* Once blocks are moved, remap the zone chunk to the sequential zone.
|
||||
*/
|
||||
static int dmz_reclaim_rnd_data(struct dmz_reclaim *zrc, struct dm_zone *dzone)
|
||||
{
|
||||
unsigned int chunk = dzone->chunk;
|
||||
struct dm_zone *szone = NULL;
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
int ret;
|
||||
|
||||
/* Get a free sequential zone */
|
||||
dmz_lock_map(zmd);
|
||||
szone = dmz_alloc_zone(zmd, DMZ_ALLOC_RECLAIM);
|
||||
dmz_unlock_map(zmd);
|
||||
if (!szone)
|
||||
return -ENOSPC;
|
||||
|
||||
dmz_dev_debug(zrc->dev,
|
||||
"Chunk %u, move rnd zone %u (weight %u) to seq zone %u",
|
||||
chunk, dmz_id(zmd, dzone), dmz_weight(dzone),
|
||||
dmz_id(zmd, szone));
|
||||
|
||||
/* Flush the random data zone into the sequential zone */
|
||||
ret = dmz_reclaim_copy(zrc, dzone, szone);
|
||||
|
||||
dmz_lock_flush(zmd);
|
||||
|
||||
if (ret == 0) {
|
||||
/* Validate copied blocks */
|
||||
ret = dmz_copy_valid_blocks(zmd, dzone, szone);
|
||||
}
|
||||
if (ret) {
|
||||
/* Free the sequential zone */
|
||||
dmz_lock_map(zmd);
|
||||
dmz_free_zone(zmd, szone);
|
||||
dmz_unlock_map(zmd);
|
||||
} else {
|
||||
/* Free the data zone and remap the chunk */
|
||||
dmz_invalidate_blocks(zmd, dzone, 0, zrc->dev->zone_nr_blocks);
|
||||
dmz_lock_map(zmd);
|
||||
dmz_unmap_zone(zmd, dzone);
|
||||
dmz_unlock_zone_reclaim(dzone);
|
||||
dmz_free_zone(zmd, dzone);
|
||||
dmz_map_zone(zmd, szone, chunk);
|
||||
dmz_unlock_map(zmd);
|
||||
}
|
||||
|
||||
dmz_unlock_flush(zmd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reclaim an empty zone.
|
||||
*/
|
||||
static void dmz_reclaim_empty(struct dmz_reclaim *zrc, struct dm_zone *dzone)
|
||||
{
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
|
||||
dmz_lock_flush(zmd);
|
||||
dmz_lock_map(zmd);
|
||||
dmz_unmap_zone(zmd, dzone);
|
||||
dmz_unlock_zone_reclaim(dzone);
|
||||
dmz_free_zone(zmd, dzone);
|
||||
dmz_unlock_map(zmd);
|
||||
dmz_unlock_flush(zmd);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find a candidate zone for reclaim and process it.
|
||||
*/
|
||||
static void dmz_reclaim(struct dmz_reclaim *zrc)
|
||||
{
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
struct dm_zone *dzone;
|
||||
struct dm_zone *rzone;
|
||||
unsigned long start;
|
||||
int ret;
|
||||
|
||||
/* Get a data zone */
|
||||
dzone = dmz_get_zone_for_reclaim(zmd);
|
||||
if (!dzone)
|
||||
return;
|
||||
|
||||
start = jiffies;
|
||||
|
||||
if (dmz_is_rnd(dzone)) {
|
||||
if (!dmz_weight(dzone)) {
|
||||
/* Empty zone */
|
||||
dmz_reclaim_empty(zrc, dzone);
|
||||
ret = 0;
|
||||
} else {
|
||||
/*
|
||||
* Reclaim the random data zone by moving its
|
||||
* valid data blocks to a free sequential zone.
|
||||
*/
|
||||
ret = dmz_reclaim_rnd_data(zrc, dzone);
|
||||
}
|
||||
rzone = dzone;
|
||||
|
||||
} else {
|
||||
struct dm_zone *bzone = dzone->bzone;
|
||||
sector_t chunk_block = 0;
|
||||
|
||||
ret = dmz_first_valid_block(zmd, bzone, &chunk_block);
|
||||
if (ret < 0)
|
||||
goto out;
|
||||
|
||||
if (ret == 0 || chunk_block >= dzone->wp_block) {
|
||||
/*
|
||||
* The buffer zone is empty or its valid blocks are
|
||||
* after the data zone write pointer.
|
||||
*/
|
||||
ret = dmz_reclaim_buf(zrc, dzone);
|
||||
rzone = bzone;
|
||||
} else {
|
||||
/*
|
||||
* Reclaim the data zone by merging it into the
|
||||
* buffer zone so that the buffer zone itself can
|
||||
* be later reclaimed.
|
||||
*/
|
||||
ret = dmz_reclaim_seq_data(zrc, dzone);
|
||||
rzone = dzone;
|
||||
}
|
||||
}
|
||||
out:
|
||||
if (ret) {
|
||||
dmz_unlock_zone_reclaim(dzone);
|
||||
return;
|
||||
}
|
||||
|
||||
(void) dmz_flush_metadata(zrc->metadata);
|
||||
|
||||
dmz_dev_debug(zrc->dev, "Reclaimed zone %u in %u ms",
|
||||
dmz_id(zmd, rzone), jiffies_to_msecs(jiffies - start));
|
||||
}
|
||||
|
||||
/*
|
||||
* Test if the target device is idle.
|
||||
*/
|
||||
static inline int dmz_target_idle(struct dmz_reclaim *zrc)
|
||||
{
|
||||
return time_is_before_jiffies(zrc->atime + DMZ_IDLE_PERIOD);
|
||||
}
|
||||
|
||||
/*
|
||||
* Test if reclaim is necessary.
|
||||
*/
|
||||
static bool dmz_should_reclaim(struct dmz_reclaim *zrc)
|
||||
{
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
unsigned int nr_rnd = dmz_nr_rnd_zones(zmd);
|
||||
unsigned int nr_unmap_rnd = dmz_nr_unmap_rnd_zones(zmd);
|
||||
unsigned int p_unmap_rnd = nr_unmap_rnd * 100 / nr_rnd;
|
||||
|
||||
/* Reclaim when idle */
|
||||
if (dmz_target_idle(zrc) && nr_unmap_rnd < nr_rnd)
|
||||
return true;
|
||||
|
||||
/* If there are still plenty of random zones, do not reclaim */
|
||||
if (p_unmap_rnd >= DMZ_RECLAIM_HIGH_UNMAP_RND)
|
||||
return false;
|
||||
|
||||
/*
|
||||
* If the percentage of unmappped random zones is low,
|
||||
* reclaim even if the target is busy.
|
||||
*/
|
||||
return p_unmap_rnd <= DMZ_RECLAIM_LOW_UNMAP_RND;
|
||||
}
|
||||
|
||||
/*
|
||||
* Reclaim work function.
|
||||
*/
|
||||
static void dmz_reclaim_work(struct work_struct *work)
|
||||
{
|
||||
struct dmz_reclaim *zrc = container_of(work, struct dmz_reclaim, work.work);
|
||||
struct dmz_metadata *zmd = zrc->metadata;
|
||||
unsigned int nr_rnd, nr_unmap_rnd;
|
||||
unsigned int p_unmap_rnd;
|
||||
|
||||
if (!dmz_should_reclaim(zrc)) {
|
||||
mod_delayed_work(zrc->wq, &zrc->work, DMZ_IDLE_PERIOD);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* We need to start reclaiming random zones: set up zone copy
|
||||
* throttling to either go fast if we are very low on random zones
|
||||
* and slower if there are still some free random zones to avoid
|
||||
* as much as possible to negatively impact the user workload.
|
||||
*/
|
||||
nr_rnd = dmz_nr_rnd_zones(zmd);
|
||||
nr_unmap_rnd = dmz_nr_unmap_rnd_zones(zmd);
|
||||
p_unmap_rnd = nr_unmap_rnd * 100 / nr_rnd;
|
||||
if (dmz_target_idle(zrc) || p_unmap_rnd < DMZ_RECLAIM_LOW_UNMAP_RND / 2) {
|
||||
/* Idle or very low percentage: go fast */
|
||||
zrc->kc_throttle.throttle = 100;
|
||||
} else {
|
||||
/* Busy but we still have some random zone: throttle */
|
||||
zrc->kc_throttle.throttle = min(75U, 100U - p_unmap_rnd / 2);
|
||||
}
|
||||
|
||||
dmz_dev_debug(zrc->dev,
|
||||
"Reclaim (%u): %s, %u%% free rnd zones (%u/%u)",
|
||||
zrc->kc_throttle.throttle,
|
||||
(dmz_target_idle(zrc) ? "Idle" : "Busy"),
|
||||
p_unmap_rnd, nr_unmap_rnd, nr_rnd);
|
||||
|
||||
dmz_reclaim(zrc);
|
||||
|
||||
dmz_schedule_reclaim(zrc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize reclaim.
|
||||
*/
|
||||
int dmz_ctr_reclaim(struct dmz_dev *dev, struct dmz_metadata *zmd,
|
||||
struct dmz_reclaim **reclaim)
|
||||
{
|
||||
struct dmz_reclaim *zrc;
|
||||
int ret;
|
||||
|
||||
zrc = kzalloc(sizeof(struct dmz_reclaim), GFP_KERNEL);
|
||||
if (!zrc)
|
||||
return -ENOMEM;
|
||||
|
||||
zrc->dev = dev;
|
||||
zrc->metadata = zmd;
|
||||
zrc->atime = jiffies;
|
||||
|
||||
/* Reclaim kcopyd client */
|
||||
zrc->kc = dm_kcopyd_client_create(&zrc->kc_throttle);
|
||||
if (IS_ERR(zrc->kc)) {
|
||||
ret = PTR_ERR(zrc->kc);
|
||||
zrc->kc = NULL;
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Reclaim work */
|
||||
INIT_DELAYED_WORK(&zrc->work, dmz_reclaim_work);
|
||||
zrc->wq = alloc_ordered_workqueue("dmz_rwq_%s", WQ_MEM_RECLAIM,
|
||||
dev->name);
|
||||
if (!zrc->wq) {
|
||||
ret = -ENOMEM;
|
||||
goto err;
|
||||
}
|
||||
|
||||
*reclaim = zrc;
|
||||
queue_delayed_work(zrc->wq, &zrc->work, 0);
|
||||
|
||||
return 0;
|
||||
err:
|
||||
if (zrc->kc)
|
||||
dm_kcopyd_client_destroy(zrc->kc);
|
||||
kfree(zrc);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Terminate reclaim.
|
||||
*/
|
||||
void dmz_dtr_reclaim(struct dmz_reclaim *zrc)
|
||||
{
|
||||
cancel_delayed_work_sync(&zrc->work);
|
||||
destroy_workqueue(zrc->wq);
|
||||
dm_kcopyd_client_destroy(zrc->kc);
|
||||
kfree(zrc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Suspend reclaim.
|
||||
*/
|
||||
void dmz_suspend_reclaim(struct dmz_reclaim *zrc)
|
||||
{
|
||||
cancel_delayed_work_sync(&zrc->work);
|
||||
}
|
||||
|
||||
/*
|
||||
* Resume reclaim.
|
||||
*/
|
||||
void dmz_resume_reclaim(struct dmz_reclaim *zrc)
|
||||
{
|
||||
queue_delayed_work(zrc->wq, &zrc->work, DMZ_IDLE_PERIOD);
|
||||
}
|
||||
|
||||
/*
|
||||
* BIO accounting.
|
||||
*/
|
||||
void dmz_reclaim_bio_acc(struct dmz_reclaim *zrc)
|
||||
{
|
||||
zrc->atime = jiffies;
|
||||
}
|
||||
|
||||
/*
|
||||
* Start reclaim if necessary.
|
||||
*/
|
||||
void dmz_schedule_reclaim(struct dmz_reclaim *zrc)
|
||||
{
|
||||
if (dmz_should_reclaim(zrc))
|
||||
mod_delayed_work(zrc->wq, &zrc->work, 0);
|
||||
}
|
||||
|
|
@ -0,0 +1,967 @@
|
|||
/*
|
||||
* Copyright (C) 2017 Western Digital Corporation or its affiliates.
|
||||
*
|
||||
* This file is released under the GPL.
|
||||
*/
|
||||
|
||||
#include "dm-zoned.h"
|
||||
|
||||
#include <linux/module.h>
|
||||
|
||||
#define DM_MSG_PREFIX "zoned"
|
||||
|
||||
#define DMZ_MIN_BIOS 8192
|
||||
|
||||
/*
|
||||
* Zone BIO context.
|
||||
*/
|
||||
struct dmz_bioctx {
|
||||
struct dmz_target *target;
|
||||
struct dm_zone *zone;
|
||||
struct bio *bio;
|
||||
atomic_t ref;
|
||||
blk_status_t status;
|
||||
};
|
||||
|
||||
/*
|
||||
* Chunk work descriptor.
|
||||
*/
|
||||
struct dm_chunk_work {
|
||||
struct work_struct work;
|
||||
atomic_t refcount;
|
||||
struct dmz_target *target;
|
||||
unsigned int chunk;
|
||||
struct bio_list bio_list;
|
||||
};
|
||||
|
||||
/*
|
||||
* Target descriptor.
|
||||
*/
|
||||
struct dmz_target {
|
||||
struct dm_dev *ddev;
|
||||
|
||||
unsigned long flags;
|
||||
|
||||
/* Zoned block device information */
|
||||
struct dmz_dev *dev;
|
||||
|
||||
/* For metadata handling */
|
||||
struct dmz_metadata *metadata;
|
||||
|
||||
/* For reclaim */
|
||||
struct dmz_reclaim *reclaim;
|
||||
|
||||
/* For chunk work */
|
||||
struct mutex chunk_lock;
|
||||
struct radix_tree_root chunk_rxtree;
|
||||
struct workqueue_struct *chunk_wq;
|
||||
|
||||
/* For cloned BIOs to zones */
|
||||
struct bio_set *bio_set;
|
||||
|
||||
/* For flush */
|
||||
spinlock_t flush_lock;
|
||||
struct bio_list flush_list;
|
||||
struct delayed_work flush_work;
|
||||
struct workqueue_struct *flush_wq;
|
||||
};
|
||||
|
||||
/*
|
||||
* Flush intervals (seconds).
|
||||
*/
|
||||
#define DMZ_FLUSH_PERIOD (10 * HZ)
|
||||
|
||||
/*
|
||||
* Target BIO completion.
|
||||
*/
|
||||
static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
|
||||
{
|
||||
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
||||
|
||||
if (bioctx->status == BLK_STS_OK && status != BLK_STS_OK)
|
||||
bioctx->status = status;
|
||||
bio_endio(bio);
|
||||
}
|
||||
|
||||
/*
|
||||
* Partial clone read BIO completion callback. This terminates the
|
||||
* target BIO when there are no more references to its context.
|
||||
*/
|
||||
static void dmz_read_bio_end_io(struct bio *bio)
|
||||
{
|
||||
struct dmz_bioctx *bioctx = bio->bi_private;
|
||||
blk_status_t status = bio->bi_status;
|
||||
|
||||
bio_put(bio);
|
||||
dmz_bio_endio(bioctx->bio, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Issue a BIO to a zone. The BIO may only partially process the
|
||||
* original target BIO.
|
||||
*/
|
||||
static int dmz_submit_read_bio(struct dmz_target *dmz, struct dm_zone *zone,
|
||||
struct bio *bio, sector_t chunk_block,
|
||||
unsigned int nr_blocks)
|
||||
{
|
||||
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
||||
sector_t sector;
|
||||
struct bio *clone;
|
||||
|
||||
/* BIO remap sector */
|
||||
sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
|
||||
|
||||
/* If the read is not partial, there is no need to clone the BIO */
|
||||
if (nr_blocks == dmz_bio_blocks(bio)) {
|
||||
/* Setup and submit the BIO */
|
||||
bio->bi_iter.bi_sector = sector;
|
||||
atomic_inc(&bioctx->ref);
|
||||
generic_make_request(bio);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Partial BIO: we need to clone the BIO */
|
||||
clone = bio_clone_fast(bio, GFP_NOIO, dmz->bio_set);
|
||||
if (!clone)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Setup the clone */
|
||||
clone->bi_iter.bi_sector = sector;
|
||||
clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
|
||||
clone->bi_end_io = dmz_read_bio_end_io;
|
||||
clone->bi_private = bioctx;
|
||||
|
||||
bio_advance(bio, clone->bi_iter.bi_size);
|
||||
|
||||
/* Submit the clone */
|
||||
atomic_inc(&bioctx->ref);
|
||||
generic_make_request(clone);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Zero out pages of discarded blocks accessed by a read BIO.
|
||||
*/
|
||||
static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
|
||||
sector_t chunk_block, unsigned int nr_blocks)
|
||||
{
|
||||
unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
|
||||
|
||||
/* Clear nr_blocks */
|
||||
swap(bio->bi_iter.bi_size, size);
|
||||
zero_fill_bio(bio);
|
||||
swap(bio->bi_iter.bi_size, size);
|
||||
|
||||
bio_advance(bio, size);
|
||||
}
|
||||
|
||||
/*
|
||||
* Process a read BIO.
|
||||
*/
|
||||
static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
|
||||
struct bio *bio)
|
||||
{
|
||||
sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
|
||||
unsigned int nr_blocks = dmz_bio_blocks(bio);
|
||||
sector_t end_block = chunk_block + nr_blocks;
|
||||
struct dm_zone *rzone, *bzone;
|
||||
int ret;
|
||||
|
||||
/* Read into unmapped chunks need only zeroing the BIO buffer */
|
||||
if (!zone) {
|
||||
zero_fill_bio(bio);
|
||||
return 0;
|
||||
}
|
||||
|
||||
dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks",
|
||||
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
||||
(dmz_is_rnd(zone) ? "RND" : "SEQ"),
|
||||
dmz_id(dmz->metadata, zone),
|
||||
(unsigned long long)chunk_block, nr_blocks);
|
||||
|
||||
/* Check block validity to determine the read location */
|
||||
bzone = zone->bzone;
|
||||
while (chunk_block < end_block) {
|
||||
nr_blocks = 0;
|
||||
if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) {
|
||||
/* Test block validity in the data zone */
|
||||
ret = dmz_block_valid(dmz->metadata, zone, chunk_block);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
if (ret > 0) {
|
||||
/* Read data zone blocks */
|
||||
nr_blocks = ret;
|
||||
rzone = zone;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* No valid blocks found in the data zone.
|
||||
* Check the buffer zone, if there is one.
|
||||
*/
|
||||
if (!nr_blocks && bzone) {
|
||||
ret = dmz_block_valid(dmz->metadata, bzone, chunk_block);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
if (ret > 0) {
|
||||
/* Read buffer zone blocks */
|
||||
nr_blocks = ret;
|
||||
rzone = bzone;
|
||||
}
|
||||
}
|
||||
|
||||
if (nr_blocks) {
|
||||
/* Valid blocks found: read them */
|
||||
nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block);
|
||||
ret = dmz_submit_read_bio(dmz, rzone, bio, chunk_block, nr_blocks);
|
||||
if (ret)
|
||||
return ret;
|
||||
chunk_block += nr_blocks;
|
||||
} else {
|
||||
/* No valid block: zeroout the current BIO block */
|
||||
dmz_handle_read_zero(dmz, bio, chunk_block, 1);
|
||||
chunk_block++;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Issue a write BIO to a zone.
|
||||
*/
|
||||
static void dmz_submit_write_bio(struct dmz_target *dmz, struct dm_zone *zone,
|
||||
struct bio *bio, sector_t chunk_block,
|
||||
unsigned int nr_blocks)
|
||||
{
|
||||
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
||||
|
||||
/* Setup and submit the BIO */
|
||||
bio->bi_bdev = dmz->dev->bdev;
|
||||
bio->bi_iter.bi_sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
|
||||
atomic_inc(&bioctx->ref);
|
||||
generic_make_request(bio);
|
||||
|
||||
if (dmz_is_seq(zone))
|
||||
zone->wp_block += nr_blocks;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write blocks directly in a data zone, at the write pointer.
|
||||
* If a buffer zone is assigned, invalidate the blocks written
|
||||
* in place.
|
||||
*/
|
||||
static int dmz_handle_direct_write(struct dmz_target *dmz,
|
||||
struct dm_zone *zone, struct bio *bio,
|
||||
sector_t chunk_block,
|
||||
unsigned int nr_blocks)
|
||||
{
|
||||
struct dmz_metadata *zmd = dmz->metadata;
|
||||
struct dm_zone *bzone = zone->bzone;
|
||||
int ret;
|
||||
|
||||
if (dmz_is_readonly(zone))
|
||||
return -EROFS;
|
||||
|
||||
/* Submit write */
|
||||
dmz_submit_write_bio(dmz, zone, bio, chunk_block, nr_blocks);
|
||||
|
||||
/*
|
||||
* Validate the blocks in the data zone and invalidate
|
||||
* in the buffer zone, if there is one.
|
||||
*/
|
||||
ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
|
||||
if (ret == 0 && bzone)
|
||||
ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write blocks in the buffer zone of @zone.
|
||||
* If no buffer zone is assigned yet, get one.
|
||||
* Called with @zone write locked.
|
||||
*/
|
||||
static int dmz_handle_buffered_write(struct dmz_target *dmz,
|
||||
struct dm_zone *zone, struct bio *bio,
|
||||
sector_t chunk_block,
|
||||
unsigned int nr_blocks)
|
||||
{
|
||||
struct dmz_metadata *zmd = dmz->metadata;
|
||||
struct dm_zone *bzone;
|
||||
int ret;
|
||||
|
||||
/* Get the buffer zone. One will be allocated if needed */
|
||||
bzone = dmz_get_chunk_buffer(zmd, zone);
|
||||
if (!bzone)
|
||||
return -ENOSPC;
|
||||
|
||||
if (dmz_is_readonly(bzone))
|
||||
return -EROFS;
|
||||
|
||||
/* Submit write */
|
||||
dmz_submit_write_bio(dmz, bzone, bio, chunk_block, nr_blocks);
|
||||
|
||||
/*
|
||||
* Validate the blocks in the buffer zone
|
||||
* and invalidate in the data zone.
|
||||
*/
|
||||
ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
|
||||
if (ret == 0 && chunk_block < zone->wp_block)
|
||||
ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Process a write BIO.
|
||||
*/
|
||||
static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
|
||||
struct bio *bio)
|
||||
{
|
||||
sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio));
|
||||
unsigned int nr_blocks = dmz_bio_blocks(bio);
|
||||
|
||||
if (!zone)
|
||||
return -ENOSPC;
|
||||
|
||||
dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
|
||||
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
||||
(dmz_is_rnd(zone) ? "RND" : "SEQ"),
|
||||
dmz_id(dmz->metadata, zone),
|
||||
(unsigned long long)chunk_block, nr_blocks);
|
||||
|
||||
if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) {
|
||||
/*
|
||||
* zone is a random zone or it is a sequential zone
|
||||
* and the BIO is aligned to the zone write pointer:
|
||||
* direct write the zone.
|
||||
*/
|
||||
return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is an unaligned write in a sequential zone:
|
||||
* use buffered write.
|
||||
*/
|
||||
return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
|
||||
}
|
||||
|
||||
/*
|
||||
* Process a discard BIO.
|
||||
*/
|
||||
static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
|
||||
struct bio *bio)
|
||||
{
|
||||
struct dmz_metadata *zmd = dmz->metadata;
|
||||
sector_t block = dmz_bio_block(bio);
|
||||
unsigned int nr_blocks = dmz_bio_blocks(bio);
|
||||
sector_t chunk_block = dmz_chunk_block(dmz->dev, block);
|
||||
int ret = 0;
|
||||
|
||||
/* For unmapped chunks, there is nothing to do */
|
||||
if (!zone)
|
||||
return 0;
|
||||
|
||||
if (dmz_is_readonly(zone))
|
||||
return -EROFS;
|
||||
|
||||
dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
|
||||
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
||||
dmz_id(zmd, zone),
|
||||
(unsigned long long)chunk_block, nr_blocks);
|
||||
|
||||
/*
|
||||
* Invalidate blocks in the data zone and its
|
||||
* buffer zone if one is mapped.
|
||||
*/
|
||||
if (dmz_is_rnd(zone) || chunk_block < zone->wp_block)
|
||||
ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
|
||||
if (ret == 0 && zone->bzone)
|
||||
ret = dmz_invalidate_blocks(zmd, zone->bzone,
|
||||
chunk_block, nr_blocks);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Process a BIO.
|
||||
*/
|
||||
static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
|
||||
struct bio *bio)
|
||||
{
|
||||
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
||||
struct dmz_metadata *zmd = dmz->metadata;
|
||||
struct dm_zone *zone;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Write may trigger a zone allocation. So make sure the
|
||||
* allocation can succeed.
|
||||
*/
|
||||
if (bio_op(bio) == REQ_OP_WRITE)
|
||||
dmz_schedule_reclaim(dmz->reclaim);
|
||||
|
||||
dmz_lock_metadata(zmd);
|
||||
|
||||
/*
|
||||
* Get the data zone mapping the chunk. There may be no
|
||||
* mapping for read and discard. If a mapping is obtained,
|
||||
+ the zone returned will be set to active state.
|
||||
*/
|
||||
zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio),
|
||||
bio_op(bio));
|
||||
if (IS_ERR(zone)) {
|
||||
ret = PTR_ERR(zone);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Process the BIO */
|
||||
if (zone) {
|
||||
dmz_activate_zone(zone);
|
||||
bioctx->zone = zone;
|
||||
}
|
||||
|
||||
switch (bio_op(bio)) {
|
||||
case REQ_OP_READ:
|
||||
ret = dmz_handle_read(dmz, zone, bio);
|
||||
break;
|
||||
case REQ_OP_WRITE:
|
||||
ret = dmz_handle_write(dmz, zone, bio);
|
||||
break;
|
||||
case REQ_OP_DISCARD:
|
||||
case REQ_OP_WRITE_ZEROES:
|
||||
ret = dmz_handle_discard(dmz, zone, bio);
|
||||
break;
|
||||
default:
|
||||
dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x",
|
||||
bio_op(bio));
|
||||
ret = -EIO;
|
||||
}
|
||||
|
||||
/*
|
||||
* Release the chunk mapping. This will check that the mapping
|
||||
* is still valid, that is, that the zone used still has valid blocks.
|
||||
*/
|
||||
if (zone)
|
||||
dmz_put_chunk_mapping(zmd, zone);
|
||||
out:
|
||||
dmz_bio_endio(bio, errno_to_blk_status(ret));
|
||||
|
||||
dmz_unlock_metadata(zmd);
|
||||
}
|
||||
|
||||
/*
|
||||
* Increment a chunk reference counter.
|
||||
*/
|
||||
static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
|
||||
{
|
||||
atomic_inc(&cw->refcount);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decrement a chunk work reference count and
|
||||
* free it if it becomes 0.
|
||||
*/
|
||||
static void dmz_put_chunk_work(struct dm_chunk_work *cw)
|
||||
{
|
||||
if (atomic_dec_and_test(&cw->refcount)) {
|
||||
WARN_ON(!bio_list_empty(&cw->bio_list));
|
||||
radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
|
||||
kfree(cw);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Chunk BIO work function.
|
||||
*/
|
||||
static void dmz_chunk_work(struct work_struct *work)
|
||||
{
|
||||
struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
|
||||
struct dmz_target *dmz = cw->target;
|
||||
struct bio *bio;
|
||||
|
||||
mutex_lock(&dmz->chunk_lock);
|
||||
|
||||
/* Process the chunk BIOs */
|
||||
while ((bio = bio_list_pop(&cw->bio_list))) {
|
||||
mutex_unlock(&dmz->chunk_lock);
|
||||
dmz_handle_bio(dmz, cw, bio);
|
||||
mutex_lock(&dmz->chunk_lock);
|
||||
dmz_put_chunk_work(cw);
|
||||
}
|
||||
|
||||
/* Queueing the work incremented the work refcount */
|
||||
dmz_put_chunk_work(cw);
|
||||
|
||||
mutex_unlock(&dmz->chunk_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush work.
|
||||
*/
|
||||
static void dmz_flush_work(struct work_struct *work)
|
||||
{
|
||||
struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
|
||||
struct bio *bio;
|
||||
int ret;
|
||||
|
||||
/* Flush dirty metadata blocks */
|
||||
ret = dmz_flush_metadata(dmz->metadata);
|
||||
|
||||
/* Process queued flush requests */
|
||||
while (1) {
|
||||
spin_lock(&dmz->flush_lock);
|
||||
bio = bio_list_pop(&dmz->flush_list);
|
||||
spin_unlock(&dmz->flush_lock);
|
||||
|
||||
if (!bio)
|
||||
break;
|
||||
|
||||
dmz_bio_endio(bio, errno_to_blk_status(ret));
|
||||
}
|
||||
|
||||
queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
|
||||
}
|
||||
|
||||
/*
|
||||
* Get a chunk work and start it to process a new BIO.
|
||||
* If the BIO chunk has no work yet, create one.
|
||||
*/
|
||||
static void dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
|
||||
{
|
||||
unsigned int chunk = dmz_bio_chunk(dmz->dev, bio);
|
||||
struct dm_chunk_work *cw;
|
||||
|
||||
mutex_lock(&dmz->chunk_lock);
|
||||
|
||||
/* Get the BIO chunk work. If one is not active yet, create one */
|
||||
cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
|
||||
if (!cw) {
|
||||
int ret;
|
||||
|
||||
/* Create a new chunk work */
|
||||
cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOFS);
|
||||
if (!cw)
|
||||
goto out;
|
||||
|
||||
INIT_WORK(&cw->work, dmz_chunk_work);
|
||||
atomic_set(&cw->refcount, 0);
|
||||
cw->target = dmz;
|
||||
cw->chunk = chunk;
|
||||
bio_list_init(&cw->bio_list);
|
||||
|
||||
ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
|
||||
if (unlikely(ret)) {
|
||||
kfree(cw);
|
||||
cw = NULL;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
bio_list_add(&cw->bio_list, bio);
|
||||
dmz_get_chunk_work(cw);
|
||||
|
||||
if (queue_work(dmz->chunk_wq, &cw->work))
|
||||
dmz_get_chunk_work(cw);
|
||||
out:
|
||||
mutex_unlock(&dmz->chunk_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Process a new BIO.
|
||||
*/
|
||||
static int dmz_map(struct dm_target *ti, struct bio *bio)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
struct dmz_dev *dev = dmz->dev;
|
||||
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
||||
sector_t sector = bio->bi_iter.bi_sector;
|
||||
unsigned int nr_sectors = bio_sectors(bio);
|
||||
sector_t chunk_sector;
|
||||
|
||||
dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
|
||||
bio_op(bio), (unsigned long long)sector, nr_sectors,
|
||||
(unsigned long long)dmz_bio_chunk(dmz->dev, bio),
|
||||
(unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)),
|
||||
(unsigned int)dmz_bio_blocks(bio));
|
||||
|
||||
bio->bi_bdev = dev->bdev;
|
||||
|
||||
if (!nr_sectors && (bio_op(bio) != REQ_OP_FLUSH) && (bio_op(bio) != REQ_OP_WRITE))
|
||||
return DM_MAPIO_REMAPPED;
|
||||
|
||||
/* The BIO should be block aligned */
|
||||
if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
|
||||
return DM_MAPIO_KILL;
|
||||
|
||||
/* Initialize the BIO context */
|
||||
bioctx->target = dmz;
|
||||
bioctx->zone = NULL;
|
||||
bioctx->bio = bio;
|
||||
atomic_set(&bioctx->ref, 1);
|
||||
bioctx->status = BLK_STS_OK;
|
||||
|
||||
/* Set the BIO pending in the flush list */
|
||||
if (bio_op(bio) == REQ_OP_FLUSH || (!nr_sectors && bio_op(bio) == REQ_OP_WRITE)) {
|
||||
spin_lock(&dmz->flush_lock);
|
||||
bio_list_add(&dmz->flush_list, bio);
|
||||
spin_unlock(&dmz->flush_lock);
|
||||
mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
|
||||
return DM_MAPIO_SUBMITTED;
|
||||
}
|
||||
|
||||
/* Split zone BIOs to fit entirely into a zone */
|
||||
chunk_sector = sector & (dev->zone_nr_sectors - 1);
|
||||
if (chunk_sector + nr_sectors > dev->zone_nr_sectors)
|
||||
dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector);
|
||||
|
||||
/* Now ready to handle this BIO */
|
||||
dmz_reclaim_bio_acc(dmz->reclaim);
|
||||
dmz_queue_chunk_work(dmz, bio);
|
||||
|
||||
return DM_MAPIO_SUBMITTED;
|
||||
}
|
||||
|
||||
/*
|
||||
* Completed target BIO processing.
|
||||
*/
|
||||
static int dmz_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
|
||||
{
|
||||
struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
|
||||
|
||||
if (bioctx->status == BLK_STS_OK && *error)
|
||||
bioctx->status = *error;
|
||||
|
||||
if (!atomic_dec_and_test(&bioctx->ref))
|
||||
return DM_ENDIO_INCOMPLETE;
|
||||
|
||||
/* Done */
|
||||
bio->bi_status = bioctx->status;
|
||||
|
||||
if (bioctx->zone) {
|
||||
struct dm_zone *zone = bioctx->zone;
|
||||
|
||||
if (*error && bio_op(bio) == REQ_OP_WRITE) {
|
||||
if (dmz_is_seq(zone))
|
||||
set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
|
||||
}
|
||||
dmz_deactivate_zone(zone);
|
||||
}
|
||||
|
||||
return DM_ENDIO_DONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get zoned device information.
|
||||
*/
|
||||
static int dmz_get_zoned_device(struct dm_target *ti, char *path)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
struct request_queue *q;
|
||||
struct dmz_dev *dev;
|
||||
int ret;
|
||||
|
||||
/* Get the target device */
|
||||
ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev);
|
||||
if (ret) {
|
||||
ti->error = "Get target device failed";
|
||||
dmz->ddev = NULL;
|
||||
return ret;
|
||||
}
|
||||
|
||||
dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL);
|
||||
if (!dev) {
|
||||
ret = -ENOMEM;
|
||||
goto err;
|
||||
}
|
||||
|
||||
dev->bdev = dmz->ddev->bdev;
|
||||
(void)bdevname(dev->bdev, dev->name);
|
||||
|
||||
if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) {
|
||||
ti->error = "Not a zoned block device";
|
||||
ret = -EINVAL;
|
||||
goto err;
|
||||
}
|
||||
|
||||
dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
|
||||
if (ti->begin || (ti->len != dev->capacity)) {
|
||||
ti->error = "Partial mapping not supported";
|
||||
ret = -EINVAL;
|
||||
goto err;
|
||||
}
|
||||
|
||||
q = bdev_get_queue(dev->bdev);
|
||||
dev->zone_nr_sectors = q->limits.chunk_sectors;
|
||||
dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors);
|
||||
|
||||
dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors);
|
||||
dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks);
|
||||
|
||||
dev->nr_zones = (dev->capacity + dev->zone_nr_sectors - 1)
|
||||
>> dev->zone_nr_sectors_shift;
|
||||
|
||||
dmz->dev = dev;
|
||||
|
||||
return 0;
|
||||
err:
|
||||
dm_put_device(ti, dmz->ddev);
|
||||
kfree(dev);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Cleanup zoned device information.
|
||||
*/
|
||||
static void dmz_put_zoned_device(struct dm_target *ti)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
|
||||
dm_put_device(ti, dmz->ddev);
|
||||
kfree(dmz->dev);
|
||||
dmz->dev = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Setup target.
|
||||
*/
|
||||
static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
|
||||
{
|
||||
struct dmz_target *dmz;
|
||||
struct dmz_dev *dev;
|
||||
int ret;
|
||||
|
||||
/* Check arguments */
|
||||
if (argc != 1) {
|
||||
ti->error = "Invalid argument count";
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Allocate and initialize the target descriptor */
|
||||
dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
|
||||
if (!dmz) {
|
||||
ti->error = "Unable to allocate the zoned target descriptor";
|
||||
return -ENOMEM;
|
||||
}
|
||||
ti->private = dmz;
|
||||
|
||||
/* Get the target zoned block device */
|
||||
ret = dmz_get_zoned_device(ti, argv[0]);
|
||||
if (ret) {
|
||||
dmz->ddev = NULL;
|
||||
goto err;
|
||||
}
|
||||
|
||||
/* Initialize metadata */
|
||||
dev = dmz->dev;
|
||||
ret = dmz_ctr_metadata(dev, &dmz->metadata);
|
||||
if (ret) {
|
||||
ti->error = "Metadata initialization failed";
|
||||
goto err_dev;
|
||||
}
|
||||
|
||||
/* Set target (no write same support) */
|
||||
ti->max_io_len = dev->zone_nr_sectors << 9;
|
||||
ti->num_flush_bios = 1;
|
||||
ti->num_discard_bios = 1;
|
||||
ti->num_write_zeroes_bios = 1;
|
||||
ti->per_io_data_size = sizeof(struct dmz_bioctx);
|
||||
ti->flush_supported = true;
|
||||
ti->discards_supported = true;
|
||||
ti->split_discard_bios = true;
|
||||
|
||||
/* The exposed capacity is the number of chunks that can be mapped */
|
||||
ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift;
|
||||
|
||||
/* Zone BIO */
|
||||
dmz->bio_set = bioset_create(DMZ_MIN_BIOS, 0, 0);
|
||||
if (!dmz->bio_set) {
|
||||
ti->error = "Create BIO set failed";
|
||||
ret = -ENOMEM;
|
||||
goto err_meta;
|
||||
}
|
||||
|
||||
/* Chunk BIO work */
|
||||
mutex_init(&dmz->chunk_lock);
|
||||
INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOFS);
|
||||
dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND,
|
||||
0, dev->name);
|
||||
if (!dmz->chunk_wq) {
|
||||
ti->error = "Create chunk workqueue failed";
|
||||
ret = -ENOMEM;
|
||||
goto err_bio;
|
||||
}
|
||||
|
||||
/* Flush work */
|
||||
spin_lock_init(&dmz->flush_lock);
|
||||
bio_list_init(&dmz->flush_list);
|
||||
INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
|
||||
dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
|
||||
dev->name);
|
||||
if (!dmz->flush_wq) {
|
||||
ti->error = "Create flush workqueue failed";
|
||||
ret = -ENOMEM;
|
||||
goto err_cwq;
|
||||
}
|
||||
mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
|
||||
|
||||
/* Initialize reclaim */
|
||||
ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim);
|
||||
if (ret) {
|
||||
ti->error = "Zone reclaim initialization failed";
|
||||
goto err_fwq;
|
||||
}
|
||||
|
||||
dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)",
|
||||
(unsigned long long)ti->len,
|
||||
(unsigned long long)dmz_sect2blk(ti->len));
|
||||
|
||||
return 0;
|
||||
err_fwq:
|
||||
destroy_workqueue(dmz->flush_wq);
|
||||
err_cwq:
|
||||
destroy_workqueue(dmz->chunk_wq);
|
||||
err_bio:
|
||||
bioset_free(dmz->bio_set);
|
||||
err_meta:
|
||||
dmz_dtr_metadata(dmz->metadata);
|
||||
err_dev:
|
||||
dmz_put_zoned_device(ti);
|
||||
err:
|
||||
kfree(dmz);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Cleanup target.
|
||||
*/
|
||||
static void dmz_dtr(struct dm_target *ti)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
|
||||
flush_workqueue(dmz->chunk_wq);
|
||||
destroy_workqueue(dmz->chunk_wq);
|
||||
|
||||
dmz_dtr_reclaim(dmz->reclaim);
|
||||
|
||||
cancel_delayed_work_sync(&dmz->flush_work);
|
||||
destroy_workqueue(dmz->flush_wq);
|
||||
|
||||
(void) dmz_flush_metadata(dmz->metadata);
|
||||
|
||||
dmz_dtr_metadata(dmz->metadata);
|
||||
|
||||
bioset_free(dmz->bio_set);
|
||||
|
||||
dmz_put_zoned_device(ti);
|
||||
|
||||
kfree(dmz);
|
||||
}
|
||||
|
||||
/*
|
||||
* Setup target request queue limits.
|
||||
*/
|
||||
static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
unsigned int chunk_sectors = dmz->dev->zone_nr_sectors;
|
||||
|
||||
limits->logical_block_size = DMZ_BLOCK_SIZE;
|
||||
limits->physical_block_size = DMZ_BLOCK_SIZE;
|
||||
|
||||
blk_limits_io_min(limits, DMZ_BLOCK_SIZE);
|
||||
blk_limits_io_opt(limits, DMZ_BLOCK_SIZE);
|
||||
|
||||
limits->discard_alignment = DMZ_BLOCK_SIZE;
|
||||
limits->discard_granularity = DMZ_BLOCK_SIZE;
|
||||
limits->max_discard_sectors = chunk_sectors;
|
||||
limits->max_hw_discard_sectors = chunk_sectors;
|
||||
limits->max_write_zeroes_sectors = chunk_sectors;
|
||||
|
||||
/* FS hint to try to align to the device zone size */
|
||||
limits->chunk_sectors = chunk_sectors;
|
||||
limits->max_sectors = chunk_sectors;
|
||||
|
||||
/* We are exposing a drive-managed zoned block device */
|
||||
limits->zoned = BLK_ZONED_NONE;
|
||||
}
|
||||
|
||||
/*
|
||||
* Pass on ioctl to the backend device.
|
||||
*/
|
||||
static int dmz_prepare_ioctl(struct dm_target *ti,
|
||||
struct block_device **bdev, fmode_t *mode)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
|
||||
*bdev = dmz->dev->bdev;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Stop works on suspend.
|
||||
*/
|
||||
static void dmz_suspend(struct dm_target *ti)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
|
||||
flush_workqueue(dmz->chunk_wq);
|
||||
dmz_suspend_reclaim(dmz->reclaim);
|
||||
cancel_delayed_work_sync(&dmz->flush_work);
|
||||
}
|
||||
|
||||
/*
|
||||
* Restart works on resume or if suspend failed.
|
||||
*/
|
||||
static void dmz_resume(struct dm_target *ti)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
|
||||
queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
|
||||
dmz_resume_reclaim(dmz->reclaim);
|
||||
}
|
||||
|
||||
static int dmz_iterate_devices(struct dm_target *ti,
|
||||
iterate_devices_callout_fn fn, void *data)
|
||||
{
|
||||
struct dmz_target *dmz = ti->private;
|
||||
|
||||
return fn(ti, dmz->ddev, 0, dmz->dev->capacity, data);
|
||||
}
|
||||
|
||||
static struct target_type dmz_type = {
|
||||
.name = "zoned",
|
||||
.version = {1, 0, 0},
|
||||
.features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM,
|
||||
.module = THIS_MODULE,
|
||||
.ctr = dmz_ctr,
|
||||
.dtr = dmz_dtr,
|
||||
.map = dmz_map,
|
||||
.end_io = dmz_end_io,
|
||||
.io_hints = dmz_io_hints,
|
||||
.prepare_ioctl = dmz_prepare_ioctl,
|
||||
.postsuspend = dmz_suspend,
|
||||
.resume = dmz_resume,
|
||||
.iterate_devices = dmz_iterate_devices,
|
||||
};
|
||||
|
||||
static int __init dmz_init(void)
|
||||
{
|
||||
return dm_register_target(&dmz_type);
|
||||
}
|
||||
|
||||
static void __exit dmz_exit(void)
|
||||
{
|
||||
dm_unregister_target(&dmz_type);
|
||||
}
|
||||
|
||||
module_init(dmz_init);
|
||||
module_exit(dmz_exit);
|
||||
|
||||
MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
|
||||
MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
|
||||
MODULE_LICENSE("GPL");
|
|
@ -0,0 +1,228 @@
|
|||
/*
|
||||
* Copyright (C) 2017 Western Digital Corporation or its affiliates.
|
||||
*
|
||||
* This file is released under the GPL.
|
||||
*/
|
||||
|
||||
#ifndef DM_ZONED_H
|
||||
#define DM_ZONED_H
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/device-mapper.h>
|
||||
#include <linux/dm-kcopyd.h>
|
||||
#include <linux/list.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/rbtree.h>
|
||||
#include <linux/radix-tree.h>
|
||||
#include <linux/shrinker.h>
|
||||
|
||||
/*
|
||||
* dm-zoned creates block devices with 4KB blocks, always.
|
||||
*/
|
||||
#define DMZ_BLOCK_SHIFT 12
|
||||
#define DMZ_BLOCK_SIZE (1 << DMZ_BLOCK_SHIFT)
|
||||
#define DMZ_BLOCK_MASK (DMZ_BLOCK_SIZE - 1)
|
||||
|
||||
#define DMZ_BLOCK_SHIFT_BITS (DMZ_BLOCK_SHIFT + 3)
|
||||
#define DMZ_BLOCK_SIZE_BITS (1 << DMZ_BLOCK_SHIFT_BITS)
|
||||
#define DMZ_BLOCK_MASK_BITS (DMZ_BLOCK_SIZE_BITS - 1)
|
||||
|
||||
#define DMZ_BLOCK_SECTORS_SHIFT (DMZ_BLOCK_SHIFT - SECTOR_SHIFT)
|
||||
#define DMZ_BLOCK_SECTORS (DMZ_BLOCK_SIZE >> SECTOR_SHIFT)
|
||||
#define DMZ_BLOCK_SECTORS_MASK (DMZ_BLOCK_SECTORS - 1)
|
||||
|
||||
/*
|
||||
* 4KB block <-> 512B sector conversion.
|
||||
*/
|
||||
#define dmz_blk2sect(b) ((sector_t)(b) << DMZ_BLOCK_SECTORS_SHIFT)
|
||||
#define dmz_sect2blk(s) ((sector_t)(s) >> DMZ_BLOCK_SECTORS_SHIFT)
|
||||
|
||||
#define dmz_bio_block(bio) dmz_sect2blk((bio)->bi_iter.bi_sector)
|
||||
#define dmz_bio_blocks(bio) dmz_sect2blk(bio_sectors(bio))
|
||||
|
||||
/*
|
||||
* Zoned block device information.
|
||||
*/
|
||||
struct dmz_dev {
|
||||
struct block_device *bdev;
|
||||
|
||||
char name[BDEVNAME_SIZE];
|
||||
|
||||
sector_t capacity;
|
||||
|
||||
unsigned int nr_zones;
|
||||
|
||||
sector_t zone_nr_sectors;
|
||||
unsigned int zone_nr_sectors_shift;
|
||||
|
||||
sector_t zone_nr_blocks;
|
||||
sector_t zone_nr_blocks_shift;
|
||||
};
|
||||
|
||||
#define dmz_bio_chunk(dev, bio) ((bio)->bi_iter.bi_sector >> \
|
||||
(dev)->zone_nr_sectors_shift)
|
||||
#define dmz_chunk_block(dev, b) ((b) & ((dev)->zone_nr_blocks - 1))
|
||||
|
||||
/*
|
||||
* Zone descriptor.
|
||||
*/
|
||||
struct dm_zone {
|
||||
/* For listing the zone depending on its state */
|
||||
struct list_head link;
|
||||
|
||||
/* Zone type and state */
|
||||
unsigned long flags;
|
||||
|
||||
/* Zone activation reference count */
|
||||
atomic_t refcount;
|
||||
|
||||
/* Zone write pointer block (relative to the zone start block) */
|
||||
unsigned int wp_block;
|
||||
|
||||
/* Zone weight (number of valid blocks in the zone) */
|
||||
unsigned int weight;
|
||||
|
||||
/* The chunk that the zone maps */
|
||||
unsigned int chunk;
|
||||
|
||||
/*
|
||||
* For a sequential data zone, pointer to the random zone
|
||||
* used as a buffer for processing unaligned writes.
|
||||
* For a buffer zone, this points back to the data zone.
|
||||
*/
|
||||
struct dm_zone *bzone;
|
||||
};
|
||||
|
||||
/*
|
||||
* Zone flags.
|
||||
*/
|
||||
enum {
|
||||
/* Zone write type */
|
||||
DMZ_RND,
|
||||
DMZ_SEQ,
|
||||
|
||||
/* Zone critical condition */
|
||||
DMZ_OFFLINE,
|
||||
DMZ_READ_ONLY,
|
||||
|
||||
/* How the zone is being used */
|
||||
DMZ_META,
|
||||
DMZ_DATA,
|
||||
DMZ_BUF,
|
||||
|
||||
/* Zone internal state */
|
||||
DMZ_ACTIVE,
|
||||
DMZ_RECLAIM,
|
||||
DMZ_SEQ_WRITE_ERR,
|
||||
};
|
||||
|
||||
/*
|
||||
* Zone data accessors.
|
||||
*/
|
||||
#define dmz_is_rnd(z) test_bit(DMZ_RND, &(z)->flags)
|
||||
#define dmz_is_seq(z) test_bit(DMZ_SEQ, &(z)->flags)
|
||||
#define dmz_is_empty(z) ((z)->wp_block == 0)
|
||||
#define dmz_is_offline(z) test_bit(DMZ_OFFLINE, &(z)->flags)
|
||||
#define dmz_is_readonly(z) test_bit(DMZ_READ_ONLY, &(z)->flags)
|
||||
#define dmz_is_active(z) test_bit(DMZ_ACTIVE, &(z)->flags)
|
||||
#define dmz_in_reclaim(z) test_bit(DMZ_RECLAIM, &(z)->flags)
|
||||
#define dmz_seq_write_err(z) test_bit(DMZ_SEQ_WRITE_ERR, &(z)->flags)
|
||||
|
||||
#define dmz_is_meta(z) test_bit(DMZ_META, &(z)->flags)
|
||||
#define dmz_is_buf(z) test_bit(DMZ_BUF, &(z)->flags)
|
||||
#define dmz_is_data(z) test_bit(DMZ_DATA, &(z)->flags)
|
||||
|
||||
#define dmz_weight(z) ((z)->weight)
|
||||
|
||||
/*
|
||||
* Message functions.
|
||||
*/
|
||||
#define dmz_dev_info(dev, format, args...) \
|
||||
DMINFO("(%s): " format, (dev)->name, ## args)
|
||||
|
||||
#define dmz_dev_err(dev, format, args...) \
|
||||
DMERR("(%s): " format, (dev)->name, ## args)
|
||||
|
||||
#define dmz_dev_warn(dev, format, args...) \
|
||||
DMWARN("(%s): " format, (dev)->name, ## args)
|
||||
|
||||
#define dmz_dev_debug(dev, format, args...) \
|
||||
DMDEBUG("(%s): " format, (dev)->name, ## args)
|
||||
|
||||
struct dmz_metadata;
|
||||
struct dmz_reclaim;
|
||||
|
||||
/*
|
||||
* Functions defined in dm-zoned-metadata.c
|
||||
*/
|
||||
int dmz_ctr_metadata(struct dmz_dev *dev, struct dmz_metadata **zmd);
|
||||
void dmz_dtr_metadata(struct dmz_metadata *zmd);
|
||||
int dmz_resume_metadata(struct dmz_metadata *zmd);
|
||||
|
||||
void dmz_lock_map(struct dmz_metadata *zmd);
|
||||
void dmz_unlock_map(struct dmz_metadata *zmd);
|
||||
void dmz_lock_metadata(struct dmz_metadata *zmd);
|
||||
void dmz_unlock_metadata(struct dmz_metadata *zmd);
|
||||
void dmz_lock_flush(struct dmz_metadata *zmd);
|
||||
void dmz_unlock_flush(struct dmz_metadata *zmd);
|
||||
int dmz_flush_metadata(struct dmz_metadata *zmd);
|
||||
|
||||
unsigned int dmz_id(struct dmz_metadata *zmd, struct dm_zone *zone);
|
||||
sector_t dmz_start_sect(struct dmz_metadata *zmd, struct dm_zone *zone);
|
||||
sector_t dmz_start_block(struct dmz_metadata *zmd, struct dm_zone *zone);
|
||||
unsigned int dmz_nr_chunks(struct dmz_metadata *zmd);
|
||||
|
||||
#define DMZ_ALLOC_RND 0x01
|
||||
#define DMZ_ALLOC_RECLAIM 0x02
|
||||
|
||||
struct dm_zone *dmz_alloc_zone(struct dmz_metadata *zmd, unsigned long flags);
|
||||
void dmz_free_zone(struct dmz_metadata *zmd, struct dm_zone *zone);
|
||||
|
||||
void dmz_map_zone(struct dmz_metadata *zmd, struct dm_zone *zone,
|
||||
unsigned int chunk);
|
||||
void dmz_unmap_zone(struct dmz_metadata *zmd, struct dm_zone *zone);
|
||||
unsigned int dmz_nr_rnd_zones(struct dmz_metadata *zmd);
|
||||
unsigned int dmz_nr_unmap_rnd_zones(struct dmz_metadata *zmd);
|
||||
|
||||
void dmz_activate_zone(struct dm_zone *zone);
|
||||
void dmz_deactivate_zone(struct dm_zone *zone);
|
||||
|
||||
int dmz_lock_zone_reclaim(struct dm_zone *zone);
|
||||
void dmz_unlock_zone_reclaim(struct dm_zone *zone);
|
||||
struct dm_zone *dmz_get_zone_for_reclaim(struct dmz_metadata *zmd);
|
||||
|
||||
struct dm_zone *dmz_get_chunk_mapping(struct dmz_metadata *zmd,
|
||||
unsigned int chunk, int op);
|
||||
void dmz_put_chunk_mapping(struct dmz_metadata *zmd, struct dm_zone *zone);
|
||||
struct dm_zone *dmz_get_chunk_buffer(struct dmz_metadata *zmd,
|
||||
struct dm_zone *dzone);
|
||||
|
||||
int dmz_validate_blocks(struct dmz_metadata *zmd, struct dm_zone *zone,
|
||||
sector_t chunk_block, unsigned int nr_blocks);
|
||||
int dmz_invalidate_blocks(struct dmz_metadata *zmd, struct dm_zone *zone,
|
||||
sector_t chunk_block, unsigned int nr_blocks);
|
||||
int dmz_block_valid(struct dmz_metadata *zmd, struct dm_zone *zone,
|
||||
sector_t chunk_block);
|
||||
int dmz_first_valid_block(struct dmz_metadata *zmd, struct dm_zone *zone,
|
||||
sector_t *chunk_block);
|
||||
int dmz_copy_valid_blocks(struct dmz_metadata *zmd, struct dm_zone *from_zone,
|
||||
struct dm_zone *to_zone);
|
||||
int dmz_merge_valid_blocks(struct dmz_metadata *zmd, struct dm_zone *from_zone,
|
||||
struct dm_zone *to_zone, sector_t chunk_block);
|
||||
|
||||
/*
|
||||
* Functions defined in dm-zoned-reclaim.c
|
||||
*/
|
||||
int dmz_ctr_reclaim(struct dmz_dev *dev, struct dmz_metadata *zmd,
|
||||
struct dmz_reclaim **zrc);
|
||||
void dmz_dtr_reclaim(struct dmz_reclaim *zrc);
|
||||
void dmz_suspend_reclaim(struct dmz_reclaim *zrc);
|
||||
void dmz_resume_reclaim(struct dmz_reclaim *zrc);
|
||||
void dmz_reclaim_bio_acc(struct dmz_reclaim *zrc);
|
||||
void dmz_schedule_reclaim(struct dmz_reclaim *zrc);
|
||||
|
||||
#endif /* DM_ZONED_H */
|
|
@ -58,6 +58,9 @@ static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
|
|||
|
||||
static struct workqueue_struct *deferred_remove_workqueue;
|
||||
|
||||
atomic_t dm_global_event_nr = ATOMIC_INIT(0);
|
||||
DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
|
||||
|
||||
/*
|
||||
* One of these is allocated per bio.
|
||||
*/
|
||||
|
@ -1009,6 +1012,85 @@ void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
|
|||
}
|
||||
EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
|
||||
|
||||
/*
|
||||
* The zone descriptors obtained with a zone report indicate
|
||||
* zone positions within the target device. The zone descriptors
|
||||
* must be remapped to match their position within the dm device.
|
||||
* A target may call dm_remap_zone_report after completion of a
|
||||
* REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
|
||||
* from the target device mapping to the dm device.
|
||||
*/
|
||||
void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
|
||||
{
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
|
||||
struct bio *report_bio = tio->io->bio;
|
||||
struct blk_zone_report_hdr *hdr = NULL;
|
||||
struct blk_zone *zone;
|
||||
unsigned int nr_rep = 0;
|
||||
unsigned int ofst;
|
||||
struct bio_vec bvec;
|
||||
struct bvec_iter iter;
|
||||
void *addr;
|
||||
|
||||
if (bio->bi_status)
|
||||
return;
|
||||
|
||||
/*
|
||||
* Remap the start sector of the reported zones. For sequential zones,
|
||||
* also remap the write pointer position.
|
||||
*/
|
||||
bio_for_each_segment(bvec, report_bio, iter) {
|
||||
addr = kmap_atomic(bvec.bv_page);
|
||||
|
||||
/* Remember the report header in the first page */
|
||||
if (!hdr) {
|
||||
hdr = addr;
|
||||
ofst = sizeof(struct blk_zone_report_hdr);
|
||||
} else
|
||||
ofst = 0;
|
||||
|
||||
/* Set zones start sector */
|
||||
while (hdr->nr_zones && ofst < bvec.bv_len) {
|
||||
zone = addr + ofst;
|
||||
if (zone->start >= start + ti->len) {
|
||||
hdr->nr_zones = 0;
|
||||
break;
|
||||
}
|
||||
zone->start = zone->start + ti->begin - start;
|
||||
if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
|
||||
if (zone->cond == BLK_ZONE_COND_FULL)
|
||||
zone->wp = zone->start + zone->len;
|
||||
else if (zone->cond == BLK_ZONE_COND_EMPTY)
|
||||
zone->wp = zone->start;
|
||||
else
|
||||
zone->wp = zone->wp + ti->begin - start;
|
||||
}
|
||||
ofst += sizeof(struct blk_zone);
|
||||
hdr->nr_zones--;
|
||||
nr_rep++;
|
||||
}
|
||||
|
||||
if (addr != hdr)
|
||||
kunmap_atomic(addr);
|
||||
|
||||
if (!hdr->nr_zones)
|
||||
break;
|
||||
}
|
||||
|
||||
if (hdr) {
|
||||
hdr->nr_zones = nr_rep;
|
||||
kunmap_atomic(hdr);
|
||||
}
|
||||
|
||||
bio_advance(report_bio, report_bio->bi_iter.bi_size);
|
||||
|
||||
#else /* !CONFIG_BLK_DEV_ZONED */
|
||||
bio->bi_status = BLK_STS_NOTSUPP;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(dm_remap_zone_report);
|
||||
|
||||
/*
|
||||
* Flush current->bio_list when the target map method blocks.
|
||||
* This fixes deadlocks in snapshot and possibly in other targets.
|
||||
|
@ -1149,7 +1231,8 @@ static int clone_bio(struct dm_target_io *tio, struct bio *bio,
|
|||
return r;
|
||||
}
|
||||
|
||||
bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
|
||||
if (bio_op(bio) != REQ_OP_ZONE_REPORT)
|
||||
bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
|
||||
clone->bi_iter.bi_size = to_bytes(len);
|
||||
|
||||
if (unlikely(bio_integrity(bio) != NULL))
|
||||
|
@ -1338,7 +1421,11 @@ static int __split_and_process_non_flush(struct clone_info *ci)
|
|||
if (!dm_target_is_valid(ti))
|
||||
return -EIO;
|
||||
|
||||
len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
|
||||
if (bio_op(bio) == REQ_OP_ZONE_REPORT)
|
||||
len = ci->sector_count;
|
||||
else
|
||||
len = min_t(sector_t, max_io_len(ci->sector, ti),
|
||||
ci->sector_count);
|
||||
|
||||
r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
|
||||
if (r < 0)
|
||||
|
@ -1381,6 +1468,10 @@ static void __split_and_process_bio(struct mapped_device *md,
|
|||
ci.sector_count = 0;
|
||||
error = __send_empty_flush(&ci);
|
||||
/* dec_pending submits any data associated with flush */
|
||||
} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
|
||||
ci.bio = bio;
|
||||
ci.sector_count = 0;
|
||||
error = __split_and_process_non_flush(&ci);
|
||||
} else {
|
||||
ci.bio = bio;
|
||||
ci.sector_count = bio_sectors(bio);
|
||||
|
@ -1759,7 +1850,9 @@ static void event_callback(void *context)
|
|||
dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
|
||||
|
||||
atomic_inc(&md->event_nr);
|
||||
atomic_inc(&dm_global_event_nr);
|
||||
wake_up(&md->eventq);
|
||||
wake_up(&dm_global_eventq);
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -237,6 +237,12 @@ typedef unsigned (*dm_num_write_bios_fn) (struct dm_target *ti, struct bio *bio)
|
|||
#define DM_TARGET_PASSES_INTEGRITY 0x00000020
|
||||
#define dm_target_passes_integrity(type) ((type)->features & DM_TARGET_PASSES_INTEGRITY)
|
||||
|
||||
/*
|
||||
* Indicates that a target supports host-managed zoned block devices.
|
||||
*/
|
||||
#define DM_TARGET_ZONED_HM 0x00000040
|
||||
#define dm_target_supports_zoned_hm(type) ((type)->features & DM_TARGET_ZONED_HM)
|
||||
|
||||
struct dm_target {
|
||||
struct dm_table *table;
|
||||
struct target_type *type;
|
||||
|
@ -444,6 +450,8 @@ struct gendisk *dm_disk(struct mapped_device *md);
|
|||
int dm_suspended(struct dm_target *ti);
|
||||
int dm_noflush_suspending(struct dm_target *ti);
|
||||
void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors);
|
||||
void dm_remap_zone_report(struct dm_target *ti, struct bio *bio,
|
||||
sector_t start);
|
||||
union map_info *dm_get_rq_mapinfo(struct request *rq);
|
||||
|
||||
struct queue_limits *dm_get_queue_limits(struct mapped_device *md);
|
||||
|
@ -543,48 +551,41 @@ extern struct ratelimit_state dm_ratelimit_state;
|
|||
#define dm_ratelimit() 0
|
||||
#endif
|
||||
|
||||
#define DMCRIT(f, arg...) \
|
||||
printk(KERN_CRIT DM_NAME ": " DM_MSG_PREFIX ": " f "\n", ## arg)
|
||||
#define DM_FMT(fmt) DM_NAME ": " DM_MSG_PREFIX ": " fmt "\n"
|
||||
|
||||
#define DMERR(f, arg...) \
|
||||
printk(KERN_ERR DM_NAME ": " DM_MSG_PREFIX ": " f "\n", ## arg)
|
||||
#define DMERR_LIMIT(f, arg...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
printk(KERN_ERR DM_NAME ": " DM_MSG_PREFIX ": " \
|
||||
f "\n", ## arg); \
|
||||
} while (0)
|
||||
#define DMCRIT(fmt, ...) pr_crit(DM_FMT(fmt), ##__VA_ARGS__)
|
||||
|
||||
#define DMWARN(f, arg...) \
|
||||
printk(KERN_WARNING DM_NAME ": " DM_MSG_PREFIX ": " f "\n", ## arg)
|
||||
#define DMWARN_LIMIT(f, arg...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
printk(KERN_WARNING DM_NAME ": " DM_MSG_PREFIX ": " \
|
||||
f "\n", ## arg); \
|
||||
} while (0)
|
||||
#define DMERR(fmt, ...) pr_err(DM_FMT(fmt), ##__VA_ARGS__)
|
||||
#define DMERR_LIMIT(fmt, ...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
DMERR(fmt, ##__VA_ARGS__); \
|
||||
} while (0)
|
||||
|
||||
#define DMINFO(f, arg...) \
|
||||
printk(KERN_INFO DM_NAME ": " DM_MSG_PREFIX ": " f "\n", ## arg)
|
||||
#define DMINFO_LIMIT(f, arg...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
printk(KERN_INFO DM_NAME ": " DM_MSG_PREFIX ": " f \
|
||||
"\n", ## arg); \
|
||||
} while (0)
|
||||
#define DMWARN(fmt, ...) pr_warn(DM_FMT(fmt), ##__VA_ARGS__)
|
||||
#define DMWARN_LIMIT(fmt, ...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
DMWARN(fmt, ##__VA_ARGS__); \
|
||||
} while (0)
|
||||
|
||||
#define DMINFO(fmt, ...) pr_info(DM_FMT(fmt), ##__VA_ARGS__)
|
||||
#define DMINFO_LIMIT(fmt, ...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
DMINFO(fmt, ##__VA_ARGS__); \
|
||||
} while (0)
|
||||
|
||||
#ifdef CONFIG_DM_DEBUG
|
||||
# define DMDEBUG(f, arg...) \
|
||||
printk(KERN_DEBUG DM_NAME ": " DM_MSG_PREFIX " DEBUG: " f "\n", ## arg)
|
||||
# define DMDEBUG_LIMIT(f, arg...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
printk(KERN_DEBUG DM_NAME ": " DM_MSG_PREFIX ": " f \
|
||||
"\n", ## arg); \
|
||||
} while (0)
|
||||
#define DMDEBUG(fmt, ...) printk(KERN_DEBUG DM_FMT(fmt), ##__VA_ARGS__)
|
||||
#define DMDEBUG_LIMIT(fmt, ...) \
|
||||
do { \
|
||||
if (dm_ratelimit()) \
|
||||
DMDEBUG(fmt, ##__VA_ARGS__); \
|
||||
} while (0)
|
||||
#else
|
||||
# define DMDEBUG(f, arg...) do {} while (0)
|
||||
# define DMDEBUG_LIMIT(f, arg...) do {} while (0)
|
||||
#define DMDEBUG(fmt, ...) no_printk(fmt, ##__VA_ARGS__)
|
||||
#define DMDEBUG_LIMIT(fmt, ...) no_printk(fmt, ##__VA_ARGS__)
|
||||
#endif
|
||||
|
||||
#define DMEMIT(x...) sz += ((sz >= maxlen) ? \
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#define DM_KCOPYD_MAX_REGIONS 8
|
||||
|
||||
#define DM_KCOPYD_IGNORE_ERROR 1
|
||||
#define DM_KCOPYD_WRITE_SEQ 2
|
||||
|
||||
struct dm_kcopyd_throttle {
|
||||
unsigned throttle;
|
||||
|
|
|
@ -240,7 +240,8 @@ enum {
|
|||
/* Added later */
|
||||
DM_LIST_VERSIONS_CMD,
|
||||
DM_TARGET_MSG_CMD,
|
||||
DM_DEV_SET_GEOMETRY_CMD
|
||||
DM_DEV_SET_GEOMETRY_CMD,
|
||||
DM_DEV_ARM_POLL_CMD,
|
||||
};
|
||||
|
||||
#define DM_IOCTL 0xfd
|
||||
|
@ -255,6 +256,7 @@ enum {
|
|||
#define DM_DEV_SUSPEND _IOWR(DM_IOCTL, DM_DEV_SUSPEND_CMD, struct dm_ioctl)
|
||||
#define DM_DEV_STATUS _IOWR(DM_IOCTL, DM_DEV_STATUS_CMD, struct dm_ioctl)
|
||||
#define DM_DEV_WAIT _IOWR(DM_IOCTL, DM_DEV_WAIT_CMD, struct dm_ioctl)
|
||||
#define DM_DEV_ARM_POLL _IOWR(DM_IOCTL, DM_DEV_ARM_POLL_CMD, struct dm_ioctl)
|
||||
|
||||
#define DM_TABLE_LOAD _IOWR(DM_IOCTL, DM_TABLE_LOAD_CMD, struct dm_ioctl)
|
||||
#define DM_TABLE_CLEAR _IOWR(DM_IOCTL, DM_TABLE_CLEAR_CMD, struct dm_ioctl)
|
||||
|
|
Загрузка…
Ссылка в новой задаче