perf test: Add metric value validation test

Add metric value validation test to check if metric values are with in
correct value ranges. There are three types of tests included: 1)
positive-value test checks if all the metrics collected are non-negative;
2) single-value test checks if the list of metrics have values in given
value ranges; 3) relationship test checks if multiple metrics follow a
given relationship, e.g. memory_bandwidth_read + memory_bandwidth_write =
memory_bandwidth_total.

Signed-off-by: Weilin Wang <weilin.wang@intel.com>
Tested-by: Namhyung Kim <namhyung@kernel.org>
Cc: ravi.bangoria@amd.com
Cc: Ian Rogers <irogers@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Caleb Biggers <caleb.biggers@intel.com>
Cc: Perry Taylor <perry.taylor@intel.com>
Cc: Samantha Alt <samantha.alt@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Link: https://lore.kernel.org/r/20230620170027.1861012-2-weilin.wang@intel.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
This commit is contained in:
Weilin Wang 2023-06-20 10:00:25 -07:00 коммит произвёл Namhyung Kim
Родитель 362f9c907f
Коммит 3ad7092f51
3 изменённых файлов: 931 добавлений и 0 удалений

Просмотреть файл

@ -0,0 +1,514 @@
#SPDX-License-Identifier: GPL-2.0
import re
import csv
import json
import argparse
from pathlib import Path
import subprocess
class Validator:
def __init__(self, rulefname, reportfname='', t=5, debug=False, datafname='', fullrulefname='', workload='true', metrics=''):
self.rulefname = rulefname
self.reportfname = reportfname
self.rules = None
self.collectlist=metrics
self.metrics = set()
self.tolerance = t
self.workloads = [x for x in workload.split(",") if x]
self.wlidx = 0 # idx of current workloads
self.allresults = dict() # metric results of all workload
self.allignoremetrics = dict() # metrics with no results or negative results
self.allfailtests = dict()
self.alltotalcnt = dict()
self.allpassedcnt = dict()
self.allerrlist = dict()
self.results = dict() # metric results of current workload
# vars for test pass/failure statistics
self.ignoremetrics= set() # metrics with no results or negative results, neg result counts as a failed test
self.failtests = dict()
self.totalcnt = 0
self.passedcnt = 0
# vars for errors
self.errlist = list()
# vars for Rule Generator
self.pctgmetrics = set() # Percentage rule
# vars for debug
self.datafname = datafname
self.debug = debug
self.fullrulefname = fullrulefname
def read_json(self, filename: str) -> dict:
try:
with open(Path(filename).resolve(), "r") as f:
data = json.loads(f.read())
except OSError as e:
print(f"Error when reading file {e}")
sys.exit()
return data
def json_dump(self, data, output_file):
parent = Path(output_file).parent
if not parent.exists():
parent.mkdir(parents=True)
with open(output_file, "w+") as output_file:
json.dump(data,
output_file,
ensure_ascii=True,
indent=4)
def get_results(self, idx:int = 0):
return self.results[idx]
def get_bounds(self, lb, ub, error, alias={}, ridx:int = 0) -> list:
"""
Get bounds and tolerance from lb, ub, and error.
If missing lb, use 0.0; missing ub, use float('inf); missing error, use self.tolerance.
@param lb: str/float, lower bound
@param ub: str/float, upper bound
@param error: float/str, error tolerance
@returns: lower bound, return inf if the lower bound is a metric value and is not collected
upper bound, return -1 if the upper bound is a metric value and is not collected
tolerance, denormalized base on upper bound value
"""
# init ubv and lbv to invalid values
def get_bound_value (bound, initval, ridx):
val = initval
if isinstance(bound, int) or isinstance(bound, float):
val = bound
elif isinstance(bound, str):
if bound == '':
val = float("inf")
elif bound in alias:
vall = self.get_value(alias[ub], ridx)
if vall:
val = vall[0]
elif bound.replace('.', '1').isdigit():
val = float(bound)
else:
print("Wrong bound: {0}".format(bound))
else:
print("Wrong bound: {0}".format(bound))
return val
ubv = get_bound_value(ub, -1, ridx)
lbv = get_bound_value(lb, float('inf'), ridx)
t = get_bound_value(error, self.tolerance, ridx)
# denormalize error threshold
denormerr = t * ubv / 100 if ubv != 100 and ubv > 0 else t
return lbv, ubv, denormerr
def get_value(self, name:str, ridx:int = 0) -> list:
"""
Get value of the metric from self.results.
If result of this metric is not provided, the metric name will be added into self.ignoremetics and self.errlist.
All future test(s) on this metric will fail.
@param name: name of the metric
@returns: list with value found in self.results; list is empty when not value found.
"""
results = []
data = self.results[ridx] if ridx in self.results else self.results[0]
if name not in self.ignoremetrics:
if name in data:
results.append(data[name])
elif name.replace('.', '1').isdigit():
results.append(float(name))
else:
self.errlist.append("Metric '%s' is not collected or the value format is incorrect"%(name))
self.ignoremetrics.add(name)
return results
def check_bound(self, val, lb, ub, err):
return True if val <= ub + err and val >= lb - err else False
# Positive Value Sanity check
def pos_val_test(self):
"""
Check if metrics value are non-negative.
One metric is counted as one test.
Failure: when metric value is negative or not provided.
Metrics with negative value will be added into the self.failtests['PositiveValueTest'] and self.ignoremetrics.
"""
negmetric = set()
missmetric = set()
pcnt = 0
tcnt = 0
for name, val in self.get_results().items():
if val is None or val == '':
missmetric.add(name)
self.errlist.append("Metric '%s' is not collected"%(name))
elif val < 0:
negmetric.add("{0}(={1:.4f})".format(name, val))
else:
pcnt += 1
tcnt += 1
self.failtests['PositiveValueTest']['Total Tests'] = tcnt
self.failtests['PositiveValueTest']['Passed Tests'] = pcnt
if len(negmetric) or len(missmetric)> 0:
self.ignoremetrics.update(negmetric)
self.ignoremetrics.update(missmetric)
self.failtests['PositiveValueTest']['Failed Tests'].append({'NegativeValue':list(negmetric), 'MissingValue':list(missmetric)})
return
def evaluate_formula(self, formula:str, alias:dict, ridx:int = 0):
"""
Evaluate the value of formula.
@param formula: the formula to be evaluated
@param alias: the dict has alias to metric name mapping
@returns: value of the formula is success; -1 if the one or more metric value not provided
"""
stack = []
b = 0
errs = []
sign = "+"
f = str()
#TODO: support parenthesis?
for i in range(len(formula)):
if i+1 == len(formula) or formula[i] in ('+', '-', '*', '/'):
s = alias[formula[b:i]] if i+1 < len(formula) else alias[formula[b:]]
v = self.get_value(s, ridx)
if not v:
errs.append(s)
else:
f = f + "{0}(={1:.4f})".format(s, v[0])
if sign == "*":
stack[-1] = stack[-1] * v
elif sign == "/":
stack[-1] = stack[-1] / v
elif sign == '-':
stack.append(-v[0])
else:
stack.append(v[0])
if i + 1 < len(formula):
sign = formula[i]
f += sign
b = i + 1
if len(errs) > 0:
return -1, "Metric value missing: "+','.join(errs)
val = sum(stack)
return val, f
# Relationships Tests
def relationship_test(self, rule: dict):
"""
Validate if the metrics follow the required relationship in the rule.
eg. lower_bound <= eval(formula)<= upper_bound
One rule is counted as ont test.
Failure: when one or more metric result(s) not provided, or when formula evaluated outside of upper/lower bounds.
@param rule: dict with metric name(+alias), formula, and required upper and lower bounds.
"""
alias = dict()
for m in rule['Metrics']:
alias[m['Alias']] = m['Name']
lbv, ubv, t = self.get_bounds(rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'], alias, ridx=rule['RuleIndex'])
val, f = self.evaluate_formula(rule['Formula'], alias, ridx=rule['RuleIndex'])
if val == -1:
self.failtests['RelationshipTest']['Failed Tests'].append({'RuleIndex': rule['RuleIndex'], 'Description':f})
elif not self.check_bound(val, lbv, ubv, t):
lb = rule['RangeLower']
ub = rule['RangeUpper']
if isinstance(lb, str):
if lb in alias:
lb = alias[lb]
if isinstance(ub, str):
if ub in alias:
ub = alias[ub]
self.failtests['RelationshipTest']['Failed Tests'].append({'RuleIndex': rule['RuleIndex'], 'Formula':f,
'RangeLower': lb, 'LowerBoundValue': self.get_value(lb),
'RangeUpper': ub, 'UpperBoundValue':self.get_value(ub),
'ErrorThreshold': t, 'CollectedValue': val})
else:
self.passedcnt += 1
self.failtests['RelationshipTest']['Passed Tests'] += 1
self.totalcnt += 1
self.failtests['RelationshipTest']['Total Tests'] += 1
return
# Single Metric Test
def single_test(self, rule:dict):
"""
Validate if the metrics are in the required value range.
eg. lower_bound <= metrics_value <= upper_bound
One metric is counted as one test in this type of test.
One rule may include one or more metrics.
Failure: when the metric value not provided or the value is outside the bounds.
This test updates self.total_cnt and records failed tests in self.failtest['SingleMetricTest'].
@param rule: dict with metrics to validate and the value range requirement
"""
lbv, ubv, t = self.get_bounds(rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'])
metrics = rule['Metrics']
passcnt = 0
totalcnt = 0
faillist = []
for m in metrics:
totalcnt += 1
result = self.get_value(m['Name'])
if len(result) > 0 and self.check_bound(result[0], lbv, ubv, t):
passcnt += 1
else:
faillist.append({'MetricName':m['Name'], 'CollectedValue':result})
self.totalcnt += totalcnt
self.passedcnt += passcnt
self.failtests['SingleMetricTest']['Total Tests'] += totalcnt
self.failtests['SingleMetricTest']['Passed Tests'] += passcnt
if len(faillist) != 0:
self.failtests['SingleMetricTest']['Failed Tests'].append({'RuleIndex':rule['RuleIndex'],
'RangeLower': rule['RangeLower'],
'RangeUpper': rule['RangeUpper'],
'ErrorThreshold':rule['ErrorThreshold'],
'Failure':faillist})
return
def create_report(self):
"""
Create final report and write into a JSON file.
"""
alldata = list()
for i in range(0, len(self.workloads)):
reportstas = {"Total Rule Count": self.alltotalcnt[i], "Passed Rule Count": self.allpassedcnt[i]}
data = {"Metric Validation Statistics": reportstas, "Tests in Category": self.allfailtests[i],
"Errors":self.allerrlist[i]}
alldata.append({"Workload": self.workloads[i], "Report": data})
json_str = json.dumps(alldata, indent=4)
print("Test validation finished. Final report: ")
print(json_str)
if self.debug:
allres = [{"Workload": self.workloads[i], "Results": self.allresults[i]} for i in range(0, len(self.workloads))]
self.json_dump(allres, self.datafname)
def check_rule(self, testtype, metric_list):
"""
Check if the rule uses metric(s) that not exist in current platform.
@param metric_list: list of metrics from the rule.
@return: False when find one metric out in Metric file. (This rule should not skipped.)
True when all metrics used in the rule are found in Metric file.
"""
if testtype == "RelationshipTest":
for m in metric_list:
if m['Name'] not in self.metrics:
return False
return True
# Start of Collector and Converter
def convert(self, data: list, idx: int):
"""
Convert collected metric data from the -j output to dict of {metric_name:value}.
"""
for json_string in data:
try:
result =json.loads(json_string)
if "metric-unit" in result and result["metric-unit"] != "(null)" and result["metric-unit"] != "":
name = result["metric-unit"].split(" ")[1] if len(result["metric-unit"].split(" ")) > 1 \
else result["metric-unit"]
if idx not in self.results: self.results[idx] = dict()
self.results[idx][name.lower()] = float(result["metric-value"])
except ValueError as error:
continue
return
def collect_perf(self, data_file: str, workload: str):
"""
Collect metric data with "perf stat -M" on given workload with -a and -j.
"""
self.results = dict()
tool = 'perf'
print(f"Starting perf collection")
print(f"Workload: {workload}")
collectlist = dict()
if self.collectlist != "":
collectlist[0] = {x for x in self.collectlist.split(",")}
else:
collectlist[0] = set(list(self.metrics))
# Create metric set for relationship rules
for rule in self.rules:
if rule["TestType"] == "RelationshipTest":
metrics = [m["Name"] for m in rule["Metrics"]]
if not any(m not in collectlist[0] for m in metrics):
collectlist[rule["RuleIndex"]] = set(metrics)
for idx, metrics in collectlist.items():
if idx == 0: wl = "sleep 0.5".split()
else: wl = workload.split()
for metric in metrics:
command = [tool, 'stat', '-j', '-M', f"{metric}", "-a"]
command.extend(wl)
cmd = subprocess.run(command, stderr=subprocess.PIPE, encoding='utf-8')
data = [x+'}' for x in cmd.stderr.split('}\n') if x]
self.convert(data, idx)
# End of Collector and Converter
# Start of Rule Generator
def parse_perf_metrics(self):
"""
Read and parse perf metric file:
1) find metrics with '1%' or '100%' as ScaleUnit for Percent check
2) create metric name list
"""
command = ['perf', 'list', '-j', '--details', 'metrics']
cmd = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8')
try:
data = json.loads(cmd.stdout)
for m in data:
if 'MetricName' not in m:
print("Warning: no metric name")
continue
name = m['MetricName']
self.metrics.add(name)
if 'ScaleUnit' in m and (m['ScaleUnit'] == '1%' or m['ScaleUnit'] == '100%'):
self.pctgmetrics.add(name.lower())
except ValueError as error:
print(f"Error when parsing metric data")
sys.exit()
return
def create_rules(self):
"""
Create full rules which includes:
1) All the rules from the "relationshi_rules" file
2) SingleMetric rule for all the 'percent' metrics
Reindex all the rules to avoid repeated RuleIndex
"""
self.rules = self.read_json(self.rulefname)['RelationshipRules']
pctgrule = {'RuleIndex':0,
'TestType':'SingleMetricTest',
'RangeLower':'0',
'RangeUpper': '100',
'ErrorThreshold': self.tolerance,
'Description':'Metrics in percent unit have value with in [0, 100]',
'Metrics': [{'Name': m} for m in self.pctgmetrics]}
self.rules.append(pctgrule)
# Re-index all rules to avoid repeated RuleIndex
idx = 1
for r in self.rules:
r['RuleIndex'] = idx
idx += 1
if self.debug:
#TODO: need to test and generate file name correctly
data = {'RelationshipRules':self.rules, 'SupportedMetrics': [{"MetricName": name} for name in self.metrics]}
self.json_dump(data, self.fullrulefname)
return
# End of Rule Generator
def _storewldata(self, key):
'''
Store all the data of one workload into the corresponding data structure for all workloads.
@param key: key to the dictionaries (index of self.workloads).
'''
self.allresults[key] = self.results
self.allignoremetrics[key] = self.ignoremetrics
self.allfailtests[key] = self.failtests
self.alltotalcnt[key] = self.totalcnt
self.allpassedcnt[key] = self.passedcnt
self.allerrlist[key] = self.errlist
#Initialize data structures before data validation of each workload
def _init_data(self):
testtypes = ['PositiveValueTest', 'RelationshipTest', 'SingleMetricTest']
self.results = dict()
self.ignoremetrics= set()
self.errlist = list()
self.failtests = {k:{'Total Tests':0, 'Passed Tests':0, 'Failed Tests':[]} for k in testtypes}
self.totalcnt = 0
self.passedcnt = 0
def test(self):
'''
The real entry point of the test framework.
This function loads the validation rule JSON file and Standard Metric file to create rules for
testing and namemap dictionaries.
It also reads in result JSON file for testing.
In the test process, it passes through each rule and launch correct test function bases on the
'TestType' field of the rule.
The final report is written into a JSON file.
'''
self.parse_perf_metrics()
self.create_rules()
for i in range(0, len(self.workloads)):
self._init_data()
self.collect_perf(self.datafname, self.workloads[i])
# Run positive value test
self.pos_val_test()
for r in self.rules:
# skip rules that uses metrics not exist in this platform
testtype = r['TestType']
if not self.check_rule(testtype, r['Metrics']):
continue
if testtype == 'RelationshipTest':
self.relationship_test(r)
elif testtype == 'SingleMetricTest':
self.single_test(r)
else:
print("Unsupported Test Type: ", testtype)
self.errlist.append("Unsupported Test Type from rule: " + r['RuleIndex'])
self._storewldata(i)
print("Workload: ", self.workloads[i])
print("Total metrics collected: ", self.failtests['PositiveValueTest']['Total Tests'])
print("Non-negative metric count: ", self.failtests['PositiveValueTest']['Passed Tests'])
print("Total Test Count: ", self.totalcnt)
print("Passed Test Count: ", self.passedcnt)
self.create_report()
return sum(self.alltotalcnt.values()) != sum(self.allpassedcnt.values())
# End of Class Validator
def main() -> None:
parser = argparse.ArgumentParser(description="Launch metric value validation")
parser.add_argument("-rule", help="Base validation rule file", required=True)
parser.add_argument("-output_dir", help="Path for validator output file, report file", required=True)
parser.add_argument("-debug", help="Debug run, save intermediate data to files", action="store_true", default=False)
parser.add_argument("-wl", help="Workload to run while data collection", default="true")
parser.add_argument("-m", help="Metric list to validate", default="")
args = parser.parse_args()
outpath = Path(args.output_dir)
reportf = Path.joinpath(outpath, 'perf_report.json')
fullrule = Path.joinpath(outpath, 'full_rule.json')
datafile = Path.joinpath(outpath, 'perf_data.json')
validator = Validator(args.rule, reportf, debug=args.debug,
datafname=datafile, fullrulefname=fullrule, workload=args.wl,
metrics=args.m)
ret = validator.test()
return ret
if __name__ == "__main__":
import sys
sys.exit(main())

Просмотреть файл

@ -0,0 +1,387 @@
{
"RelationshipRules": [
{
"RuleIndex": 1,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "c",
"RangeUpper": "c",
"ErrorThreshold": 5.0,
"Description": "Intel(R) Optane(TM) Persistent Memory(PMEM) bandwidth total includes Intel(R) Optane(TM) Persistent Memory(PMEM) read bandwidth and Intel(R) Optane(TM) Persistent Memory(PMEM) write bandwidth",
"Metrics": [
{
"Name": "pmem_memory_bandwidth_read",
"Alias": "a"
},
{
"Name": "pmem_memory_bandwidth_write",
"Alias": "b"
},
{
"Name": "pmem_memory_bandwidth_total",
"Alias": "c"
}
]
},
{
"RuleIndex": 2,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "c",
"RangeUpper": "c",
"ErrorThreshold": 5.0,
"Description": "DDR memory bandwidth total includes DDR memory read bandwidth and DDR memory write bandwidth",
"Metrics": [
{
"Name": "memory_bandwidth_read",
"Alias": "a"
},
{
"Name": "memory_bandwidth_write",
"Alias": "b"
},
{
"Name": "memory_bandwidth_total",
"Alias": "c"
}
]
},
{
"RuleIndex": 3,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "100",
"RangeUpper": "100",
"ErrorThreshold": 5.0,
"Description": "Total memory read accesses includes memory reads from last level cache (LLC) addressed to local DRAM and memory reads from the last level cache (LLC) addressed to remote DRAM.",
"Metrics": [
{
"Name": "numa_reads_addressed_to_local_dram",
"Alias": "a"
},
{
"Name": "numa_reads_addressed_to_remote_dram",
"Alias": "b"
}
]
},
{
"RuleIndex": 4,
"Formula": "a",
"TestType": "SingleMetricTest",
"RangeLower": "0.125",
"RangeUpper": "",
"ErrorThreshold": "",
"Description": "",
"Metrics": [
{
"Name": "cpi",
"Alias": "a"
}
]
},
{
"RuleIndex": 5,
"Formula": "",
"TestType": "SingleMetricTest",
"RangeLower": "0",
"RangeUpper": "1",
"ErrorThreshold": 5.0,
"Description": "Ratio values should be within value range [0,1)",
"Metrics": [
{
"Name": "loads_per_instr",
"Alias": ""
},
{
"Name": "stores_per_instr",
"Alias": ""
},
{
"Name": "l1d_mpi",
"Alias": ""
},
{
"Name": "l1d_demand_data_read_hits_per_instr",
"Alias": ""
},
{
"Name": "l1_i_code_read_misses_with_prefetches_per_instr",
"Alias": ""
},
{
"Name": "l2_demand_data_read_hits_per_instr",
"Alias": ""
},
{
"Name": "l2_mpi",
"Alias": ""
},
{
"Name": "l2_demand_data_read_mpi",
"Alias": ""
},
{
"Name": "l2_demand_code_mpi",
"Alias": ""
}
]
},
{
"RuleIndex": 6,
"Formula": "a+b+c+d",
"TestType": "RelationshipTest",
"RangeLower": "100",
"RangeUpper": "100",
"ErrorThreshold": 5.0,
"Description": "Sum of TMA level 1 metrics should be 100%",
"Metrics": [
{
"Name": "tma_frontend_bound",
"Alias": "a"
},
{
"Name": "tma_bad_speculation",
"Alias": "b"
},
{
"Name": "tma_backend_bound",
"Alias": "c"
},
{
"Name": "tma_retiring",
"Alias": "d"
}
]
},
{
"RuleIndex": 7,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "c",
"RangeUpper": "c",
"ErrorThreshold": 5.0,
"Description": "Sum of the level 2 children should equal level 1 parent",
"Metrics": [
{
"Name": "tma_fetch_latency",
"Alias": "a"
},
{
"Name": "tma_fetch_bandwidth",
"Alias": "b"
},
{
"Name": "tma_frontend_bound",
"Alias": "c"
}
]
},
{
"RuleIndex": 8,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "c",
"RangeUpper": "c",
"ErrorThreshold": 5.0,
"Description": "Sum of the level 2 children should equal level 1 parent",
"Metrics": [
{
"Name": "tma_branch_mispredicts",
"Alias": "a"
},
{
"Name": "tma_machine_clears",
"Alias": "b"
},
{
"Name": "tma_bad_speculation",
"Alias": "c"
}
]
},
{
"RuleIndex": 9,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "c",
"RangeUpper": "c",
"ErrorThreshold": 5.0,
"Description": "Sum of the level 2 children should equal level 1 parent",
"Metrics": [
{
"Name": "tma_memory_bound",
"Alias": "a"
},
{
"Name": "tma_core_bound",
"Alias": "b"
},
{
"Name": "tma_backend_bound",
"Alias": "c"
}
]
},
{
"RuleIndex": 10,
"Formula": "a+b",
"TestType": "RelationshipTest",
"RangeLower": "c",
"RangeUpper": "c",
"ErrorThreshold": 5.0,
"Description": "Sum of the level 2 children should equal level 1 parent",
"Metrics": [
{
"Name": "tma_light_operations",
"Alias": "a"
},
{
"Name": "tma_heavy_operations",
"Alias": "b"
},
{
"Name": "tma_retiring",
"Alias": "c"
}
]
},
{
"RuleIndex": 11,
"Formula": "a+b+c",
"TestType": "RelationshipTest",
"RangeLower": "100",
"RangeUpper": "100",
"ErrorThreshold": 5.0,
"Description": "The all_requests includes the memory_page_empty, memory_page_misses, and memory_page_hits equals.",
"Metrics": [
{
"Name": "memory_page_empty_vs_all_requests",
"Alias": "a"
},
{
"Name": "memory_page_misses_vs_all_requests",
"Alias": "b"
},
{
"Name": "memory_page_hits_vs_all_requests",
"Alias": "c"
}
]
},
{
"RuleIndex": 12,
"Formula": "a-b",
"TestType": "RelationshipTest",
"RangeLower": "0",
"RangeUpper": "",
"ErrorThreshold": 5.0,
"Description": "CPU utilization in kernel mode should always be <= cpu utilization",
"Metrics": [
{
"Name": "cpu_utilization",
"Alias": "a"
},
{
"Name": "cpu_utilization_in_kernel_mode",
"Alias": "b"
}
]
},
{
"RuleIndex": 13,
"Formula": "a-b",
"TestType": "RelationshipTest",
"RangeLower": "0",
"RangeUpper": "",
"ErrorThreshold": 5.0,
"Description": "Total L2 misses per instruction should be >= L2 demand data read misses per instruction",
"Metrics": [
{
"Name": "l2_mpi",
"Alias": "a"
},
{
"Name": "l2_demand_data_read_mpi",
"Alias": "b"
}
]
},
{
"RuleIndex": 14,
"Formula": "a-b",
"TestType": "RelationshipTest",
"RangeLower": "0",
"RangeUpper": "",
"ErrorThreshold": 5.0,
"Description": "Total L2 misses per instruction should be >= L2 demand code misses per instruction",
"Metrics": [
{
"Name": "l2_mpi",
"Alias": "a"
},
{
"Name": "l2_demand_code_mpi",
"Alias": "b"
}
]
},
{
"RuleIndex": 15,
"Formula": "b+c+d",
"TestType": "RelationshipTest",
"RangeLower": "a",
"RangeUpper": "a",
"ErrorThreshold": 5.0,
"Description": "L3 data read, rfo, code misses per instruction equals total L3 misses per instruction.",
"Metrics": [
{
"Name": "llc_mpi",
"Alias": "a"
},
{
"Name": "llc_data_read_mpi_demand_plus_prefetch",
"Alias": "b"
},
{
"Name": "llc_rfo_read_mpi_demand_plus_prefetch",
"Alias": "c"
},
{
"Name": "llc_code_read_mpi_demand_plus_prefetch",
"Alias": "d"
}
]
},
{
"RuleIndex": 16,
"Formula": "a",
"TestType": "SingleMetricTest",
"RangeLower": "0",
"RangeUpper": "8",
"ErrorThreshold": 0.0,
"Description": "Setting generous range for allowable frequencies",
"Metrics": [
{
"Name": "uncore_freq",
"Alias": "a"
}
]
},
{
"RuleIndex": 17,
"Formula": "a",
"TestType": "SingleMetricTest",
"RangeLower": "0",
"RangeUpper": "8",
"ErrorThreshold": 0.0,
"Description": "Setting generous range for allowable frequencies",
"Metrics": [
{
"Name": "cpu_operating_frequency",
"Alias": "a"
}
]
}
]
}

Просмотреть файл

@ -0,0 +1,30 @@
#!/bin/bash
# perf metrics value validation
# SPDX-License-Identifier: GPL-2.0
if [ "x$PYTHON" == "x" ]
then
if which python3 > /dev/null
then
PYTHON=python3
else
echo Skipping test, python3 not detected please set environment variable PYTHON.
exit 2
fi
fi
grep -q GenuineIntel /proc/cpuinfo || { echo Skipping non-Intel; exit 2; }
pythonvalidator=$(dirname $0)/lib/perf_metric_validation.py
rulefile=$(dirname $0)/lib/perf_metric_validation_rules.json
tmpdir=$(mktemp -d /tmp/__perf_test.program.XXXXX)
workload="perf bench futex hash -r 2 -s"
# Add -debug, save data file and full rule file
echo "Launch python validation script $pythonvalidator"
echo "Output will be stored in: $tmpdir"
$PYTHON $pythonvalidator -rule $rulefile -output_dir $tmpdir -wl "${workload}"
ret=$?
rm -rf $tmpdir
exit $ret