rcu: Make call_rcu() lazy to save power

Implement timer-based RCU callback batching (also known as lazy
callbacks). With this we save about 5-10% of power consumed due
to RCU requests that happen when system is lightly loaded or idle.

By default, all async callbacks (queued via call_rcu) are marked
lazy. An alternate API call_rcu_hurry() is provided for the few users,
for example synchronize_rcu(), that need the old behavior.

The batch is flushed whenever a certain amount of time has passed, or
the batch on a particular CPU grows too big. Also memory pressure will
flush it in a future patch.

To handle several corner cases automagically (such as rcu_barrier() and
hotplug), we re-use bypass lists which were originally introduced to
address lock contention, to handle lazy CBs as well. The bypass list
length has the lazy CB length included in it. A separate lazy CB length
counter is also introduced to keep track of the number of lazy CBs.

[ paulmck: Fix formatting of inline call_rcu_lazy() definition. ]
[ paulmck: Apply Zqiang feedback. ]
[ paulmck: Apply s/call_rcu_flush/call_rcu_hurry/ feedback from Tejun Heo. ]

Suggested-by: Paul McKenney <paulmck@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
This commit is contained in:
Joel Fernandes (Google) 2022-10-16 16:22:54 +00:00 коммит произвёл Paul E. McKenney
Родитель b8f7aca3f0
Коммит 3cb278e73b
8 изменённых файлов: 246 добавлений и 82 удалений

Просмотреть файл

@ -108,6 +108,15 @@ static inline int rcu_preempt_depth(void)
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_RCU_LAZY
void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
#else
static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
{
call_rcu(head, func);
}
#endif
/* Internal to kernel */
void rcu_init(void);
extern int rcu_scheduler_active;

Просмотреть файл

@ -311,4 +311,12 @@ config TASKS_TRACE_RCU_READ_MB
Say N here if you hate read-side memory barriers.
Take the default if you are unsure.
config RCU_LAZY
bool "RCU callback lazy invocation functionality"
depends on RCU_NOCB_CPU
default n
help
To save power, batch RCU callbacks and flush after delay, memory
pressure, or callback list growing too big.
endmenu # "RCU Subsystem"

Просмотреть файл

@ -474,6 +474,14 @@ enum rcutorture_type {
INVALID_RCU_FLAVOR
};
#if defined(CONFIG_RCU_LAZY)
unsigned long rcu_lazy_get_jiffies_till_flush(void);
void rcu_lazy_set_jiffies_till_flush(unsigned long j);
#else
static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
#endif
#if defined(CONFIG_TREE_RCU)
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
unsigned long *gp_seq);

Просмотреть файл

@ -44,7 +44,7 @@ static struct rcu_ctrlblk rcu_ctrlblk = {
void rcu_barrier(void)
{
wait_rcu_gp(call_rcu);
wait_rcu_gp(call_rcu_hurry);
}
EXPORT_SYMBOL(rcu_barrier);

Просмотреть файл

@ -2728,47 +2728,8 @@ static void check_cb_ovld(struct rcu_data *rdp)
raw_spin_unlock_rcu_node(rnp);
}
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked.
*
* RCU read-side critical sections are delimited by rcu_read_lock()
* and rcu_read_unlock(), and may be nested. In addition, but only in
* v5.0 and later, regions of code across which interrupts, preemption,
* or softirqs have been disabled also serve as RCU read-side critical
* sections. This includes hardware interrupt handlers, softirq handlers,
* and NMI handlers.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*
* Implementation of these memory-ordering guarantees is described here:
* Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
*/
void call_rcu(struct rcu_head *head, rcu_callback_t func)
static void
__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
{
static atomic_t doublefrees;
unsigned long flags;
@ -2809,7 +2770,7 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
}
check_cb_ovld(rdp);
if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
return; // Enqueued onto ->nocb_bypass, so just leave.
// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
rcu_segcblist_enqueue(&rdp->cblist, head);
@ -2831,8 +2792,84 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
local_irq_restore(flags);
}
}
EXPORT_SYMBOL_GPL(call_rcu);
#ifdef CONFIG_RCU_LAZY
/**
* call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
* flush all lazy callbacks (including the new one) to the main ->cblist while
* doing so.
*
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed.
*
* Use this API instead of call_rcu() if you don't want the callback to be
* invoked after very long periods of time, which can happen on systems without
* memory pressure and on systems which are lightly loaded or mostly idle.
* This function will cause callbacks to be invoked sooner than later at the
* expense of extra power. Other than that, this function is identical to, and
* reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
* ordering and other functionality.
*/
void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
{
return __call_rcu_common(head, func, false);
}
EXPORT_SYMBOL_GPL(call_rcu_hurry);
#endif
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* By default the callbacks are 'lazy' and are kept hidden from the main
* ->cblist to prevent starting of grace periods too soon.
* If you desire grace periods to start very soon, use call_rcu_hurry().
*
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked.
*
* RCU read-side critical sections are delimited by rcu_read_lock()
* and rcu_read_unlock(), and may be nested. In addition, but only in
* v5.0 and later, regions of code across which interrupts, preemption,
* or softirqs have been disabled also serve as RCU read-side critical
* sections. This includes hardware interrupt handlers, softirq handlers,
* and NMI handlers.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*
* Implementation of these memory-ordering guarantees is described here:
* Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
*/
void call_rcu(struct rcu_head *head, rcu_callback_t func)
{
return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
}
EXPORT_SYMBOL_GPL(call_rcu);
/* Maximum number of jiffies to wait before draining a batch. */
#define KFREE_DRAIN_JIFFIES (5 * HZ)
@ -3507,7 +3544,7 @@ void synchronize_rcu(void)
if (rcu_gp_is_expedited())
synchronize_rcu_expedited();
else
wait_rcu_gp(call_rcu);
wait_rcu_gp(call_rcu_hurry);
return;
}
@ -3910,7 +3947,7 @@ static void rcu_barrier_entrain(struct rcu_data *rdp)
* if it's fully lazy.
*/
was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
atomic_inc(&rcu_state.barrier_cpu_count);
@ -4336,7 +4373,7 @@ void rcutree_migrate_callbacks(int cpu)
my_rdp = this_cpu_ptr(&rcu_data);
my_rnp = my_rdp->mynode;
rcu_nocb_lock(my_rdp); /* irqs already disabled. */
WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
/* Leverage recent GPs and set GP for new callbacks. */
needwake = rcu_advance_cbs(my_rnp, rdp) ||

Просмотреть файл

@ -263,14 +263,16 @@ struct rcu_data {
unsigned long last_fqs_resched; /* Time of last rcu_resched(). */
unsigned long last_sched_clock; /* Jiffies of last rcu_sched_clock_irq(). */
long lazy_len; /* Length of buffered lazy callbacks. */
int cpu;
};
/* Values for nocb_defer_wakeup field in struct rcu_data. */
#define RCU_NOCB_WAKE_NOT 0
#define RCU_NOCB_WAKE_BYPASS 1
#define RCU_NOCB_WAKE 2
#define RCU_NOCB_WAKE_FORCE 3
#define RCU_NOCB_WAKE_LAZY 2
#define RCU_NOCB_WAKE 3
#define RCU_NOCB_WAKE_FORCE 4
#define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
/* For jiffies_till_first_fqs and */
@ -441,9 +443,10 @@ static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq);
static void rcu_init_one_nocb(struct rcu_node *rnp);
static bool wake_nocb_gp(struct rcu_data *rdp, bool force);
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j);
unsigned long j, bool lazy);
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
bool *was_alldone, unsigned long flags);
bool *was_alldone, unsigned long flags,
bool lazy);
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
unsigned long flags);
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level);

Просмотреть файл

@ -937,7 +937,7 @@ void synchronize_rcu_expedited(void)
/* If expedited grace periods are prohibited, fall back to normal. */
if (rcu_gp_is_normal()) {
wait_rcu_gp(call_rcu);
wait_rcu_gp(call_rcu_hurry);
return;
}

Просмотреть файл

@ -256,6 +256,31 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
return __wake_nocb_gp(rdp_gp, rdp, force, flags);
}
/*
* LAZY_FLUSH_JIFFIES decides the maximum amount of time that
* can elapse before lazy callbacks are flushed. Lazy callbacks
* could be flushed much earlier for a number of other reasons
* however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
* left unsubmitted to RCU after those many jiffies.
*/
#define LAZY_FLUSH_JIFFIES (10 * HZ)
static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
#ifdef CONFIG_RCU_LAZY
// To be called only from test code.
void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
{
jiffies_till_flush = jif;
}
EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
unsigned long rcu_lazy_get_jiffies_till_flush(void)
{
return jiffies_till_flush;
}
EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
#endif
/*
* Arrange to wake the GP kthread for this NOCB group at some future
* time when it is safe to do so.
@ -269,10 +294,14 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
/*
* Bypass wakeup overrides previous deferments. In case
* of callback storm, no need to wake up too early.
* Bypass wakeup overrides previous deferments. In case of
* callback storms, no need to wake up too early.
*/
if (waketype == RCU_NOCB_WAKE_BYPASS) {
if (waketype == RCU_NOCB_WAKE_LAZY &&
rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
} else {
@ -293,10 +322,13 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
* proves to be initially empty, just return false because the no-CB GP
* kthread may need to be awakened in this case.
*
* Return true if there was something to be flushed and it succeeded, otherwise
* false.
*
* Note that this function always returns true if rhp is NULL.
*/
static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j)
unsigned long j, bool lazy)
{
struct rcu_cblist rcl;
@ -310,7 +342,20 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
if (rhp)
rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
/*
* If the new CB requested was a lazy one, queue it onto the main
* ->cblist so we can take advantage of a sooner grade period.
*/
if (lazy && rhp) {
rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, NULL);
rcu_cblist_enqueue(&rcl, rhp);
WRITE_ONCE(rdp->lazy_len, 0);
} else {
rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
WRITE_ONCE(rdp->lazy_len, 0);
}
rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
WRITE_ONCE(rdp->nocb_bypass_first, j);
rcu_nocb_bypass_unlock(rdp);
@ -326,13 +371,13 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
* Note that this function always returns true if rhp is NULL.
*/
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j)
unsigned long j, bool lazy)
{
if (!rcu_rdp_is_offloaded(rdp))
return true;
rcu_lockdep_assert_cblist_protected(rdp);
rcu_nocb_bypass_lock(rdp);
return rcu_nocb_do_flush_bypass(rdp, rhp, j);
return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
}
/*
@ -345,7 +390,7 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
if (!rcu_rdp_is_offloaded(rdp) ||
!rcu_nocb_bypass_trylock(rdp))
return;
WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
}
/*
@ -367,12 +412,14 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
* there is only one CPU in operation.
*/
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
bool *was_alldone, unsigned long flags)
bool *was_alldone, unsigned long flags,
bool lazy)
{
unsigned long c;
unsigned long cur_gp_seq;
unsigned long j = jiffies;
long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
lockdep_assert_irqs_disabled();
@ -417,25 +464,29 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
// If there hasn't yet been all that many ->cblist enqueues
// this jiffy, tell the caller to enqueue onto ->cblist. But flush
// ->nocb_bypass first.
if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
// Lazy CBs throttle this back and do immediate bypass queuing.
if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
rcu_nocb_lock(rdp);
*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
if (*was_alldone)
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("FirstQ"));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
return false; // Caller must enqueue the callback.
}
// If ->nocb_bypass has been used too long or is too full,
// flush ->nocb_bypass to ->cblist.
if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
(ncbs && bypass_is_lazy &&
(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
ncbs >= qhimark) {
rcu_nocb_lock(rdp);
*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
if (*was_alldone)
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("FirstQ"));
@ -463,13 +514,24 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
if (lazy)
WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
if (!ncbs) {
WRITE_ONCE(rdp->nocb_bypass_first, j);
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
}
rcu_nocb_bypass_unlock(rdp);
smp_mb(); /* Order enqueue before wake. */
if (ncbs) {
// A wake up of the grace period kthread or timer adjustment
// needs to be done only if:
// 1. Bypass list was fully empty before (this is the first
// bypass list entry), or:
// 2. Both of these conditions are met:
// a. The bypass list previously had only lazy CBs, and:
// b. The new CB is non-lazy.
if (ncbs && (!bypass_is_lazy || lazy)) {
local_irq_restore(flags);
} else {
// No-CBs GP kthread might be indefinitely asleep, if so, wake.
@ -497,8 +559,10 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
unsigned long flags)
__releases(rdp->nocb_lock)
{
long bypass_len;
unsigned long cur_gp_seq;
unsigned long j;
long lazy_len;
long len;
struct task_struct *t;
@ -512,9 +576,16 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
}
// Need to actually to a wakeup.
len = rcu_segcblist_n_cbs(&rdp->cblist);
bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
lazy_len = READ_ONCE(rdp->lazy_len);
if (was_alldone) {
rdp->qlen_last_fqs_check = len;
if (!irqs_disabled_flags(flags)) {
// Only lazy CBs in bypass list
if (lazy_len && bypass_len == lazy_len) {
rcu_nocb_unlock_irqrestore(rdp, flags);
wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
TPS("WakeLazy"));
} else if (!irqs_disabled_flags(flags)) {
/* ... if queue was empty ... */
rcu_nocb_unlock_irqrestore(rdp, flags);
wake_nocb_gp(rdp, false);
@ -605,12 +676,12 @@ static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
static void nocb_gp_wait(struct rcu_data *my_rdp)
{
bool bypass = false;
long bypass_ncbs;
int __maybe_unused cpu = my_rdp->cpu;
unsigned long cur_gp_seq;
unsigned long flags;
bool gotcbs = false;
unsigned long j = jiffies;
bool lazy = false;
bool needwait_gp = false; // This prevents actual uninitialized use.
bool needwake;
bool needwake_gp;
@ -640,24 +711,43 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
* won't be ignored for long.
*/
list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
long bypass_ncbs;
bool flush_bypass = false;
long lazy_ncbs;
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
rcu_nocb_lock_irqsave(rdp, flags);
lockdep_assert_held(&rdp->nocb_lock);
bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
if (bypass_ncbs &&
lazy_ncbs = READ_ONCE(rdp->lazy_len);
if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
bypass_ncbs > 2 * qhimark)) {
flush_bypass = true;
} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
bypass_ncbs > 2 * qhimark)) {
// Bypass full or old, so flush it.
(void)rcu_nocb_try_flush_bypass(rdp, j);
bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
flush_bypass = true;
} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
rcu_nocb_unlock_irqrestore(rdp, flags);
continue; /* No callbacks here, try next. */
}
if (flush_bypass) {
// Bypass full or old, so flush it.
(void)rcu_nocb_try_flush_bypass(rdp, j);
bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
lazy_ncbs = READ_ONCE(rdp->lazy_len);
}
if (bypass_ncbs) {
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("Bypass"));
bypass = true;
bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
if (bypass_ncbs == lazy_ncbs)
lazy = true;
else
bypass = true;
}
rnp = rdp->mynode;
@ -705,12 +795,20 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
my_rdp->nocb_gp_gp = needwait_gp;
my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
if (bypass && !rcu_nocb_poll) {
// At least one child with non-empty ->nocb_bypass, so set
// timer in order to avoid stranding its callbacks.
wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
TPS("WakeBypassIsDeferred"));
// At least one child with non-empty ->nocb_bypass, so set
// timer in order to avoid stranding its callbacks.
if (!rcu_nocb_poll) {
// If bypass list only has lazy CBs. Add a deferred lazy wake up.
if (lazy && !bypass) {
wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
TPS("WakeLazyIsDeferred"));
// Otherwise add a deferred bypass wake up.
} else if (bypass) {
wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
TPS("WakeBypassIsDeferred"));
}
}
if (rcu_nocb_poll) {
/* Polling, so trace if first poll in the series. */
if (gotcbs)
@ -1036,7 +1134,7 @@ static long rcu_nocb_rdp_deoffload(void *arg)
* return false, which means that future calls to rcu_nocb_try_bypass()
* will refuse to put anything into the bypass.
*/
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
/*
* Start with invoking rcu_core() early. This way if the current thread
* happens to preempt an ongoing call to rcu_core() in the middle,
@ -1278,6 +1376,7 @@ static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
raw_spin_lock_init(&rdp->nocb_gp_lock);
timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
rcu_cblist_init(&rdp->nocb_bypass);
WRITE_ONCE(rdp->lazy_len, 0);
mutex_init(&rdp->nocb_gp_kthread_mutex);
}
@ -1564,13 +1663,13 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
}
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j)
unsigned long j, bool lazy)
{
return true;
}
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
bool *was_alldone, unsigned long flags)
bool *was_alldone, unsigned long flags, bool lazy)
{
return false;
}