Merge branch 'stable/for-linus-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb
Pull swiotlb updates from Konrad Rzeszutek Wilk: "A new feature called restricted DMA pools. It allows SWIOTLB to utilize per-device (or per-platform) allocated memory pools instead of using the global one. The first big user of this is ARM Confidential Computing where the memory for DMA operations can be set per platform" * 'stable/for-linus-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/swiotlb: (23 commits) swiotlb: use depends on for DMA_RESTRICTED_POOL of: restricted dma: Don't fail device probe on rmem init failure of: Move of_dma_set_restricted_buffer() into device.c powerpc/svm: Don't issue ultracalls if !mem_encrypt_active() s390/pv: fix the forcing of the swiotlb swiotlb: Free tbl memory in swiotlb_exit() swiotlb: Emit diagnostic in swiotlb_exit() swiotlb: Convert io_default_tlb_mem to static allocation of: Return success from of_dma_set_restricted_buffer() when !OF_ADDRESS swiotlb: add overflow checks to swiotlb_bounce swiotlb: fix implicit debugfs declarations of: Add plumbing for restricted DMA pool dt-bindings: of: Add restricted DMA pool swiotlb: Add restricted DMA pool initialization swiotlb: Add restricted DMA alloc/free support swiotlb: Refactor swiotlb_tbl_unmap_single swiotlb: Move alloc_size to swiotlb_find_slots swiotlb: Use is_swiotlb_force_bounce for swiotlb data bouncing swiotlb: Update is_swiotlb_active to add a struct device argument swiotlb: Update is_swiotlb_buffer to add a struct device argument ...
This commit is contained in:
Коммит
3de18c865f
|
@ -51,6 +51,23 @@ compatible (optional) - standard definition
|
|||
used as a shared pool of DMA buffers for a set of devices. It can
|
||||
be used by an operating system to instantiate the necessary pool
|
||||
management subsystem if necessary.
|
||||
- restricted-dma-pool: This indicates a region of memory meant to be
|
||||
used as a pool of restricted DMA buffers for a set of devices. The
|
||||
memory region would be the only region accessible to those devices.
|
||||
When using this, the no-map and reusable properties must not be set,
|
||||
so the operating system can create a virtual mapping that will be used
|
||||
for synchronization. The main purpose for restricted DMA is to
|
||||
mitigate the lack of DMA access control on systems without an IOMMU,
|
||||
which could result in the DMA accessing the system memory at
|
||||
unexpected times and/or unexpected addresses, possibly leading to data
|
||||
leakage or corruption. The feature on its own provides a basic level
|
||||
of protection against the DMA overwriting buffer contents at
|
||||
unexpected times. However, to protect against general data leakage and
|
||||
system memory corruption, the system needs to provide way to lock down
|
||||
the memory access, e.g., MPU. Note that since coherent allocation
|
||||
needs remapping, one must set up another device coherent pool by
|
||||
shared-dma-pool and use dma_alloc_from_dev_coherent instead for atomic
|
||||
coherent allocation.
|
||||
- vendor specific string in the form <vendor>,[<device>-]<usage>
|
||||
no-map (optional) - empty property
|
||||
- Indicates the operating system must not create a virtual mapping
|
||||
|
@ -85,10 +102,11 @@ memory-region-names (optional) - a list of names, one for each corresponding
|
|||
|
||||
Example
|
||||
-------
|
||||
This example defines 3 contiguous regions are defined for Linux kernel:
|
||||
This example defines 4 contiguous regions for Linux kernel:
|
||||
one default of all device drivers (named linux,cma@72000000 and 64MiB in size),
|
||||
one dedicated to the framebuffer device (named framebuffer@78000000, 8MiB), and
|
||||
one for multimedia processing (named multimedia-memory@77000000, 64MiB).
|
||||
one dedicated to the framebuffer device (named framebuffer@78000000, 8MiB),
|
||||
one for multimedia processing (named multimedia-memory@77000000, 64MiB), and
|
||||
one for restricted dma pool (named restricted_dma_reserved@0x50000000, 64MiB).
|
||||
|
||||
/ {
|
||||
#address-cells = <1>;
|
||||
|
@ -120,6 +138,11 @@ one for multimedia processing (named multimedia-memory@77000000, 64MiB).
|
|||
compatible = "acme,multimedia-memory";
|
||||
reg = <0x77000000 0x4000000>;
|
||||
};
|
||||
|
||||
restricted_dma_reserved: restricted_dma_reserved {
|
||||
compatible = "restricted-dma-pool";
|
||||
reg = <0x50000000 0x4000000>;
|
||||
};
|
||||
};
|
||||
|
||||
/* ... */
|
||||
|
@ -138,4 +161,11 @@ one for multimedia processing (named multimedia-memory@77000000, 64MiB).
|
|||
memory-region = <&multimedia_reserved>;
|
||||
/* ... */
|
||||
};
|
||||
|
||||
pcie_device: pcie_device@0,0 {
|
||||
reg = <0x83010000 0x0 0x00000000 0x0 0x00100000
|
||||
0x83010000 0x0 0x00100000 0x0 0x00100000>;
|
||||
memory-region = <&restricted_dma_reserved>;
|
||||
/* ... */
|
||||
};
|
||||
};
|
||||
|
|
|
@ -63,6 +63,9 @@ void __init svm_swiotlb_init(void)
|
|||
|
||||
int set_memory_encrypted(unsigned long addr, int numpages)
|
||||
{
|
||||
if (!mem_encrypt_active())
|
||||
return 0;
|
||||
|
||||
if (!PAGE_ALIGNED(addr))
|
||||
return -EINVAL;
|
||||
|
||||
|
@ -73,6 +76,9 @@ int set_memory_encrypted(unsigned long addr, int numpages)
|
|||
|
||||
int set_memory_decrypted(unsigned long addr, int numpages)
|
||||
{
|
||||
if (!mem_encrypt_active())
|
||||
return 0;
|
||||
|
||||
if (!PAGE_ALIGNED(addr))
|
||||
return -EINVAL;
|
||||
|
||||
|
|
|
@ -187,9 +187,9 @@ static void pv_init(void)
|
|||
return;
|
||||
|
||||
/* make sure bounce buffers are shared */
|
||||
swiotlb_force = SWIOTLB_FORCE;
|
||||
swiotlb_init(1);
|
||||
swiotlb_update_mem_attributes();
|
||||
swiotlb_force = SWIOTLB_FORCE;
|
||||
}
|
||||
|
||||
void __init mem_init(void)
|
||||
|
|
|
@ -27,6 +27,7 @@
|
|||
#include <linux/netdevice.h>
|
||||
#include <linux/sched/signal.h>
|
||||
#include <linux/sched/mm.h>
|
||||
#include <linux/swiotlb.h>
|
||||
#include <linux/sysfs.h>
|
||||
#include <linux/dma-map-ops.h> /* for dma_default_coherent */
|
||||
|
||||
|
@ -2851,6 +2852,9 @@ void device_initialize(struct device *dev)
|
|||
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
|
||||
dev->dma_coherent = dma_default_coherent;
|
||||
#endif
|
||||
#ifdef CONFIG_SWIOTLB
|
||||
dev->dma_io_tlb_mem = &io_tlb_default_mem;
|
||||
#endif
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(device_initialize);
|
||||
|
||||
|
|
|
@ -42,7 +42,7 @@ static int i915_gem_object_get_pages_internal(struct drm_i915_gem_object *obj)
|
|||
|
||||
max_order = MAX_ORDER;
|
||||
#ifdef CONFIG_SWIOTLB
|
||||
if (is_swiotlb_active()) {
|
||||
if (is_swiotlb_active(obj->base.dev->dev)) {
|
||||
unsigned int max_segment;
|
||||
|
||||
max_segment = swiotlb_max_segment();
|
||||
|
|
|
@ -276,7 +276,7 @@ nouveau_ttm_init(struct nouveau_drm *drm)
|
|||
}
|
||||
|
||||
#if IS_ENABLED(CONFIG_SWIOTLB) && IS_ENABLED(CONFIG_X86)
|
||||
need_swiotlb = is_swiotlb_active();
|
||||
need_swiotlb = is_swiotlb_active(dev->dev);
|
||||
#endif
|
||||
|
||||
ret = ttm_device_init(&drm->ttm.bdev, &nouveau_bo_driver, drm->dev->dev,
|
||||
|
|
|
@ -506,7 +506,7 @@ static void __iommu_dma_unmap_swiotlb(struct device *dev, dma_addr_t dma_addr,
|
|||
|
||||
__iommu_dma_unmap(dev, dma_addr, size);
|
||||
|
||||
if (unlikely(is_swiotlb_buffer(phys)))
|
||||
if (unlikely(is_swiotlb_buffer(dev, phys)))
|
||||
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
|
||||
}
|
||||
|
||||
|
@ -577,7 +577,7 @@ static dma_addr_t __iommu_dma_map_swiotlb(struct device *dev, phys_addr_t phys,
|
|||
}
|
||||
|
||||
iova = __iommu_dma_map(dev, phys, aligned_size, prot, dma_mask);
|
||||
if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(phys))
|
||||
if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
|
||||
swiotlb_tbl_unmap_single(dev, phys, org_size, dir, attrs);
|
||||
return iova;
|
||||
}
|
||||
|
@ -784,7 +784,7 @@ static void iommu_dma_sync_single_for_cpu(struct device *dev,
|
|||
if (!dev_is_dma_coherent(dev))
|
||||
arch_sync_dma_for_cpu(phys, size, dir);
|
||||
|
||||
if (is_swiotlb_buffer(phys))
|
||||
if (is_swiotlb_buffer(dev, phys))
|
||||
swiotlb_sync_single_for_cpu(dev, phys, size, dir);
|
||||
}
|
||||
|
||||
|
@ -797,7 +797,7 @@ static void iommu_dma_sync_single_for_device(struct device *dev,
|
|||
return;
|
||||
|
||||
phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
|
||||
if (is_swiotlb_buffer(phys))
|
||||
if (is_swiotlb_buffer(dev, phys))
|
||||
swiotlb_sync_single_for_device(dev, phys, size, dir);
|
||||
|
||||
if (!dev_is_dma_coherent(dev))
|
||||
|
@ -818,7 +818,7 @@ static void iommu_dma_sync_sg_for_cpu(struct device *dev,
|
|||
if (!dev_is_dma_coherent(dev))
|
||||
arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
|
||||
|
||||
if (is_swiotlb_buffer(sg_phys(sg)))
|
||||
if (is_swiotlb_buffer(dev, sg_phys(sg)))
|
||||
swiotlb_sync_single_for_cpu(dev, sg_phys(sg),
|
||||
sg->length, dir);
|
||||
}
|
||||
|
@ -835,7 +835,7 @@ static void iommu_dma_sync_sg_for_device(struct device *dev,
|
|||
return;
|
||||
|
||||
for_each_sg(sgl, sg, nelems, i) {
|
||||
if (is_swiotlb_buffer(sg_phys(sg)))
|
||||
if (is_swiotlb_buffer(dev, sg_phys(sg)))
|
||||
swiotlb_sync_single_for_device(dev, sg_phys(sg),
|
||||
sg->length, dir);
|
||||
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
#include <linux/of_device.h>
|
||||
#include <linux/of_address.h>
|
||||
#include <linux/of_iommu.h>
|
||||
#include <linux/of_reserved_mem.h>
|
||||
#include <linux/dma-direct.h> /* for bus_dma_region */
|
||||
#include <linux/dma-map-ops.h>
|
||||
#include <linux/init.h>
|
||||
|
@ -52,6 +53,42 @@ int of_device_add(struct platform_device *ofdev)
|
|||
return device_add(&ofdev->dev);
|
||||
}
|
||||
|
||||
static void
|
||||
of_dma_set_restricted_buffer(struct device *dev, struct device_node *np)
|
||||
{
|
||||
struct device_node *node, *of_node = dev->of_node;
|
||||
int count, i;
|
||||
|
||||
if (!IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL))
|
||||
return;
|
||||
|
||||
count = of_property_count_elems_of_size(of_node, "memory-region",
|
||||
sizeof(u32));
|
||||
/*
|
||||
* If dev->of_node doesn't exist or doesn't contain memory-region, try
|
||||
* the OF node having DMA configuration.
|
||||
*/
|
||||
if (count <= 0) {
|
||||
of_node = np;
|
||||
count = of_property_count_elems_of_size(
|
||||
of_node, "memory-region", sizeof(u32));
|
||||
}
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
node = of_parse_phandle(of_node, "memory-region", i);
|
||||
/*
|
||||
* There might be multiple memory regions, but only one
|
||||
* restricted-dma-pool region is allowed.
|
||||
*/
|
||||
if (of_device_is_compatible(node, "restricted-dma-pool") &&
|
||||
of_device_is_available(node))
|
||||
break;
|
||||
}
|
||||
|
||||
if (i != count && of_reserved_mem_device_init_by_idx(dev, of_node, i))
|
||||
dev_warn(dev, "failed to initialise \"restricted-dma-pool\" memory node\n");
|
||||
}
|
||||
|
||||
/**
|
||||
* of_dma_configure_id - Setup DMA configuration
|
||||
* @dev: Device to apply DMA configuration
|
||||
|
@ -165,6 +202,9 @@ int of_dma_configure_id(struct device *dev, struct device_node *np,
|
|||
|
||||
arch_setup_dma_ops(dev, dma_start, size, iommu, coherent);
|
||||
|
||||
if (!iommu)
|
||||
of_dma_set_restricted_buffer(dev, np);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(of_dma_configure_id);
|
||||
|
|
|
@ -699,7 +699,7 @@ static int pcifront_connect_and_init_dma(struct pcifront_device *pdev)
|
|||
|
||||
spin_unlock(&pcifront_dev_lock);
|
||||
|
||||
if (!err && !is_swiotlb_active()) {
|
||||
if (!err && !is_swiotlb_active(&pdev->xdev->dev)) {
|
||||
err = pci_xen_swiotlb_init_late();
|
||||
if (err)
|
||||
dev_err(&pdev->xdev->dev, "Could not setup SWIOTLB!\n");
|
||||
|
|
|
@ -100,7 +100,7 @@ static int is_xen_swiotlb_buffer(struct device *dev, dma_addr_t dma_addr)
|
|||
* in our domain. Therefore _only_ check address within our domain.
|
||||
*/
|
||||
if (pfn_valid(PFN_DOWN(paddr)))
|
||||
return is_swiotlb_buffer(paddr);
|
||||
return is_swiotlb_buffer(dev, paddr);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -164,7 +164,7 @@ int __ref xen_swiotlb_init(void)
|
|||
int rc = -ENOMEM;
|
||||
char *start;
|
||||
|
||||
if (io_tlb_default_mem != NULL) {
|
||||
if (io_tlb_default_mem.nslabs) {
|
||||
pr_warn("swiotlb buffer already initialized\n");
|
||||
return -EEXIST;
|
||||
}
|
||||
|
@ -374,7 +374,7 @@ static dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
|
|||
if (dma_capable(dev, dev_addr, size, true) &&
|
||||
!range_straddles_page_boundary(phys, size) &&
|
||||
!xen_arch_need_swiotlb(dev, phys, dev_addr) &&
|
||||
swiotlb_force != SWIOTLB_FORCE)
|
||||
!is_swiotlb_force_bounce(dev))
|
||||
goto done;
|
||||
|
||||
/*
|
||||
|
@ -547,7 +547,7 @@ xen_swiotlb_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
|
|||
static int
|
||||
xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
|
||||
{
|
||||
return xen_phys_to_dma(hwdev, io_tlb_default_mem->end - 1) <= mask;
|
||||
return xen_phys_to_dma(hwdev, io_tlb_default_mem.end - 1) <= mask;
|
||||
}
|
||||
|
||||
const struct dma_map_ops xen_swiotlb_dma_ops = {
|
||||
|
|
|
@ -424,6 +424,7 @@ struct dev_links_info {
|
|||
* @dma_pools: Dma pools (if dma'ble device).
|
||||
* @dma_mem: Internal for coherent mem override.
|
||||
* @cma_area: Contiguous memory area for dma allocations
|
||||
* @dma_io_tlb_mem: Pointer to the swiotlb pool used. Not for driver use.
|
||||
* @archdata: For arch-specific additions.
|
||||
* @of_node: Associated device tree node.
|
||||
* @fwnode: Associated device node supplied by platform firmware.
|
||||
|
@ -533,6 +534,9 @@ struct device {
|
|||
#ifdef CONFIG_DMA_CMA
|
||||
struct cma *cma_area; /* contiguous memory area for dma
|
||||
allocations */
|
||||
#endif
|
||||
#ifdef CONFIG_SWIOTLB
|
||||
struct io_tlb_mem *dma_io_tlb_mem;
|
||||
#endif
|
||||
/* arch specific additions */
|
||||
struct dev_archdata archdata;
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
#ifndef __LINUX_SWIOTLB_H
|
||||
#define __LINUX_SWIOTLB_H
|
||||
|
||||
#include <linux/device.h>
|
||||
#include <linux/dma-direction.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/types.h>
|
||||
|
@ -72,7 +73,8 @@ extern enum swiotlb_force swiotlb_force;
|
|||
* range check to see if the memory was in fact allocated by this
|
||||
* API.
|
||||
* @nslabs: The number of IO TLB blocks (in groups of 64) between @start and
|
||||
* @end. This is command line adjustable via setup_io_tlb_npages.
|
||||
* @end. For default swiotlb, this is command line adjustable via
|
||||
* setup_io_tlb_npages.
|
||||
* @used: The number of used IO TLB block.
|
||||
* @list: The free list describing the number of free entries available
|
||||
* from each index.
|
||||
|
@ -83,6 +85,8 @@ extern enum swiotlb_force swiotlb_force;
|
|||
* unmap calls.
|
||||
* @debugfs: The dentry to debugfs.
|
||||
* @late_alloc: %true if allocated using the page allocator
|
||||
* @force_bounce: %true if swiotlb bouncing is forced
|
||||
* @for_alloc: %true if the pool is used for memory allocation
|
||||
*/
|
||||
struct io_tlb_mem {
|
||||
phys_addr_t start;
|
||||
|
@ -93,29 +97,42 @@ struct io_tlb_mem {
|
|||
spinlock_t lock;
|
||||
struct dentry *debugfs;
|
||||
bool late_alloc;
|
||||
bool force_bounce;
|
||||
bool for_alloc;
|
||||
struct io_tlb_slot {
|
||||
phys_addr_t orig_addr;
|
||||
size_t alloc_size;
|
||||
unsigned int list;
|
||||
} slots[];
|
||||
} *slots;
|
||||
};
|
||||
extern struct io_tlb_mem *io_tlb_default_mem;
|
||||
extern struct io_tlb_mem io_tlb_default_mem;
|
||||
|
||||
static inline bool is_swiotlb_buffer(phys_addr_t paddr)
|
||||
static inline bool is_swiotlb_buffer(struct device *dev, phys_addr_t paddr)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
|
||||
return mem && paddr >= mem->start && paddr < mem->end;
|
||||
}
|
||||
|
||||
static inline bool is_swiotlb_force_bounce(struct device *dev)
|
||||
{
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
|
||||
return mem && mem->force_bounce;
|
||||
}
|
||||
|
||||
void __init swiotlb_exit(void);
|
||||
unsigned int swiotlb_max_segment(void);
|
||||
size_t swiotlb_max_mapping_size(struct device *dev);
|
||||
bool is_swiotlb_active(void);
|
||||
bool is_swiotlb_active(struct device *dev);
|
||||
void __init swiotlb_adjust_size(unsigned long size);
|
||||
#else
|
||||
#define swiotlb_force SWIOTLB_NO_FORCE
|
||||
static inline bool is_swiotlb_buffer(phys_addr_t paddr)
|
||||
static inline bool is_swiotlb_buffer(struct device *dev, phys_addr_t paddr)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline bool is_swiotlb_force_bounce(struct device *dev)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
@ -131,7 +148,7 @@ static inline size_t swiotlb_max_mapping_size(struct device *dev)
|
|||
return SIZE_MAX;
|
||||
}
|
||||
|
||||
static inline bool is_swiotlb_active(void)
|
||||
static inline bool is_swiotlb_active(struct device *dev)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
@ -144,4 +161,28 @@ static inline void swiotlb_adjust_size(unsigned long size)
|
|||
extern void swiotlb_print_info(void);
|
||||
extern void swiotlb_set_max_segment(unsigned int);
|
||||
|
||||
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
||||
struct page *swiotlb_alloc(struct device *dev, size_t size);
|
||||
bool swiotlb_free(struct device *dev, struct page *page, size_t size);
|
||||
|
||||
static inline bool is_swiotlb_for_alloc(struct device *dev)
|
||||
{
|
||||
return dev->dma_io_tlb_mem->for_alloc;
|
||||
}
|
||||
#else
|
||||
static inline struct page *swiotlb_alloc(struct device *dev, size_t size)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
static inline bool swiotlb_free(struct device *dev, struct page *page,
|
||||
size_t size)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
static inline bool is_swiotlb_for_alloc(struct device *dev)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
#endif /* CONFIG_DMA_RESTRICTED_POOL */
|
||||
|
||||
#endif /* __LINUX_SWIOTLB_H */
|
||||
|
|
|
@ -80,6 +80,19 @@ config SWIOTLB
|
|||
bool
|
||||
select NEED_DMA_MAP_STATE
|
||||
|
||||
config DMA_RESTRICTED_POOL
|
||||
bool "DMA Restricted Pool"
|
||||
depends on OF && OF_RESERVED_MEM && SWIOTLB
|
||||
help
|
||||
This enables support for restricted DMA pools which provide a level of
|
||||
DMA memory protection on systems with limited hardware protection
|
||||
capabilities, such as those lacking an IOMMU.
|
||||
|
||||
For more information see
|
||||
<Documentation/devicetree/bindings/reserved-memory/reserved-memory.txt>
|
||||
and <kernel/dma/swiotlb.c>.
|
||||
If unsure, say "n".
|
||||
|
||||
#
|
||||
# Should be selected if we can mmap non-coherent mappings to userspace.
|
||||
# The only thing that is really required is a way to set an uncached bit
|
||||
|
|
|
@ -75,6 +75,15 @@ static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
|
|||
min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
|
||||
}
|
||||
|
||||
static void __dma_direct_free_pages(struct device *dev, struct page *page,
|
||||
size_t size)
|
||||
{
|
||||
if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
|
||||
swiotlb_free(dev, page, size))
|
||||
return;
|
||||
dma_free_contiguous(dev, page, size);
|
||||
}
|
||||
|
||||
static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
|
||||
gfp_t gfp)
|
||||
{
|
||||
|
@ -86,6 +95,16 @@ static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
|
|||
|
||||
gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
|
||||
&phys_limit);
|
||||
if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
|
||||
is_swiotlb_for_alloc(dev)) {
|
||||
page = swiotlb_alloc(dev, size);
|
||||
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
||||
__dma_direct_free_pages(dev, page, size);
|
||||
return NULL;
|
||||
}
|
||||
return page;
|
||||
}
|
||||
|
||||
page = dma_alloc_contiguous(dev, size, gfp);
|
||||
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
|
||||
dma_free_contiguous(dev, page, size);
|
||||
|
@ -142,7 +161,7 @@ void *dma_direct_alloc(struct device *dev, size_t size,
|
|||
gfp |= __GFP_NOWARN;
|
||||
|
||||
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
|
||||
!force_dma_unencrypted(dev)) {
|
||||
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
|
||||
page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
|
||||
if (!page)
|
||||
return NULL;
|
||||
|
@ -157,7 +176,8 @@ void *dma_direct_alloc(struct device *dev, size_t size,
|
|||
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
|
||||
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
||||
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
|
||||
!dev_is_dma_coherent(dev))
|
||||
!dev_is_dma_coherent(dev) &&
|
||||
!is_swiotlb_for_alloc(dev))
|
||||
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
|
||||
|
||||
if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
|
||||
|
@ -167,11 +187,16 @@ void *dma_direct_alloc(struct device *dev, size_t size,
|
|||
/*
|
||||
* Remapping or decrypting memory may block. If either is required and
|
||||
* we can't block, allocate the memory from the atomic pools.
|
||||
* If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
|
||||
* set up another device coherent pool by shared-dma-pool and use
|
||||
* dma_alloc_from_dev_coherent instead.
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
|
||||
!gfpflags_allow_blocking(gfp) &&
|
||||
(force_dma_unencrypted(dev) ||
|
||||
(IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev))))
|
||||
(IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
||||
!dev_is_dma_coherent(dev))) &&
|
||||
!is_swiotlb_for_alloc(dev))
|
||||
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
|
||||
|
||||
/* we always manually zero the memory once we are done */
|
||||
|
@ -242,7 +267,7 @@ out_encrypt_pages:
|
|||
return NULL;
|
||||
}
|
||||
out_free_pages:
|
||||
dma_free_contiguous(dev, page, size);
|
||||
__dma_direct_free_pages(dev, page, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -252,7 +277,7 @@ void dma_direct_free(struct device *dev, size_t size,
|
|||
unsigned int page_order = get_order(size);
|
||||
|
||||
if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
|
||||
!force_dma_unencrypted(dev)) {
|
||||
!force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
|
||||
/* cpu_addr is a struct page cookie, not a kernel address */
|
||||
dma_free_contiguous(dev, cpu_addr, size);
|
||||
return;
|
||||
|
@ -261,7 +286,8 @@ void dma_direct_free(struct device *dev, size_t size,
|
|||
if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
|
||||
!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
|
||||
!IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
|
||||
!dev_is_dma_coherent(dev)) {
|
||||
!dev_is_dma_coherent(dev) &&
|
||||
!is_swiotlb_for_alloc(dev)) {
|
||||
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
|
||||
return;
|
||||
}
|
||||
|
@ -286,7 +312,7 @@ void dma_direct_free(struct device *dev, size_t size,
|
|||
else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
|
||||
arch_dma_clear_uncached(cpu_addr, size);
|
||||
|
||||
dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
|
||||
__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
|
||||
}
|
||||
|
||||
struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
|
||||
|
@ -296,7 +322,8 @@ struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
|
|||
void *ret;
|
||||
|
||||
if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
|
||||
force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp))
|
||||
force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
|
||||
!is_swiotlb_for_alloc(dev))
|
||||
return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
|
||||
|
||||
page = __dma_direct_alloc_pages(dev, size, gfp);
|
||||
|
@ -323,7 +350,7 @@ struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
|
|||
*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
|
||||
return page;
|
||||
out_free_pages:
|
||||
dma_free_contiguous(dev, page, size);
|
||||
__dma_direct_free_pages(dev, page, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
@ -342,7 +369,7 @@ void dma_direct_free_pages(struct device *dev, size_t size,
|
|||
if (force_dma_unencrypted(dev))
|
||||
set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
|
||||
|
||||
dma_free_contiguous(dev, page, size);
|
||||
__dma_direct_free_pages(dev, page, size);
|
||||
}
|
||||
|
||||
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
|
||||
|
@ -356,7 +383,7 @@ void dma_direct_sync_sg_for_device(struct device *dev,
|
|||
for_each_sg(sgl, sg, nents, i) {
|
||||
phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
|
||||
|
||||
if (unlikely(is_swiotlb_buffer(paddr)))
|
||||
if (unlikely(is_swiotlb_buffer(dev, paddr)))
|
||||
swiotlb_sync_single_for_device(dev, paddr, sg->length,
|
||||
dir);
|
||||
|
||||
|
@ -382,7 +409,7 @@ void dma_direct_sync_sg_for_cpu(struct device *dev,
|
|||
if (!dev_is_dma_coherent(dev))
|
||||
arch_sync_dma_for_cpu(paddr, sg->length, dir);
|
||||
|
||||
if (unlikely(is_swiotlb_buffer(paddr)))
|
||||
if (unlikely(is_swiotlb_buffer(dev, paddr)))
|
||||
swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
|
||||
dir);
|
||||
|
||||
|
@ -510,8 +537,8 @@ int dma_direct_supported(struct device *dev, u64 mask)
|
|||
size_t dma_direct_max_mapping_size(struct device *dev)
|
||||
{
|
||||
/* If SWIOTLB is active, use its maximum mapping size */
|
||||
if (is_swiotlb_active() &&
|
||||
(dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
|
||||
if (is_swiotlb_active(dev) &&
|
||||
(dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
|
||||
return swiotlb_max_mapping_size(dev);
|
||||
return SIZE_MAX;
|
||||
}
|
||||
|
@ -519,7 +546,7 @@ size_t dma_direct_max_mapping_size(struct device *dev)
|
|||
bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
|
||||
{
|
||||
return !dev_is_dma_coherent(dev) ||
|
||||
is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
|
||||
is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
|
@ -56,7 +56,7 @@ static inline void dma_direct_sync_single_for_device(struct device *dev,
|
|||
{
|
||||
phys_addr_t paddr = dma_to_phys(dev, addr);
|
||||
|
||||
if (unlikely(is_swiotlb_buffer(paddr)))
|
||||
if (unlikely(is_swiotlb_buffer(dev, paddr)))
|
||||
swiotlb_sync_single_for_device(dev, paddr, size, dir);
|
||||
|
||||
if (!dev_is_dma_coherent(dev))
|
||||
|
@ -73,7 +73,7 @@ static inline void dma_direct_sync_single_for_cpu(struct device *dev,
|
|||
arch_sync_dma_for_cpu_all();
|
||||
}
|
||||
|
||||
if (unlikely(is_swiotlb_buffer(paddr)))
|
||||
if (unlikely(is_swiotlb_buffer(dev, paddr)))
|
||||
swiotlb_sync_single_for_cpu(dev, paddr, size, dir);
|
||||
|
||||
if (dir == DMA_FROM_DEVICE)
|
||||
|
@ -87,7 +87,7 @@ static inline dma_addr_t dma_direct_map_page(struct device *dev,
|
|||
phys_addr_t phys = page_to_phys(page) + offset;
|
||||
dma_addr_t dma_addr = phys_to_dma(dev, phys);
|
||||
|
||||
if (unlikely(swiotlb_force == SWIOTLB_FORCE))
|
||||
if (is_swiotlb_force_bounce(dev))
|
||||
return swiotlb_map(dev, phys, size, dir, attrs);
|
||||
|
||||
if (unlikely(!dma_capable(dev, dma_addr, size, true))) {
|
||||
|
@ -113,7 +113,7 @@ static inline void dma_direct_unmap_page(struct device *dev, dma_addr_t addr,
|
|||
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
|
||||
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
|
||||
|
||||
if (unlikely(is_swiotlb_buffer(phys)))
|
||||
if (unlikely(is_swiotlb_buffer(dev, phys)))
|
||||
swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
|
||||
}
|
||||
#endif /* _KERNEL_DMA_DIRECT_H */
|
||||
|
|
|
@ -39,6 +39,13 @@
|
|||
#ifdef CONFIG_DEBUG_FS
|
||||
#include <linux/debugfs.h>
|
||||
#endif
|
||||
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
||||
#include <linux/io.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_fdt.h>
|
||||
#include <linux/of_reserved_mem.h>
|
||||
#include <linux/slab.h>
|
||||
#endif
|
||||
|
||||
#include <asm/io.h>
|
||||
#include <asm/dma.h>
|
||||
|
@ -63,7 +70,7 @@
|
|||
|
||||
enum swiotlb_force swiotlb_force;
|
||||
|
||||
struct io_tlb_mem *io_tlb_default_mem;
|
||||
struct io_tlb_mem io_tlb_default_mem;
|
||||
|
||||
/*
|
||||
* Max segment that we can provide which (if pages are contingous) will
|
||||
|
@ -94,7 +101,7 @@ early_param("swiotlb", setup_io_tlb_npages);
|
|||
|
||||
unsigned int swiotlb_max_segment(void)
|
||||
{
|
||||
return io_tlb_default_mem ? max_segment : 0;
|
||||
return io_tlb_default_mem.nslabs ? max_segment : 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(swiotlb_max_segment);
|
||||
|
||||
|
@ -127,9 +134,9 @@ void __init swiotlb_adjust_size(unsigned long size)
|
|||
|
||||
void swiotlb_print_info(void)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
||||
|
||||
if (!mem) {
|
||||
if (!mem->nslabs) {
|
||||
pr_warn("No low mem\n");
|
||||
return;
|
||||
}
|
||||
|
@ -156,11 +163,11 @@ static inline unsigned long nr_slots(u64 val)
|
|||
*/
|
||||
void __init swiotlb_update_mem_attributes(void)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
||||
void *vaddr;
|
||||
unsigned long bytes;
|
||||
|
||||
if (!mem || mem->late_alloc)
|
||||
if (!mem->nslabs || mem->late_alloc)
|
||||
return;
|
||||
vaddr = phys_to_virt(mem->start);
|
||||
bytes = PAGE_ALIGN(mem->nslabs << IO_TLB_SHIFT);
|
||||
|
@ -168,36 +175,50 @@ void __init swiotlb_update_mem_attributes(void)
|
|||
memset(vaddr, 0, bytes);
|
||||
}
|
||||
|
||||
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
|
||||
static void swiotlb_init_io_tlb_mem(struct io_tlb_mem *mem, phys_addr_t start,
|
||||
unsigned long nslabs, bool late_alloc)
|
||||
{
|
||||
void *vaddr = phys_to_virt(start);
|
||||
unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
|
||||
struct io_tlb_mem *mem;
|
||||
size_t alloc_size;
|
||||
|
||||
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
||||
return 0;
|
||||
|
||||
/* protect against double initialization */
|
||||
if (WARN_ON_ONCE(io_tlb_default_mem))
|
||||
return -ENOMEM;
|
||||
|
||||
alloc_size = PAGE_ALIGN(struct_size(mem, slots, nslabs));
|
||||
mem = memblock_alloc(alloc_size, PAGE_SIZE);
|
||||
if (!mem)
|
||||
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
|
||||
__func__, alloc_size, PAGE_SIZE);
|
||||
mem->nslabs = nslabs;
|
||||
mem->start = __pa(tlb);
|
||||
mem->start = start;
|
||||
mem->end = mem->start + bytes;
|
||||
mem->index = 0;
|
||||
mem->late_alloc = late_alloc;
|
||||
|
||||
if (swiotlb_force == SWIOTLB_FORCE)
|
||||
mem->force_bounce = true;
|
||||
|
||||
spin_lock_init(&mem->lock);
|
||||
for (i = 0; i < mem->nslabs; i++) {
|
||||
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
|
||||
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
||||
mem->slots[i].alloc_size = 0;
|
||||
}
|
||||
memset(vaddr, 0, bytes);
|
||||
}
|
||||
|
||||
int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
|
||||
{
|
||||
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
||||
size_t alloc_size;
|
||||
|
||||
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
||||
return 0;
|
||||
|
||||
/* protect against double initialization */
|
||||
if (WARN_ON_ONCE(mem->nslabs))
|
||||
return -ENOMEM;
|
||||
|
||||
alloc_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), nslabs));
|
||||
mem->slots = memblock_alloc(alloc_size, PAGE_SIZE);
|
||||
if (!mem->slots)
|
||||
panic("%s: Failed to allocate %zu bytes align=0x%lx\n",
|
||||
__func__, alloc_size, PAGE_SIZE);
|
||||
|
||||
swiotlb_init_io_tlb_mem(mem, __pa(tlb), nslabs, false);
|
||||
|
||||
io_tlb_default_mem = mem;
|
||||
if (verbose)
|
||||
swiotlb_print_info();
|
||||
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
|
||||
|
@ -282,37 +303,24 @@ swiotlb_late_init_with_default_size(size_t default_size)
|
|||
int
|
||||
swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
|
||||
{
|
||||
unsigned long bytes = nslabs << IO_TLB_SHIFT, i;
|
||||
struct io_tlb_mem *mem;
|
||||
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
||||
unsigned long bytes = nslabs << IO_TLB_SHIFT;
|
||||
|
||||
if (swiotlb_force == SWIOTLB_NO_FORCE)
|
||||
return 0;
|
||||
|
||||
/* protect against double initialization */
|
||||
if (WARN_ON_ONCE(io_tlb_default_mem))
|
||||
if (WARN_ON_ONCE(mem->nslabs))
|
||||
return -ENOMEM;
|
||||
|
||||
mem = (void *)__get_free_pages(GFP_KERNEL,
|
||||
get_order(struct_size(mem, slots, nslabs)));
|
||||
if (!mem)
|
||||
mem->slots = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
||||
get_order(array_size(sizeof(*mem->slots), nslabs)));
|
||||
if (!mem->slots)
|
||||
return -ENOMEM;
|
||||
|
||||
mem->nslabs = nslabs;
|
||||
mem->start = virt_to_phys(tlb);
|
||||
mem->end = mem->start + bytes;
|
||||
mem->index = 0;
|
||||
mem->late_alloc = 1;
|
||||
spin_lock_init(&mem->lock);
|
||||
for (i = 0; i < mem->nslabs; i++) {
|
||||
mem->slots[i].list = IO_TLB_SEGSIZE - io_tlb_offset(i);
|
||||
mem->slots[i].orig_addr = INVALID_PHYS_ADDR;
|
||||
mem->slots[i].alloc_size = 0;
|
||||
}
|
||||
|
||||
set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
|
||||
memset(tlb, 0, bytes);
|
||||
swiotlb_init_io_tlb_mem(mem, virt_to_phys(tlb), nslabs, true);
|
||||
|
||||
io_tlb_default_mem = mem;
|
||||
swiotlb_print_info();
|
||||
swiotlb_set_max_segment(mem->nslabs << IO_TLB_SHIFT);
|
||||
return 0;
|
||||
|
@ -320,18 +328,28 @@ swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
|
|||
|
||||
void __init swiotlb_exit(void)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
size_t size;
|
||||
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
||||
unsigned long tbl_vaddr;
|
||||
size_t tbl_size, slots_size;
|
||||
|
||||
if (!mem)
|
||||
if (!mem->nslabs)
|
||||
return;
|
||||
|
||||
size = struct_size(mem, slots, mem->nslabs);
|
||||
if (mem->late_alloc)
|
||||
free_pages((unsigned long)mem, get_order(size));
|
||||
else
|
||||
memblock_free_late(__pa(mem), PAGE_ALIGN(size));
|
||||
io_tlb_default_mem = NULL;
|
||||
pr_info("tearing down default memory pool\n");
|
||||
tbl_vaddr = (unsigned long)phys_to_virt(mem->start);
|
||||
tbl_size = PAGE_ALIGN(mem->end - mem->start);
|
||||
slots_size = PAGE_ALIGN(array_size(sizeof(*mem->slots), mem->nslabs));
|
||||
|
||||
set_memory_encrypted(tbl_vaddr, tbl_size >> PAGE_SHIFT);
|
||||
if (mem->late_alloc) {
|
||||
free_pages(tbl_vaddr, get_order(tbl_size));
|
||||
free_pages((unsigned long)mem->slots, get_order(slots_size));
|
||||
} else {
|
||||
memblock_free_late(mem->start, tbl_size);
|
||||
memblock_free_late(__pa(mem->slots), slots_size);
|
||||
}
|
||||
|
||||
memset(mem, 0, sizeof(*mem));
|
||||
}
|
||||
|
||||
/*
|
||||
|
@ -348,19 +366,33 @@ static unsigned int swiotlb_align_offset(struct device *dev, u64 addr)
|
|||
static void swiotlb_bounce(struct device *dev, phys_addr_t tlb_addr, size_t size,
|
||||
enum dma_data_direction dir)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
int index = (tlb_addr - mem->start) >> IO_TLB_SHIFT;
|
||||
phys_addr_t orig_addr = mem->slots[index].orig_addr;
|
||||
size_t alloc_size = mem->slots[index].alloc_size;
|
||||
unsigned long pfn = PFN_DOWN(orig_addr);
|
||||
unsigned char *vaddr = phys_to_virt(tlb_addr);
|
||||
unsigned int tlb_offset;
|
||||
unsigned int tlb_offset, orig_addr_offset;
|
||||
|
||||
if (orig_addr == INVALID_PHYS_ADDR)
|
||||
return;
|
||||
|
||||
tlb_offset = (tlb_addr & (IO_TLB_SIZE - 1)) -
|
||||
swiotlb_align_offset(dev, orig_addr);
|
||||
tlb_offset = tlb_addr & (IO_TLB_SIZE - 1);
|
||||
orig_addr_offset = swiotlb_align_offset(dev, orig_addr);
|
||||
if (tlb_offset < orig_addr_offset) {
|
||||
dev_WARN_ONCE(dev, 1,
|
||||
"Access before mapping start detected. orig offset %u, requested offset %u.\n",
|
||||
orig_addr_offset, tlb_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
tlb_offset -= orig_addr_offset;
|
||||
if (tlb_offset > alloc_size) {
|
||||
dev_WARN_ONCE(dev, 1,
|
||||
"Buffer overflow detected. Allocation size: %zu. Mapping size: %zu+%u.\n",
|
||||
alloc_size, size, tlb_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
orig_addr += tlb_offset;
|
||||
alloc_size -= tlb_offset;
|
||||
|
@ -426,10 +458,10 @@ static unsigned int wrap_index(struct io_tlb_mem *mem, unsigned int index)
|
|||
* Find a suitable number of IO TLB entries size that will fit this request and
|
||||
* allocate a buffer from that IO TLB pool.
|
||||
*/
|
||||
static int find_slots(struct device *dev, phys_addr_t orig_addr,
|
||||
size_t alloc_size)
|
||||
static int swiotlb_find_slots(struct device *dev, phys_addr_t orig_addr,
|
||||
size_t alloc_size)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
unsigned long boundary_mask = dma_get_seg_boundary(dev);
|
||||
dma_addr_t tbl_dma_addr =
|
||||
phys_to_dma_unencrypted(dev, mem->start) & boundary_mask;
|
||||
|
@ -438,6 +470,7 @@ static int find_slots(struct device *dev, phys_addr_t orig_addr,
|
|||
dma_get_min_align_mask(dev) & ~(IO_TLB_SIZE - 1);
|
||||
unsigned int nslots = nr_slots(alloc_size), stride;
|
||||
unsigned int index, wrap, count = 0, i;
|
||||
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
||||
unsigned long flags;
|
||||
|
||||
BUG_ON(!nslots);
|
||||
|
@ -457,8 +490,9 @@ static int find_slots(struct device *dev, phys_addr_t orig_addr,
|
|||
|
||||
index = wrap = wrap_index(mem, ALIGN(mem->index, stride));
|
||||
do {
|
||||
if ((slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
|
||||
(orig_addr & iotlb_align_mask)) {
|
||||
if (orig_addr &&
|
||||
(slot_addr(tbl_dma_addr, index) & iotlb_align_mask) !=
|
||||
(orig_addr & iotlb_align_mask)) {
|
||||
index = wrap_index(mem, index + 1);
|
||||
continue;
|
||||
}
|
||||
|
@ -482,8 +516,11 @@ not_found:
|
|||
return -1;
|
||||
|
||||
found:
|
||||
for (i = index; i < index + nslots; i++)
|
||||
for (i = index; i < index + nslots; i++) {
|
||||
mem->slots[i].list = 0;
|
||||
mem->slots[i].alloc_size =
|
||||
alloc_size - (offset + ((i - index) << IO_TLB_SHIFT));
|
||||
}
|
||||
for (i = index - 1;
|
||||
io_tlb_offset(i) != IO_TLB_SEGSIZE - 1 &&
|
||||
mem->slots[i].list; i--)
|
||||
|
@ -506,7 +543,7 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|||
size_t mapping_size, size_t alloc_size,
|
||||
enum dma_data_direction dir, unsigned long attrs)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
unsigned int offset = swiotlb_align_offset(dev, orig_addr);
|
||||
unsigned int i;
|
||||
int index;
|
||||
|
@ -524,7 +561,7 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|||
return (phys_addr_t)DMA_MAPPING_ERROR;
|
||||
}
|
||||
|
||||
index = find_slots(dev, orig_addr, alloc_size + offset);
|
||||
index = swiotlb_find_slots(dev, orig_addr, alloc_size + offset);
|
||||
if (index == -1) {
|
||||
if (!(attrs & DMA_ATTR_NO_WARN))
|
||||
dev_warn_ratelimited(dev,
|
||||
|
@ -538,11 +575,8 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|||
* This is needed when we sync the memory. Then we sync the buffer if
|
||||
* needed.
|
||||
*/
|
||||
for (i = 0; i < nr_slots(alloc_size + offset); i++) {
|
||||
for (i = 0; i < nr_slots(alloc_size + offset); i++)
|
||||
mem->slots[index + i].orig_addr = slot_addr(orig_addr, i);
|
||||
mem->slots[index + i].alloc_size =
|
||||
alloc_size - (i << IO_TLB_SHIFT);
|
||||
}
|
||||
tlb_addr = slot_addr(mem->start, index) + offset;
|
||||
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
||||
(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
|
||||
|
@ -550,27 +584,15 @@ phys_addr_t swiotlb_tbl_map_single(struct device *dev, phys_addr_t orig_addr,
|
|||
return tlb_addr;
|
||||
}
|
||||
|
||||
/*
|
||||
* tlb_addr is the physical address of the bounce buffer to unmap.
|
||||
*/
|
||||
void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
|
||||
size_t mapping_size, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
static void swiotlb_release_slots(struct device *dev, phys_addr_t tlb_addr)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
unsigned long flags;
|
||||
unsigned int offset = swiotlb_align_offset(hwdev, tlb_addr);
|
||||
unsigned int offset = swiotlb_align_offset(dev, tlb_addr);
|
||||
int index = (tlb_addr - offset - mem->start) >> IO_TLB_SHIFT;
|
||||
int nslots = nr_slots(mem->slots[index].alloc_size + offset);
|
||||
int count, i;
|
||||
|
||||
/*
|
||||
* First, sync the memory before unmapping the entry
|
||||
*/
|
||||
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
||||
(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
|
||||
swiotlb_bounce(hwdev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
|
||||
|
||||
/*
|
||||
* Return the buffer to the free list by setting the corresponding
|
||||
* entries to indicate the number of contiguous entries available.
|
||||
|
@ -605,6 +627,23 @@ void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
|
|||
spin_unlock_irqrestore(&mem->lock, flags);
|
||||
}
|
||||
|
||||
/*
|
||||
* tlb_addr is the physical address of the bounce buffer to unmap.
|
||||
*/
|
||||
void swiotlb_tbl_unmap_single(struct device *dev, phys_addr_t tlb_addr,
|
||||
size_t mapping_size, enum dma_data_direction dir,
|
||||
unsigned long attrs)
|
||||
{
|
||||
/*
|
||||
* First, sync the memory before unmapping the entry
|
||||
*/
|
||||
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
|
||||
(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
|
||||
swiotlb_bounce(dev, tlb_addr, mapping_size, DMA_FROM_DEVICE);
|
||||
|
||||
swiotlb_release_slots(dev, tlb_addr);
|
||||
}
|
||||
|
||||
void swiotlb_sync_single_for_device(struct device *dev, phys_addr_t tlb_addr,
|
||||
size_t size, enum dma_data_direction dir)
|
||||
{
|
||||
|
@ -662,26 +701,155 @@ size_t swiotlb_max_mapping_size(struct device *dev)
|
|||
return ((size_t)IO_TLB_SIZE) * IO_TLB_SEGSIZE;
|
||||
}
|
||||
|
||||
bool is_swiotlb_active(void)
|
||||
bool is_swiotlb_active(struct device *dev)
|
||||
{
|
||||
return io_tlb_default_mem != NULL;
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
|
||||
return mem && mem->nslabs;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(is_swiotlb_active);
|
||||
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
static struct dentry *debugfs_dir;
|
||||
|
||||
static int __init swiotlb_create_debugfs(void)
|
||||
static void swiotlb_create_debugfs_files(struct io_tlb_mem *mem)
|
||||
{
|
||||
struct io_tlb_mem *mem = io_tlb_default_mem;
|
||||
|
||||
if (!mem)
|
||||
return 0;
|
||||
mem->debugfs = debugfs_create_dir("swiotlb", NULL);
|
||||
debugfs_create_ulong("io_tlb_nslabs", 0400, mem->debugfs, &mem->nslabs);
|
||||
debugfs_create_ulong("io_tlb_used", 0400, mem->debugfs, &mem->used);
|
||||
}
|
||||
|
||||
static int __init swiotlb_create_default_debugfs(void)
|
||||
{
|
||||
struct io_tlb_mem *mem = &io_tlb_default_mem;
|
||||
|
||||
debugfs_dir = debugfs_create_dir("swiotlb", NULL);
|
||||
if (mem->nslabs) {
|
||||
mem->debugfs = debugfs_dir;
|
||||
swiotlb_create_debugfs_files(mem);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
late_initcall(swiotlb_create_debugfs);
|
||||
late_initcall(swiotlb_create_default_debugfs);
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_DMA_RESTRICTED_POOL
|
||||
|
||||
#ifdef CONFIG_DEBUG_FS
|
||||
static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
|
||||
{
|
||||
struct io_tlb_mem *mem = rmem->priv;
|
||||
|
||||
mem->debugfs = debugfs_create_dir(rmem->name, debugfs_dir);
|
||||
swiotlb_create_debugfs_files(mem);
|
||||
}
|
||||
#else
|
||||
static void rmem_swiotlb_debugfs_init(struct reserved_mem *rmem)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
struct page *swiotlb_alloc(struct device *dev, size_t size)
|
||||
{
|
||||
struct io_tlb_mem *mem = dev->dma_io_tlb_mem;
|
||||
phys_addr_t tlb_addr;
|
||||
int index;
|
||||
|
||||
if (!mem)
|
||||
return NULL;
|
||||
|
||||
index = swiotlb_find_slots(dev, 0, size);
|
||||
if (index == -1)
|
||||
return NULL;
|
||||
|
||||
tlb_addr = slot_addr(mem->start, index);
|
||||
|
||||
return pfn_to_page(PFN_DOWN(tlb_addr));
|
||||
}
|
||||
|
||||
bool swiotlb_free(struct device *dev, struct page *page, size_t size)
|
||||
{
|
||||
phys_addr_t tlb_addr = page_to_phys(page);
|
||||
|
||||
if (!is_swiotlb_buffer(dev, tlb_addr))
|
||||
return false;
|
||||
|
||||
swiotlb_release_slots(dev, tlb_addr);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static int rmem_swiotlb_device_init(struct reserved_mem *rmem,
|
||||
struct device *dev)
|
||||
{
|
||||
struct io_tlb_mem *mem = rmem->priv;
|
||||
unsigned long nslabs = rmem->size >> IO_TLB_SHIFT;
|
||||
|
||||
/*
|
||||
* Since multiple devices can share the same pool, the private data,
|
||||
* io_tlb_mem struct, will be initialized by the first device attached
|
||||
* to it.
|
||||
*/
|
||||
if (!mem) {
|
||||
mem = kzalloc(sizeof(*mem), GFP_KERNEL);
|
||||
if (!mem)
|
||||
return -ENOMEM;
|
||||
|
||||
mem->slots = kzalloc(array_size(sizeof(*mem->slots), nslabs),
|
||||
GFP_KERNEL);
|
||||
if (!mem->slots) {
|
||||
kfree(mem);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
set_memory_decrypted((unsigned long)phys_to_virt(rmem->base),
|
||||
rmem->size >> PAGE_SHIFT);
|
||||
swiotlb_init_io_tlb_mem(mem, rmem->base, nslabs, false);
|
||||
mem->force_bounce = true;
|
||||
mem->for_alloc = true;
|
||||
|
||||
rmem->priv = mem;
|
||||
|
||||
rmem_swiotlb_debugfs_init(rmem);
|
||||
}
|
||||
|
||||
dev->dma_io_tlb_mem = mem;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void rmem_swiotlb_device_release(struct reserved_mem *rmem,
|
||||
struct device *dev)
|
||||
{
|
||||
dev->dma_io_tlb_mem = &io_tlb_default_mem;
|
||||
}
|
||||
|
||||
static const struct reserved_mem_ops rmem_swiotlb_ops = {
|
||||
.device_init = rmem_swiotlb_device_init,
|
||||
.device_release = rmem_swiotlb_device_release,
|
||||
};
|
||||
|
||||
static int __init rmem_swiotlb_setup(struct reserved_mem *rmem)
|
||||
{
|
||||
unsigned long node = rmem->fdt_node;
|
||||
|
||||
if (of_get_flat_dt_prop(node, "reusable", NULL) ||
|
||||
of_get_flat_dt_prop(node, "linux,cma-default", NULL) ||
|
||||
of_get_flat_dt_prop(node, "linux,dma-default", NULL) ||
|
||||
of_get_flat_dt_prop(node, "no-map", NULL))
|
||||
return -EINVAL;
|
||||
|
||||
if (PageHighMem(pfn_to_page(PHYS_PFN(rmem->base)))) {
|
||||
pr_err("Restricted DMA pool must be accessible within the linear mapping.");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
rmem->ops = &rmem_swiotlb_ops;
|
||||
pr_info("Reserved memory: created restricted DMA pool at %pa, size %ld MiB\n",
|
||||
&rmem->base, (unsigned long)rmem->size / SZ_1M);
|
||||
return 0;
|
||||
}
|
||||
|
||||
RESERVEDMEM_OF_DECLARE(dma, "restricted-dma-pool", rmem_swiotlb_setup);
|
||||
#endif /* CONFIG_DMA_RESTRICTED_POOL */
|
||||
|
|
Загрузка…
Ссылка в новой задаче