mctp: Implement message fragmentation & reassembly

This change implements MCTP fragmentation (based on route & device MTU),
and corresponding reassembly.

The MCTP specification only allows for fragmentation on the originating
message endpoint, and reassembly on the destination endpoint -
intermediate nodes do not need to reassemble/refragment.  Consequently,
we only fragment in the local transmit path, and reassemble
locally-bound packets. Messages are required to be in-order, so we
simply cancel reassembly on out-of-order or missing packets.

In the fragmentation path, we just break up the message into MTU-sized
fragments; the skb structure is a simple copy for now, which we can later
improve with a shared data implementation.

For reassembly, we keep track of incoming message fragments using the
existing tag infrastructure, allocating a key on the (src,dest,tag)
tuple, and reassembles matching fragments into a skb->frag_list.

Signed-off-by: Jeremy Kerr <jk@codeconstruct.com.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
Jeremy Kerr 2021-07-29 10:20:50 +08:00 коммит произвёл David S. Miller
Родитель 833ef3b91d
Коммит 4a992bbd36
3 изменённых файлов: 363 добавлений и 46 удалений

Просмотреть файл

@ -84,9 +84,21 @@ struct mctp_sock {
* updates to either list are performed under the netns_mctp->keys
* lock.
*
* - there is a single destruction path for a mctp_sk_key - through socket
* unhash (see mctp_sk_unhash). This performs the list removal under
* keys_lock.
* - a key may have a sk_buff attached as part of an in-progress message
* reassembly (->reasm_head). The reassembly context is protected by
* reasm_lock, which may be acquired with the keys lock (above) held, if
* necessary. Consequently, keys lock *cannot* be acquired with the
* reasm_lock held.
*
* - there are two destruction paths for a mctp_sk_key:
*
* - through socket unhash (see mctp_sk_unhash). This performs the list
* removal under keys_lock.
*
* - where a key is established to receive a reply message: after receiving
* the (complete) reply, or during reassembly errors. Here, we clean up
* the reassembly context (marking reasm_dead, to prevent another from
* starting), and remove the socket from the netns & socket lists.
*/
struct mctp_sk_key {
mctp_eid_t peer_addr;
@ -102,6 +114,13 @@ struct mctp_sk_key {
/* per-socket list */
struct hlist_node sklist;
/* incoming fragment reassembly context */
spinlock_t reasm_lock;
struct sk_buff *reasm_head;
struct sk_buff **reasm_tailp;
bool reasm_dead;
u8 last_seq;
struct rcu_head rcu;
};

Просмотреть файл

@ -263,6 +263,14 @@ static void mctp_sk_unhash(struct sock *sk)
hlist_for_each_entry_safe(key, tmp, &msk->keys, sklist) {
hlist_del_rcu(&key->sklist);
hlist_del_rcu(&key->hlist);
spin_lock(&key->reasm_lock);
if (key->reasm_head)
kfree_skb(key->reasm_head);
key->reasm_head = NULL;
key->reasm_dead = true;
spin_unlock(&key->reasm_lock);
kfree_rcu(key, rcu);
}
spin_unlock_irqrestore(&net->mctp.keys_lock, flags);

Просмотреть файл

@ -23,6 +23,8 @@
#include <net/netlink.h>
#include <net/sock.h>
static const unsigned int mctp_message_maxlen = 64 * 1024;
/* route output callbacks */
static int mctp_route_discard(struct mctp_route *route, struct sk_buff *skb)
{
@ -105,14 +107,125 @@ static struct mctp_sk_key *mctp_lookup_key(struct net *net, struct sk_buff *skb,
return ret;
}
static struct mctp_sk_key *mctp_key_alloc(struct mctp_sock *msk,
mctp_eid_t local, mctp_eid_t peer,
u8 tag, gfp_t gfp)
{
struct mctp_sk_key *key;
key = kzalloc(sizeof(*key), gfp);
if (!key)
return NULL;
key->peer_addr = peer;
key->local_addr = local;
key->tag = tag;
key->sk = &msk->sk;
spin_lock_init(&key->reasm_lock);
return key;
}
static int mctp_key_add(struct mctp_sk_key *key, struct mctp_sock *msk)
{
struct net *net = sock_net(&msk->sk);
struct mctp_sk_key *tmp;
unsigned long flags;
int rc = 0;
spin_lock_irqsave(&net->mctp.keys_lock, flags);
hlist_for_each_entry(tmp, &net->mctp.keys, hlist) {
if (mctp_key_match(tmp, key->local_addr, key->peer_addr,
key->tag)) {
rc = -EEXIST;
break;
}
}
if (!rc) {
hlist_add_head(&key->hlist, &net->mctp.keys);
hlist_add_head(&key->sklist, &msk->keys);
}
spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
return rc;
}
/* Must be called with key->reasm_lock, which it will release. Will schedule
* the key for an RCU free.
*/
static void __mctp_key_unlock_drop(struct mctp_sk_key *key, struct net *net,
unsigned long flags)
__releases(&key->reasm_lock)
{
struct sk_buff *skb;
skb = key->reasm_head;
key->reasm_head = NULL;
key->reasm_dead = true;
spin_unlock_irqrestore(&key->reasm_lock, flags);
spin_lock_irqsave(&net->mctp.keys_lock, flags);
hlist_del_rcu(&key->hlist);
hlist_del_rcu(&key->sklist);
spin_unlock_irqrestore(&net->mctp.keys_lock, flags);
kfree_rcu(key, rcu);
if (skb)
kfree_skb(skb);
}
static int mctp_frag_queue(struct mctp_sk_key *key, struct sk_buff *skb)
{
struct mctp_hdr *hdr = mctp_hdr(skb);
u8 exp_seq, this_seq;
this_seq = (hdr->flags_seq_tag >> MCTP_HDR_SEQ_SHIFT)
& MCTP_HDR_SEQ_MASK;
if (!key->reasm_head) {
key->reasm_head = skb;
key->reasm_tailp = &(skb_shinfo(skb)->frag_list);
key->last_seq = this_seq;
return 0;
}
exp_seq = (key->last_seq + 1) & MCTP_HDR_SEQ_MASK;
if (this_seq != exp_seq)
return -EINVAL;
if (key->reasm_head->len + skb->len > mctp_message_maxlen)
return -EINVAL;
skb->next = NULL;
skb->sk = NULL;
*key->reasm_tailp = skb;
key->reasm_tailp = &skb->next;
key->last_seq = this_seq;
key->reasm_head->data_len += skb->len;
key->reasm_head->len += skb->len;
key->reasm_head->truesize += skb->truesize;
return 0;
}
static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb)
{
struct net *net = dev_net(skb->dev);
struct mctp_sk_key *key;
struct mctp_sock *msk;
struct mctp_hdr *mh;
unsigned long f;
u8 tag, flags;
int rc;
msk = NULL;
rc = -EINVAL;
/* we may be receiving a locally-routed packet; drop source sk
* accounting
@ -121,50 +234,144 @@ static int mctp_route_input(struct mctp_route *route, struct sk_buff *skb)
/* ensure we have enough data for a header and a type */
if (skb->len < sizeof(struct mctp_hdr) + 1)
goto drop;
goto out;
/* grab header, advance data ptr */
mh = mctp_hdr(skb);
skb_pull(skb, sizeof(struct mctp_hdr));
if (mh->ver != 1)
goto drop;
goto out;
/* TODO: reassembly */
if ((mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM))
!= (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM))
goto drop;
flags = mh->flags_seq_tag & (MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM);
tag = mh->flags_seq_tag & (MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
rcu_read_lock();
/* 1. lookup socket matching (src,dest,tag) */
/* lookup socket / reasm context, exactly matching (src,dest,tag) */
key = mctp_lookup_key(net, skb, mh->src);
/* 2. lookup socket macthing (BCAST,dest,tag) */
if (!key)
key = mctp_lookup_key(net, skb, MCTP_ADDR_ANY);
if (flags & MCTP_HDR_FLAG_SOM) {
if (key) {
msk = container_of(key->sk, struct mctp_sock, sk);
} else {
/* first response to a broadcast? do a more general
* key lookup to find the socket, but don't use this
* key for reassembly - we'll create a more specific
* one for future packets if required (ie, !EOM).
*/
key = mctp_lookup_key(net, skb, MCTP_ADDR_ANY);
if (key) {
msk = container_of(key->sk,
struct mctp_sock, sk);
key = NULL;
}
}
/* 3. SOM? -> lookup bound socket, conditionally (!EOM) create
* mapping for future (1)/(2).
*/
if (key)
msk = container_of(key->sk, struct mctp_sock, sk);
else if (!msk && (mh->flags_seq_tag & MCTP_HDR_FLAG_SOM))
msk = mctp_lookup_bind(net, skb);
if (!key && !msk && (tag & MCTP_HDR_FLAG_TO))
msk = mctp_lookup_bind(net, skb);
if (!msk)
goto unlock_drop;
if (!msk) {
rc = -ENOENT;
goto out_unlock;
}
sock_queue_rcv_skb(&msk->sk, skb);
/* single-packet message? deliver to socket, clean up any
* pending key.
*/
if (flags & MCTP_HDR_FLAG_EOM) {
sock_queue_rcv_skb(&msk->sk, skb);
if (key) {
spin_lock_irqsave(&key->reasm_lock, f);
/* we've hit a pending reassembly; not much we
* can do but drop it
*/
__mctp_key_unlock_drop(key, net, f);
}
rc = 0;
goto out_unlock;
}
/* broadcast response or a bind() - create a key for further
* packets for this message
*/
if (!key) {
key = mctp_key_alloc(msk, mh->dest, mh->src,
tag, GFP_ATOMIC);
if (!key) {
rc = -ENOMEM;
goto out_unlock;
}
/* we can queue without the reasm lock here, as the
* key isn't observable yet
*/
mctp_frag_queue(key, skb);
/* if the key_add fails, we've raced with another
* SOM packet with the same src, dest and tag. There's
* no way to distinguish future packets, so all we
* can do is drop; we'll free the skb on exit from
* this function.
*/
rc = mctp_key_add(key, msk);
if (rc)
kfree(key);
} else {
/* existing key: start reassembly */
spin_lock_irqsave(&key->reasm_lock, f);
if (key->reasm_head || key->reasm_dead) {
/* duplicate start? drop everything */
__mctp_key_unlock_drop(key, net, f);
rc = -EEXIST;
} else {
rc = mctp_frag_queue(key, skb);
spin_unlock_irqrestore(&key->reasm_lock, f);
}
}
} else if (key) {
/* this packet continues a previous message; reassemble
* using the message-specific key
*/
spin_lock_irqsave(&key->reasm_lock, f);
/* we need to be continuing an existing reassembly... */
if (!key->reasm_head)
rc = -EINVAL;
else
rc = mctp_frag_queue(key, skb);
/* end of message? deliver to socket, and we're done with
* the reassembly/response key
*/
if (!rc && flags & MCTP_HDR_FLAG_EOM) {
sock_queue_rcv_skb(key->sk, key->reasm_head);
key->reasm_head = NULL;
__mctp_key_unlock_drop(key, net, f);
} else {
spin_unlock_irqrestore(&key->reasm_lock, f);
}
} else {
/* not a start, no matching key */
rc = -ENOENT;
}
out_unlock:
rcu_read_unlock();
out:
if (rc)
kfree_skb(skb);
return rc;
}
return 0;
unlock_drop:
rcu_read_unlock();
drop:
kfree_skb(skb);
return 0;
static unsigned int mctp_route_mtu(struct mctp_route *rt)
{
return rt->mtu ?: READ_ONCE(rt->dev->dev->mtu);
}
static int mctp_route_output(struct mctp_route *route, struct sk_buff *skb)
@ -228,8 +435,6 @@ static void mctp_reserve_tag(struct net *net, struct mctp_sk_key *key,
lockdep_assert_held(&mns->keys_lock);
key->sk = &msk->sk;
/* we hold the net->key_lock here, allowing updates to both
* then net and sk
*/
@ -251,11 +456,9 @@ static int mctp_alloc_local_tag(struct mctp_sock *msk,
u8 tagbits;
/* be optimistic, alloc now */
key = kzalloc(sizeof(*key), GFP_KERNEL);
key = mctp_key_alloc(msk, saddr, daddr, 0, GFP_KERNEL);
if (!key)
return -ENOMEM;
key->local_addr = saddr;
key->peer_addr = daddr;
/* 8 possible tag values */
tagbits = 0xff;
@ -340,6 +543,86 @@ int mctp_do_route(struct mctp_route *rt, struct sk_buff *skb)
return rc;
}
static int mctp_do_fragment_route(struct mctp_route *rt, struct sk_buff *skb,
unsigned int mtu, u8 tag)
{
const unsigned int hlen = sizeof(struct mctp_hdr);
struct mctp_hdr *hdr, *hdr2;
unsigned int pos, size;
struct sk_buff *skb2;
int rc;
u8 seq;
hdr = mctp_hdr(skb);
seq = 0;
rc = 0;
if (mtu < hlen + 1) {
kfree_skb(skb);
return -EMSGSIZE;
}
/* we've got the header */
skb_pull(skb, hlen);
for (pos = 0; pos < skb->len;) {
/* size of message payload */
size = min(mtu - hlen, skb->len - pos);
skb2 = alloc_skb(MCTP_HEADER_MAXLEN + hlen + size, GFP_KERNEL);
if (!skb2) {
rc = -ENOMEM;
break;
}
/* generic skb copy */
skb2->protocol = skb->protocol;
skb2->priority = skb->priority;
skb2->dev = skb->dev;
memcpy(skb2->cb, skb->cb, sizeof(skb2->cb));
if (skb->sk)
skb_set_owner_w(skb2, skb->sk);
/* establish packet */
skb_reserve(skb2, MCTP_HEADER_MAXLEN);
skb_reset_network_header(skb2);
skb_put(skb2, hlen + size);
skb2->transport_header = skb2->network_header + hlen;
/* copy header fields, calculate SOM/EOM flags & seq */
hdr2 = mctp_hdr(skb2);
hdr2->ver = hdr->ver;
hdr2->dest = hdr->dest;
hdr2->src = hdr->src;
hdr2->flags_seq_tag = tag &
(MCTP_HDR_TAG_MASK | MCTP_HDR_FLAG_TO);
if (pos == 0)
hdr2->flags_seq_tag |= MCTP_HDR_FLAG_SOM;
if (pos + size == skb->len)
hdr2->flags_seq_tag |= MCTP_HDR_FLAG_EOM;
hdr2->flags_seq_tag |= seq << MCTP_HDR_SEQ_SHIFT;
/* copy message payload */
skb_copy_bits(skb, pos, skb_transport_header(skb2), size);
/* do route, but don't drop the rt reference */
rc = rt->output(rt, skb2);
if (rc)
break;
seq = (seq + 1) & MCTP_HDR_SEQ_MASK;
pos += size;
}
mctp_route_release(rt);
consume_skb(skb);
return rc;
}
int mctp_local_output(struct sock *sk, struct mctp_route *rt,
struct sk_buff *skb, mctp_eid_t daddr, u8 req_tag)
{
@ -347,6 +630,7 @@ int mctp_local_output(struct sock *sk, struct mctp_route *rt,
struct mctp_skb_cb *cb = mctp_cb(skb);
struct mctp_hdr *hdr;
unsigned long flags;
unsigned int mtu;
mctp_eid_t saddr;
int rc;
u8 tag;
@ -376,26 +660,32 @@ int mctp_local_output(struct sock *sk, struct mctp_route *rt,
tag = req_tag;
}
/* TODO: we have the route MTU here; packetise */
skb->protocol = htons(ETH_P_MCTP);
skb->priority = 0;
skb_reset_transport_header(skb);
skb_push(skb, sizeof(struct mctp_hdr));
skb_reset_network_header(skb);
hdr = mctp_hdr(skb);
hdr->ver = 1;
hdr->dest = daddr;
hdr->src = saddr;
hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM | /* TODO */
tag;
skb->dev = rt->dev->dev;
skb->protocol = htons(ETH_P_MCTP);
skb->priority = 0;
/* cb->net will have been set on initial ingress */
cb->src = saddr;
return mctp_do_route(rt, skb);
/* set up common header fields */
hdr = mctp_hdr(skb);
hdr->ver = 1;
hdr->dest = daddr;
hdr->src = saddr;
mtu = mctp_route_mtu(rt);
if (skb->len + sizeof(struct mctp_hdr) <= mtu) {
hdr->flags_seq_tag = MCTP_HDR_FLAG_SOM | MCTP_HDR_FLAG_EOM |
tag;
return mctp_do_route(rt, skb);
} else {
return mctp_do_fragment_route(rt, skb, mtu, tag);
}
}
/* route management */