locking/rtmutex: Fix task->pi_waiters integrity
[ Upstream commitf7853c3424
] Henry reported that rt_mutex_adjust_prio_check() has an ordering problem and puts the lie to the comment in [7]. Sharing the sort key between lock->waiters and owner->pi_waiters *does* create problems, since unlike what the comment claims, holding [L] is insufficient. Notably, consider: A / \ M1 M2 | | B C That is, task A owns both M1 and M2, B and C block on them. In this case a concurrent chain walk (B & C) will modify their resp. sort keys in [7] while holding M1->wait_lock and M2->wait_lock. So holding [L] is meaningless, they're different Ls. This then gives rise to a race condition between [7] and [11], where the requeue of pi_waiters will observe an inconsistent tree order. B C (holds M1->wait_lock, (holds M2->wait_lock, holds B->pi_lock) holds A->pi_lock) [7] waiter_update_prio(); ... [8] raw_spin_unlock(B->pi_lock); ... [10] raw_spin_lock(A->pi_lock); [11] rt_mutex_enqueue_pi(); // observes inconsistent A->pi_waiters // tree order Fixing this means either extending the range of the owner lock from [10-13] to [6-13], with the immediate problem that this means [6-8] hold both blocked and owner locks, or duplicating the sort key. Since the locking in chain walk is horrible enough without having to consider pi_lock nesting rules, duplicate the sort key instead. By giving each tree their own sort key, the above race becomes harmless, if C sees B at the old location, then B will correct things (if they need correcting) when it walks up the chain and reaches A. Fixes:fb00aca474
("rtmutex: Turn the plist into an rb-tree") Reported-by: Henry Wu <triangletrap12@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Henry Wu <triangletrap12@gmail.com> Link: https://lkml.kernel.org/r/20230707161052.GF2883469%40hirez.programming.kicks-ass.net Signed-off-by: Sasha Levin <sashal@kernel.org>
This commit is contained in:
Родитель
c579caef7c
Коммит
4ed1549129
|
@ -331,21 +331,43 @@ static __always_inline int __waiter_prio(struct task_struct *task)
|
|||
return prio;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update the waiter->tree copy of the sort keys.
|
||||
*/
|
||||
static __always_inline void
|
||||
waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
|
||||
{
|
||||
waiter->prio = __waiter_prio(task);
|
||||
waiter->deadline = task->dl.deadline;
|
||||
lockdep_assert_held(&waiter->lock->wait_lock);
|
||||
lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
|
||||
|
||||
waiter->tree.prio = __waiter_prio(task);
|
||||
waiter->tree.deadline = task->dl.deadline;
|
||||
}
|
||||
|
||||
/*
|
||||
* Only use with rt_mutex_waiter_{less,equal}()
|
||||
* Update the waiter->pi_tree copy of the sort keys (from the tree copy).
|
||||
*/
|
||||
#define task_to_waiter(p) \
|
||||
&(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
|
||||
static __always_inline void
|
||||
waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
|
||||
{
|
||||
lockdep_assert_held(&waiter->lock->wait_lock);
|
||||
lockdep_assert_held(&task->pi_lock);
|
||||
lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
|
||||
|
||||
static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
|
||||
struct rt_mutex_waiter *right)
|
||||
waiter->pi_tree.prio = waiter->tree.prio;
|
||||
waiter->pi_tree.deadline = waiter->tree.deadline;
|
||||
}
|
||||
|
||||
/*
|
||||
* Only use with rt_waiter_node_{less,equal}()
|
||||
*/
|
||||
#define task_to_waiter_node(p) \
|
||||
&(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
|
||||
#define task_to_waiter(p) \
|
||||
&(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
|
||||
|
||||
static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
|
||||
struct rt_waiter_node *right)
|
||||
{
|
||||
if (left->prio < right->prio)
|
||||
return 1;
|
||||
|
@ -362,8 +384,8 @@ static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
|
|||
return 0;
|
||||
}
|
||||
|
||||
static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
|
||||
struct rt_mutex_waiter *right)
|
||||
static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
|
||||
struct rt_waiter_node *right)
|
||||
{
|
||||
if (left->prio != right->prio)
|
||||
return 0;
|
||||
|
@ -383,7 +405,7 @@ static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
|
|||
static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
|
||||
struct rt_mutex_waiter *top_waiter)
|
||||
{
|
||||
if (rt_mutex_waiter_less(waiter, top_waiter))
|
||||
if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
|
||||
return true;
|
||||
|
||||
#ifdef RT_MUTEX_BUILD_SPINLOCKS
|
||||
|
@ -391,30 +413,30 @@ static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
|
|||
* Note that RT tasks are excluded from same priority (lateral)
|
||||
* steals to prevent the introduction of an unbounded latency.
|
||||
*/
|
||||
if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
|
||||
if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
|
||||
return false;
|
||||
|
||||
return rt_mutex_waiter_equal(waiter, top_waiter);
|
||||
return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#define __node_2_waiter(node) \
|
||||
rb_entry((node), struct rt_mutex_waiter, tree_entry)
|
||||
rb_entry((node), struct rt_mutex_waiter, tree.entry)
|
||||
|
||||
static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
|
||||
{
|
||||
struct rt_mutex_waiter *aw = __node_2_waiter(a);
|
||||
struct rt_mutex_waiter *bw = __node_2_waiter(b);
|
||||
|
||||
if (rt_mutex_waiter_less(aw, bw))
|
||||
if (rt_waiter_node_less(&aw->tree, &bw->tree))
|
||||
return 1;
|
||||
|
||||
if (!build_ww_mutex())
|
||||
return 0;
|
||||
|
||||
if (rt_mutex_waiter_less(bw, aw))
|
||||
if (rt_waiter_node_less(&bw->tree, &aw->tree))
|
||||
return 0;
|
||||
|
||||
/* NOTE: relies on waiter->ww_ctx being set before insertion */
|
||||
|
@ -432,48 +454,58 @@ static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_nod
|
|||
static __always_inline void
|
||||
rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
|
||||
{
|
||||
rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
|
||||
lockdep_assert_held(&lock->wait_lock);
|
||||
|
||||
rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
|
||||
{
|
||||
if (RB_EMPTY_NODE(&waiter->tree_entry))
|
||||
lockdep_assert_held(&lock->wait_lock);
|
||||
|
||||
if (RB_EMPTY_NODE(&waiter->tree.entry))
|
||||
return;
|
||||
|
||||
rb_erase_cached(&waiter->tree_entry, &lock->waiters);
|
||||
RB_CLEAR_NODE(&waiter->tree_entry);
|
||||
rb_erase_cached(&waiter->tree.entry, &lock->waiters);
|
||||
RB_CLEAR_NODE(&waiter->tree.entry);
|
||||
}
|
||||
|
||||
#define __node_2_pi_waiter(node) \
|
||||
rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
|
||||
#define __node_2_rt_node(node) \
|
||||
rb_entry((node), struct rt_waiter_node, entry)
|
||||
|
||||
static __always_inline bool
|
||||
__pi_waiter_less(struct rb_node *a, const struct rb_node *b)
|
||||
static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
|
||||
{
|
||||
return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
|
||||
return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
|
||||
{
|
||||
rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
|
||||
lockdep_assert_held(&task->pi_lock);
|
||||
|
||||
rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
|
||||
}
|
||||
|
||||
static __always_inline void
|
||||
rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
|
||||
{
|
||||
if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
|
||||
lockdep_assert_held(&task->pi_lock);
|
||||
|
||||
if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
|
||||
return;
|
||||
|
||||
rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
|
||||
RB_CLEAR_NODE(&waiter->pi_tree_entry);
|
||||
rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
|
||||
RB_CLEAR_NODE(&waiter->pi_tree.entry);
|
||||
}
|
||||
|
||||
static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
|
||||
static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
|
||||
struct task_struct *p)
|
||||
{
|
||||
struct task_struct *pi_task = NULL;
|
||||
|
||||
lockdep_assert_held(&lock->wait_lock);
|
||||
lockdep_assert(rt_mutex_owner(lock) == p);
|
||||
lockdep_assert_held(&p->pi_lock);
|
||||
|
||||
if (task_has_pi_waiters(p))
|
||||
|
@ -562,9 +594,14 @@ static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_st
|
|||
* Chain walk basics and protection scope
|
||||
*
|
||||
* [R] refcount on task
|
||||
* [P] task->pi_lock held
|
||||
* [Pn] task->pi_lock held
|
||||
* [L] rtmutex->wait_lock held
|
||||
*
|
||||
* Normal locking order:
|
||||
*
|
||||
* rtmutex->wait_lock
|
||||
* task->pi_lock
|
||||
*
|
||||
* Step Description Protected by
|
||||
* function arguments:
|
||||
* @task [R]
|
||||
|
@ -579,27 +616,32 @@ static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_st
|
|||
* again:
|
||||
* loop_sanity_check();
|
||||
* retry:
|
||||
* [1] lock(task->pi_lock); [R] acquire [P]
|
||||
* [2] waiter = task->pi_blocked_on; [P]
|
||||
* [3] check_exit_conditions_1(); [P]
|
||||
* [4] lock = waiter->lock; [P]
|
||||
* [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L]
|
||||
* unlock(task->pi_lock); release [P]
|
||||
* [1] lock(task->pi_lock); [R] acquire [P1]
|
||||
* [2] waiter = task->pi_blocked_on; [P1]
|
||||
* [3] check_exit_conditions_1(); [P1]
|
||||
* [4] lock = waiter->lock; [P1]
|
||||
* [5] if (!try_lock(lock->wait_lock)) { [P1] try to acquire [L]
|
||||
* unlock(task->pi_lock); release [P1]
|
||||
* goto retry;
|
||||
* }
|
||||
* [6] check_exit_conditions_2(); [P] + [L]
|
||||
* [7] requeue_lock_waiter(lock, waiter); [P] + [L]
|
||||
* [8] unlock(task->pi_lock); release [P]
|
||||
* [6] check_exit_conditions_2(); [P1] + [L]
|
||||
* [7] requeue_lock_waiter(lock, waiter); [P1] + [L]
|
||||
* [8] unlock(task->pi_lock); release [P1]
|
||||
* put_task_struct(task); release [R]
|
||||
* [9] check_exit_conditions_3(); [L]
|
||||
* [10] task = owner(lock); [L]
|
||||
* get_task_struct(task); [L] acquire [R]
|
||||
* lock(task->pi_lock); [L] acquire [P]
|
||||
* [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
|
||||
* [12] check_exit_conditions_4(); [P] + [L]
|
||||
* [13] unlock(task->pi_lock); release [P]
|
||||
* lock(task->pi_lock); [L] acquire [P2]
|
||||
* [11] requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
|
||||
* [12] check_exit_conditions_4(); [P2] + [L]
|
||||
* [13] unlock(task->pi_lock); release [P2]
|
||||
* unlock(lock->wait_lock); release [L]
|
||||
* goto again;
|
||||
*
|
||||
* Where P1 is the blocking task and P2 is the lock owner; going up one step
|
||||
* the owner becomes the next blocked task etc..
|
||||
*
|
||||
*
|
||||
*/
|
||||
static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
||||
enum rtmutex_chainwalk chwalk,
|
||||
|
@ -747,7 +789,7 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
* enabled we continue, but stop the requeueing in the chain
|
||||
* walk.
|
||||
*/
|
||||
if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
|
||||
if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
|
||||
if (!detect_deadlock)
|
||||
goto out_unlock_pi;
|
||||
else
|
||||
|
@ -755,13 +797,18 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
}
|
||||
|
||||
/*
|
||||
* [4] Get the next lock
|
||||
* [4] Get the next lock; per holding task->pi_lock we can't unblock
|
||||
* and guarantee @lock's existence.
|
||||
*/
|
||||
lock = waiter->lock;
|
||||
/*
|
||||
* [5] We need to trylock here as we are holding task->pi_lock,
|
||||
* which is the reverse lock order versus the other rtmutex
|
||||
* operations.
|
||||
*
|
||||
* Per the above, holding task->pi_lock guarantees lock exists, so
|
||||
* inverting this lock order is infeasible from a life-time
|
||||
* perspective.
|
||||
*/
|
||||
if (!raw_spin_trylock(&lock->wait_lock)) {
|
||||
raw_spin_unlock_irq(&task->pi_lock);
|
||||
|
@ -865,17 +912,18 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
* or
|
||||
*
|
||||
* DL CBS enforcement advancing the effective deadline.
|
||||
*
|
||||
* Even though pi_waiters also uses these fields, and that tree is only
|
||||
* updated in [11], we can do this here, since we hold [L], which
|
||||
* serializes all pi_waiters access and rb_erase() does not care about
|
||||
* the values of the node being removed.
|
||||
*/
|
||||
waiter_update_prio(waiter, task);
|
||||
|
||||
rt_mutex_enqueue(lock, waiter);
|
||||
|
||||
/* [8] Release the task */
|
||||
/*
|
||||
* [8] Release the (blocking) task in preparation for
|
||||
* taking the owner task in [10].
|
||||
*
|
||||
* Since we hold lock->waiter_lock, task cannot unblock, even if we
|
||||
* release task->pi_lock.
|
||||
*/
|
||||
raw_spin_unlock(&task->pi_lock);
|
||||
put_task_struct(task);
|
||||
|
||||
|
@ -899,7 +947,12 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* [10] Grab the next task, i.e. the owner of @lock */
|
||||
/*
|
||||
* [10] Grab the next task, i.e. the owner of @lock
|
||||
*
|
||||
* Per holding lock->wait_lock and checking for !owner above, there
|
||||
* must be an owner and it cannot go away.
|
||||
*/
|
||||
task = get_task_struct(rt_mutex_owner(lock));
|
||||
raw_spin_lock(&task->pi_lock);
|
||||
|
||||
|
@ -912,8 +965,9 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
* and adjust the priority of the owner.
|
||||
*/
|
||||
rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
|
||||
waiter_clone_prio(waiter, task);
|
||||
rt_mutex_enqueue_pi(task, waiter);
|
||||
rt_mutex_adjust_prio(task);
|
||||
rt_mutex_adjust_prio(lock, task);
|
||||
|
||||
} else if (prerequeue_top_waiter == waiter) {
|
||||
/*
|
||||
|
@ -928,8 +982,9 @@ static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
|
|||
*/
|
||||
rt_mutex_dequeue_pi(task, waiter);
|
||||
waiter = rt_mutex_top_waiter(lock);
|
||||
waiter_clone_prio(waiter, task);
|
||||
rt_mutex_enqueue_pi(task, waiter);
|
||||
rt_mutex_adjust_prio(task);
|
||||
rt_mutex_adjust_prio(lock, task);
|
||||
} else {
|
||||
/*
|
||||
* Nothing changed. No need to do any priority
|
||||
|
@ -1142,6 +1197,7 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
|
|||
waiter->task = task;
|
||||
waiter->lock = lock;
|
||||
waiter_update_prio(waiter, task);
|
||||
waiter_clone_prio(waiter, task);
|
||||
|
||||
/* Get the top priority waiter on the lock */
|
||||
if (rt_mutex_has_waiters(lock))
|
||||
|
@ -1175,7 +1231,7 @@ static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
|
|||
rt_mutex_dequeue_pi(owner, top_waiter);
|
||||
rt_mutex_enqueue_pi(owner, waiter);
|
||||
|
||||
rt_mutex_adjust_prio(owner);
|
||||
rt_mutex_adjust_prio(lock, owner);
|
||||
if (owner->pi_blocked_on)
|
||||
chain_walk = 1;
|
||||
} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
|
||||
|
@ -1222,6 +1278,8 @@ static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
|
|||
{
|
||||
struct rt_mutex_waiter *waiter;
|
||||
|
||||
lockdep_assert_held(&lock->wait_lock);
|
||||
|
||||
raw_spin_lock(¤t->pi_lock);
|
||||
|
||||
waiter = rt_mutex_top_waiter(lock);
|
||||
|
@ -1234,7 +1292,7 @@ static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
|
|||
* task unblocks.
|
||||
*/
|
||||
rt_mutex_dequeue_pi(current, waiter);
|
||||
rt_mutex_adjust_prio(current);
|
||||
rt_mutex_adjust_prio(lock, current);
|
||||
|
||||
/*
|
||||
* As we are waking up the top waiter, and the waiter stays
|
||||
|
@ -1471,7 +1529,7 @@ static void __sched remove_waiter(struct rt_mutex_base *lock,
|
|||
if (rt_mutex_has_waiters(lock))
|
||||
rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
|
||||
|
||||
rt_mutex_adjust_prio(owner);
|
||||
rt_mutex_adjust_prio(lock, owner);
|
||||
|
||||
/* Store the lock on which owner is blocked or NULL */
|
||||
next_lock = task_blocked_on_lock(owner);
|
||||
|
|
|
@ -437,7 +437,7 @@ void __sched rt_mutex_adjust_pi(struct task_struct *task)
|
|||
raw_spin_lock_irqsave(&task->pi_lock, flags);
|
||||
|
||||
waiter = task->pi_blocked_on;
|
||||
if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
|
||||
if (!waiter || rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
|
||||
raw_spin_unlock_irqrestore(&task->pi_lock, flags);
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -17,27 +17,44 @@
|
|||
#include <linux/rtmutex.h>
|
||||
#include <linux/sched/wake_q.h>
|
||||
|
||||
|
||||
/*
|
||||
* This is a helper for the struct rt_mutex_waiter below. A waiter goes in two
|
||||
* separate trees and they need their own copy of the sort keys because of
|
||||
* different locking requirements.
|
||||
*
|
||||
* @entry: rbtree node to enqueue into the waiters tree
|
||||
* @prio: Priority of the waiter
|
||||
* @deadline: Deadline of the waiter if applicable
|
||||
*
|
||||
* See rt_waiter_node_less() and waiter_*_prio().
|
||||
*/
|
||||
struct rt_waiter_node {
|
||||
struct rb_node entry;
|
||||
int prio;
|
||||
u64 deadline;
|
||||
};
|
||||
|
||||
/*
|
||||
* This is the control structure for tasks blocked on a rt_mutex,
|
||||
* which is allocated on the kernel stack on of the blocked task.
|
||||
*
|
||||
* @tree_entry: pi node to enqueue into the mutex waiters tree
|
||||
* @pi_tree_entry: pi node to enqueue into the mutex owner waiters tree
|
||||
* @tree: node to enqueue into the mutex waiters tree
|
||||
* @pi_tree: node to enqueue into the mutex owner waiters tree
|
||||
* @task: task reference to the blocked task
|
||||
* @lock: Pointer to the rt_mutex on which the waiter blocks
|
||||
* @wake_state: Wakeup state to use (TASK_NORMAL or TASK_RTLOCK_WAIT)
|
||||
* @prio: Priority of the waiter
|
||||
* @deadline: Deadline of the waiter if applicable
|
||||
* @ww_ctx: WW context pointer
|
||||
*
|
||||
* @tree is ordered by @lock->wait_lock
|
||||
* @pi_tree is ordered by rt_mutex_owner(@lock)->pi_lock
|
||||
*/
|
||||
struct rt_mutex_waiter {
|
||||
struct rb_node tree_entry;
|
||||
struct rb_node pi_tree_entry;
|
||||
struct rt_waiter_node tree;
|
||||
struct rt_waiter_node pi_tree;
|
||||
struct task_struct *task;
|
||||
struct rt_mutex_base *lock;
|
||||
unsigned int wake_state;
|
||||
int prio;
|
||||
u64 deadline;
|
||||
struct ww_acquire_ctx *ww_ctx;
|
||||
};
|
||||
|
||||
|
@ -105,7 +122,7 @@ static inline bool rt_mutex_waiter_is_top_waiter(struct rt_mutex_base *lock,
|
|||
{
|
||||
struct rb_node *leftmost = rb_first_cached(&lock->waiters);
|
||||
|
||||
return rb_entry(leftmost, struct rt_mutex_waiter, tree_entry) == waiter;
|
||||
return rb_entry(leftmost, struct rt_mutex_waiter, tree.entry) == waiter;
|
||||
}
|
||||
|
||||
static inline struct rt_mutex_waiter *rt_mutex_top_waiter(struct rt_mutex_base *lock)
|
||||
|
@ -113,8 +130,10 @@ static inline struct rt_mutex_waiter *rt_mutex_top_waiter(struct rt_mutex_base *
|
|||
struct rb_node *leftmost = rb_first_cached(&lock->waiters);
|
||||
struct rt_mutex_waiter *w = NULL;
|
||||
|
||||
lockdep_assert_held(&lock->wait_lock);
|
||||
|
||||
if (leftmost) {
|
||||
w = rb_entry(leftmost, struct rt_mutex_waiter, tree_entry);
|
||||
w = rb_entry(leftmost, struct rt_mutex_waiter, tree.entry);
|
||||
BUG_ON(w->lock != lock);
|
||||
}
|
||||
return w;
|
||||
|
@ -127,8 +146,10 @@ static inline int task_has_pi_waiters(struct task_struct *p)
|
|||
|
||||
static inline struct rt_mutex_waiter *task_top_pi_waiter(struct task_struct *p)
|
||||
{
|
||||
lockdep_assert_held(&p->pi_lock);
|
||||
|
||||
return rb_entry(p->pi_waiters.rb_leftmost, struct rt_mutex_waiter,
|
||||
pi_tree_entry);
|
||||
pi_tree.entry);
|
||||
}
|
||||
|
||||
#define RT_MUTEX_HAS_WAITERS 1UL
|
||||
|
@ -190,8 +211,8 @@ static inline void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter)
|
|||
static inline void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
|
||||
{
|
||||
debug_rt_mutex_init_waiter(waiter);
|
||||
RB_CLEAR_NODE(&waiter->pi_tree_entry);
|
||||
RB_CLEAR_NODE(&waiter->tree_entry);
|
||||
RB_CLEAR_NODE(&waiter->pi_tree.entry);
|
||||
RB_CLEAR_NODE(&waiter->tree.entry);
|
||||
waiter->wake_state = TASK_NORMAL;
|
||||
waiter->task = NULL;
|
||||
}
|
||||
|
|
|
@ -96,25 +96,25 @@ __ww_waiter_first(struct rt_mutex *lock)
|
|||
struct rb_node *n = rb_first(&lock->rtmutex.waiters.rb_root);
|
||||
if (!n)
|
||||
return NULL;
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree_entry);
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree.entry);
|
||||
}
|
||||
|
||||
static inline struct rt_mutex_waiter *
|
||||
__ww_waiter_next(struct rt_mutex *lock, struct rt_mutex_waiter *w)
|
||||
{
|
||||
struct rb_node *n = rb_next(&w->tree_entry);
|
||||
struct rb_node *n = rb_next(&w->tree.entry);
|
||||
if (!n)
|
||||
return NULL;
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree_entry);
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree.entry);
|
||||
}
|
||||
|
||||
static inline struct rt_mutex_waiter *
|
||||
__ww_waiter_prev(struct rt_mutex *lock, struct rt_mutex_waiter *w)
|
||||
{
|
||||
struct rb_node *n = rb_prev(&w->tree_entry);
|
||||
struct rb_node *n = rb_prev(&w->tree.entry);
|
||||
if (!n)
|
||||
return NULL;
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree_entry);
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree.entry);
|
||||
}
|
||||
|
||||
static inline struct rt_mutex_waiter *
|
||||
|
@ -123,7 +123,7 @@ __ww_waiter_last(struct rt_mutex *lock)
|
|||
struct rb_node *n = rb_last(&lock->rtmutex.waiters.rb_root);
|
||||
if (!n)
|
||||
return NULL;
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree_entry);
|
||||
return rb_entry(n, struct rt_mutex_waiter, tree.entry);
|
||||
}
|
||||
|
||||
static inline void
|
||||
|
|
Загрузка…
Ссылка в новой задаче